
SAISort: An Energy Efficient Sorting Algorithm for
Many-Core Systems

By

LUCAS STILLMAKER
B.S. (California State University, Fresno) May, 2008

THESIS

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

in

Electrical and Computer Engineering

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Chair, Dr. Bevan M. Baas

Member, Dr. Soheil Ghiasi

Member, Dr. Venkatesh Akella

Committee in charge
2011

– i –

c© Copyright by Lucas Stillmaker 2011
All Rights Reserved

Abstract

Energy efficiency is an important aspect of nearly all computing systems for

applications ranging from large data centers to mobile devices. Many applications,

especially those used in data centers, make heavy use of sorting algorithms. This

thesis proposes the implementation of a novel sorting algorithm on a many-core chip

to be used as a co-processor in conjunction with a general purpose processor. This

algorithm takes advantage of the parallelism offered by a many core system to sort

lists for database applications. The algorithm is implemented on the Asynchronous

Array of Simple Processors second version (AsAP2) as a proof of concept.

The results show that large gains in energy efficiency can be obtained for

the first phase of a database sort. The implementation on the AsAP2 chip is able

to sort a 10 GB list of entries into 783-entry lists using 23% of the energy a mobile

i7 processor consumes during the execution of a quicksort while leaving the keys

and payload attached. When sorting the keys and payloads separately, the AsAP2

implementation uses 21% of the energy compared to the i7 implementation while

sorting into lists of 3,911 entries. Lowering the voltage of the AsAP2 processor allows

the processor to function even more efficiently, with the AsAP2 implementation using

8% and 7% of the energy compared with their i7 counterparts for payload and key

attached and separated cases respectively.

– ii –

Acknowledgments

I want to thank all of those who made this project possible. I would like to thank

my advisor Professor Bevan Baas as without his guidance and patience through my years

at UC Davis, this would not have come together. I would like to thank Professor Ghiasi for

starting me down the path of thinking that lead to this project. I would also like to thank

Professor Akella for his valuable support in reviewing my thesis.

I would like to thank my brother and lab-mate Aaron Stillmaker for all of his

help. If it weren’t for the countless hours bouncing ideas off of Aaron, this project never

would have gotten off the ground. I would also like to thank my friend Ameen Akel from

the Non-Volatile Systems Laboratory at UC San Diego for offering ideas to get me unstuck

when I was stumped while writing C++ code.

I am very appreciative of all of the work that was done that made this project

possible. Thank you everyone at the VLSI Computation Lab at UC Davis who helped

create the amazing AsAP2 processor, and everyone there who gave me their support during

my time at Davis.

A big thank you to my my parents who provided so much support, both financial

and otherwise through the years. Thank you also to the rest of my friends and family who

have helped me get to this point.

– iii –

Contents

Abstract ii

Acknowledgments iii

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 Enterprise Database Sorting . 1
1.2 Energy Efficient Database Sorting . 2
1.3 Project Contributions . 3
1.4 Organization . 3

2 Overview of Enterprise Database Sorting 5
2.1 Internal Sort . 5

2.1.1 Background . 5
2.1.2 Commonly Used Internal Sorts . 6

2.2 External Sorts . 8
2.2.1 Background . 8
2.2.2 Commonly Used External Sorts . 9

2.3 Related Work . 11
2.3.1 Parallel Database Sorting . 11

2.4 Proposed Enterprise Database Sort . 12

3 Attempted Implementations 14
3.1 Phase One Sorts . 14

3.1.1 Sequential Internal Sorts . 14
3.1.2 Merge Sorts . 15

3.2 Phase Two Buffer Sort . 19
3.2.1 Implementation at Processor Level 20
3.2.2 Chip Mapping . 22
3.2.3 Benefits / Limitations of AsAP2 Implementation 25

4 Proposed Sort 26
4.1 Phases . 26

4.1.1 Phase One / SAISort . 27

– iv –

4.1.2 Phase Two / Buffer Sort . 32
4.1.3 Phase Two / Co-Processor Binary Merge 32

4.2 AsAP2 Chip Implementation . 33
4.2.1 AsAP2 Background . 33
4.2.2 SAISort Implementation on AsAP2 35

4.3 C++ Implementation . 38
4.3.1 Phase One / Quicksort . 38
4.3.2 Phase Two / Binary Merge . 41

5 Results and Analysis 43
5.1 Calculations of Energy Consumption . 44

5.1.1 Calculation of Power Consumption 44
5.2 C++ Performance Comparison to SAISort 47
5.3 AsAP2 Implementation Performance Comparisons 50
5.4 Hardware Variations . 52

5.4.1 Varying the Number of Processors 53
5.4.2 Varying the Quantity of On-Chip Memory 54

5.5 Feasibility of Implementation . 55

6 Future Work and Conclusion 56
6.1 Future Work . 56

6.1.1 Searches . 56
6.1.2 Data Calculations . 57
6.1.3 Physical Implementation . 57
6.1.4 Efficient Second Phase Sort . 58

6.2 Conclusion . 58

Bibliography 59

– v –

List of Figures

2.1 The breakdown of the entries sorted . 10
2.2 The two phases of an enterprise database sort 11

3.1 Processor mapping of phase one merge . 17
3.2 Chip mapping of SAISort with ”fast lane” 18
3.3 Simulation results of records sorted per joule for 1 GB and different buffer

sizes . 23
3.4 Processor mapping for buffer sort . 24

4.1 The layout of the AsAP2 chip . 34
4.2 The flow of the payload seperated sort . 36
4.3 Processor mapping without using on-chip memories 39
4.4 Processor mapping using on-chip memories 40

5.1 Heatmap of active percentage of each processor in the key separated sort . 46
5.2 Graph of records sorted per joule with varying processors 53
5.3 Graph of records sorted per joule with varying quantities of on-chip memory 54

– vi –

List of Tables

2.1 A bitonic sequence being split into two bitonic sequences 6
2.2 The steps to make a sorted list from two bitonic sequences 7
2.3 The steps to turn a randomly ordered list into a bitonic sequence 7

5.1 Time and energy to sort several quantities of unsorted records keeping the
payload and key together . 48

5.2 Time and energy to sort two different quantities of unsorted records keeping
the payload and key separated for the initial sort 49

5.3 Number of passes for the second phase, time, and energy to sort varying
quantities of unsorted records . 51

– vii –

1

Chapter 1

Introduction

Energy efficiency is becoming more and more important in today’s computer mar-

ket with the growing number of mobile applications and the growing sizes of data centers.

As storage space, and physical size of the modern large scale data center grows, so does the

cost to power it. Aside from simply the cost to power the systems themselves, these large

database centers produce a large amount of heat, and cooling down the system has become

an issue [1]. This cost is taken in high consideration as new data centers are being created,

which generates a demand for ways to run database centers efficiently.

1.1 Enterprise Database Sorting

Sorting is the ordering of data entries that were previously out of order. The

most common example of sorting is ordering a list of entries so that their keys go from

the lowest value to the highest or visa versa. Structured Query Language, or SQL is a

programing language for data management that utilizes sorting. It was created by Donald

D. Chamberlin and Raymond Boyce in 1974 [2]. In SQL, sorts can be executed using the

Order By instruction [3]. Finding duplicates in a list is also vital, and can be achieved

through the Distinct function on SQL [3]. This function also begins with a sort, putting

all the lists in order. The function would then go through the list and delete entries that

shared a key with their neighbor. Sort functions are so important in fact that they are one

of the most used functions in database systems [4].

2

Sorting has been the subject of a significant amount of research. The two major

types of sorting are, internal and external sorting. The differences between these two types

of sorts is explored in further detail in Chapter 2, but in general terms: internal sorting

takes place in main memory, and external sorting requires external memory. Internal sort-

ing has received a considerable amount of attention in the Computer Science community,

both parallel and sequential implementations [5]. External sorting though, is the more use-

ful subject when looking at creating an energy efficient database sort for large datasets.

External sorting for uniprocessor systems has been deeply explored, but there is still room

for advancement in the subject of external many-core sorting algorithms that this thesis

focuses on.

1.2 Energy Efficient Database Sorting

Data centers in the United States spent a combined $4.5 billion in 2006 to cover

power consumption, accounting for 61 billion kilowatt-hours and 1.5% of total United States

electricity consumption [6]. Power consumption of database systems can be so large in fact,

that after a few years of running a common database system, money spent to power the

system can easily be more than the money spent to purchase the hardware in the first

place [7]. Since data centers spend a large amount of their processing time sorting large

databases [4], an energy efficient sorting algorithm for a database system could go a long

way in reducing the overall power consumption and operating throughput of a data center.

Even on a per company basis, energy consumption can add up quickly. Power

consumption is such a large factor in database center creation that weather condition, and

power costs are often taken into account in the creation of new database centers. Within

the last two years for example, both Google and Hewlett Packard have made plans to create

database centers in Finland, taking advantage of the cheap power in the country, along with

the cold weather to help with cooling costs [8][9]. Looking at the high power cost of running

these centers, increased energy efficiency in database systems could potentially save millions

of dollars for database centers in the United States.

The processors used in database centers are most often built with speed and

3

throughput valued more than energy efficiency. Speed is often times preferred to power

efficiency for every day tasks. This thesis does not propose the the general purpose CPU

be wholly replaced, simply aided. If a co-processor were used that could do tasks that the

CPU completes often with much higher energy efficiency, then the user could enjoy speed

for their normal operations and greatly increased energy efficiency. With database systems,

there is an obvious task that takes up great deal of the processor’s time; sorting.

1.3 Project Contributions

This thesis proposes a novel approach to first phase external sorting algorithms

specifically to utilize a many-core chip as a co-processor for a general purpose CPU. The goal

of the algorithm is energy efficiency. Since this thesis explores the first phase of an external

sort, the goal is to set up the second phase to sort as power efficiently as possible. As

the second phase of the sort is considered the merge phase of the sort where the algorithm

merges all of the sorted lists into one entry; the goal of the first phase of the sort is to

make the initial sorted lists as large as possible. For completeness, this thesis explores the

possibility of using the many-core system for the second phase of the sort as well.

As this thesis focuses on the fairly specific implementation of a many-core system,

it is imperative that parallelism is exploited as much as possible on the chip. Taniar et al.

began the exploration of external sorting on many-core systems [5]. Taniar et al. pointed

out that one of the more common external sorts are a version of a merge; either a binary

merge or a multiple list merge [5]. Merge algorithms can be very effective for uni and multi

core systems, but the merge algorithm has a few downfalls that are explored in Section 2.2.2

on page 9.

1.4 Organization

The remainder of this thesis is organized as follows. Chapter 2 gives an overview of

enterprise database sorting. Chapter 3 discusses the implementations attempted. Chapter

4 is a description of how the algorithm would be created and implemented. Chapter 5 looks

4

at the results of the implementation, along with analysis of it. Chapter 6 discusses future

work for the project, and finishes up with a conclusion.

5

Chapter 2

Overview of Enterprise Database

Sorting

2.1 Internal Sort

2.1.1 Background

Volatile memory, or main memory such as DRAM loses its stored data without

power but operates at drastically faster speeds than non-volatile secondary memory. In-

ternal sorting algorithms take place completely in this main memory. As most secondary

memory sources such as hard drives and tape drives require comparatively large access times

of approximately 100,000 times longer than the average RAM [10], internal sorts often run

much quicker than their external sorting counterparts. The downside of internal sorts, is

that RAM memory is comparatively expensive, consumes a large amount of power, and

is volatile memory. It is therefore impractical to make large databases out of RAM, and

internal sorts are not a practical option for large databases.

Internal sorts have been the focus of a considerable amount of research. Both

parallel and sequential algorithms have been given a great deal of consideration [11]. Most

external sorts have an initial phase that is effectively an internal sort. Because of this,

the efficiency of the internal sort can affect the overall completion of an external sort. As

database systems usually deal with large amounts of data, external sorts are focused on

6

in this thesis. Internal sorts are looked at for their ability to increase the efficiency of an

external sort.

2.1.2 Commonly Used Internal Sorts

During the course of the research for this thesis, many internal sorts were explored

as possible options for the first phase sort presented here. As these sorts are discussed later

in this thesis, a brief introduction for the sorts explored is given here.

Bitonic Merge Sort

Bitonic sorting was introduced by K.E. Batcher in 1964 [12]. To understand a

bitonic sort, it is first important to know what a bitonic sequence and bitonic split are. A

bitonic sequence is any list of numbers where the entries either increase to a maximum then

decrease, or decrease to a minimum then increase. A bitonic split starts with the first half

of a bitonic sequence being compared in order with the second half. Every entry that is

lower in the second half (assuming that the bitonic sequence increases then decreases) is

exchanged. If the bitonic sequence decreases to a minimum then increases, then the opposite

switch function is performed to achieve two bitonic sequences. An example of a bitonic split

is shown in Table 2.1. As can be observed in Table 2.1, the two resulting sequences after

the split are also bitonic.

Bitonic Sequence 3 7 16 10 9 5 2 1

Two Bitonic Sequences After Split 3 5 2 1 10 9 7 16

Sequence 1 Sequence 2

Table 2.1: A bitonic sequence being split into two bitonic sequences. Here the 3 is compared
to the 9 in the second half of the sequence. Since the 3 is lower, the two numbers remain
where they are. The 7 and 5 are then compared. As 5 is lower, it is switched with 7. The
16 and 2 as well as the 10 and 1 both switch places as well.

Taking this same group of numbers a few steps further, we can get the list sorted

by completing more bitonic splits, ending with each neighboring pair switched in the same

way the previous splits were. As can be seen in Table 2.2, after 2 bitonic splits, and a

pairwise exchange, this list is now sorted from lowest to highest.

7

Two Bitonic Sequences After First Split 3 5 2 1 10 9 7 16

Bitonic Splits in Quarters 2 1 3 5 7 9 10 16

Sorted List After Pairwise Exchange 1 2 3 5 7 9 10 16

Table 2.2: The steps to make a sorted list from two bitonic sequences

It has now been shown that it is possible to take a bitonic sequence and turn it

into a sorted list, so the only remaining task would be to get a list of random numbers into

a bitonic sequence to begin with. This is accomplished by performing a pairwise exchange

in alternating directions. Then splits take place, starting with a four entry split, increasing

in size until each half of the list is a bitonic list, with the beginning list ascending and

the ending list descending. One more pairwise exchange completes the transformation, this

time putting lower entries to the left on the first half, and to the right in the second half.

It can be seen in Table 2.3 that this can go from an unsorted list, to a bitonic sequence

following these steps. This bitonic sequence could then go through the process described

above to come to a sorted list.

Randomly Ordered Entries 5 3 2 10 1 9 16 7

Pairwise Exchange 3 5 10 2 1 9 16 7

Bitonic Splits 3 2 10 5 16 9 1 7

Bitonic Sequence After Pairwise Exchange 2 3 5 10 16 9 7 1

Table 2.3: The steps to turn a randomly ordered list into a bitonic sequence

Quicksort

Quicksort is a sorting algorithm first proposed by C.A.R. Hoare [13]. It is one

of the faster sorts in use, sorting by moving entries in a subsection of the unsorted list in

relation to a pivot point. The sort starts off by looking at the entire list and choosing a

pivot point. The pivot point alone can change the speed of a quicksort; the closer to the

middle element in a sub section the more effective the sort is. After the pivot point is

chosen, every item in the list is moved to either before or after the pivot point in numerical

order. The function then recursively calls the quicksort function for both the above and

below subsections. This continues on until the called quicksort function orders the last two

8

entries for all of the subsections, at which point the list is sorted.

Insertion Sort

Insertion sorts are simple to implement. The idea behind them is that each item

is inserted into a sorted list being formed. This sort starts off with one entry, then the next

entry is compared with the first and order them accordingly. The third entry would be

compared until its position was found, and so on. The sort does not require very complex

code to implement, so it is perfect for the type of system being looked at here. The sort is

also reasonably efficient for sorting small quantities of lists, and in the proposed architecture

only a maximum of 10 entries could fit in each processor.

2.2 External Sorts

2.2.1 Background

External sorting algorithms assume that the unsorted data, cannot reside com-

pletely in the main memory of the machine. This means that non-volatile memory such as

hard drives or tape drives must be utilized to store the dataset. This type of sort poses

quite a different problem than the internal sort as memory I/O speeds are one of the largest

bottlenecks for the system. In other words, it is not the computation that takes the most

time in most external sorts that decide their efficiency, but rather the number of times that

times that data must be read and written to the secondary memory.

Most large database systems employ either a single, or multi-core setup, with a

large amount of secondary memory on many disks to reduce the I/O time of the system.

As this has been the trend, the majority of research into the subject of external sorting

for database systems has been for sequential sorting where only a few cores are used [14].

Taniar et al. was one of the first to look into the idea of utilizing a many-core systems to

create parallel external database sorts [5]; their work is explained in chapter three of this

thesis. The subject of many-core external database sorting is still a largely unexplored field,

and it is the author’s opinion that many-core database systems can achieve considerable

energy efficiency, as is presented in this thesis.

9

2.2.2 Commonly Used External Sorts

One of the most commonly used external sort methods for uniprocessor environ-

ments is some version of a sort-merge [14]. In the sort-merge external sort, an internal sort

is first executed as the first phase of the sort. This first phase sorts lists as large as the main

memory allows. After this first phase is complete the algorithm will then perform a merge,

either binary or otherwise, until all of the lists have been combined into one. This method

does not translate very well to many-core systems however; a many-core system could have

each core working on a separate binary merge, but as the number of lists to be sorted gets

smaller than double the number of cores, the cores will be underutilized.

A possible solution to utilizing a many-core system to sort a list would be to break

the sorted list up into ranges for each core to process. This solution actually does work

fairly effectively if the range of possible key values being sorted is not very much larger than

the number of keys being sorted. If this is the case, than each core could be assigned a range

that would be able to ensure that the work is fairly evenly distributed across the cores, and

is explored in detail by Taniar et al. [14]. As discussed later in this thesis however, this

method does not prove to be an effective solution when the range of possible key values is

considerably larger than the number of keys sorted, as an efficient workload distribution

would be near impossible with randomly numbered keys in in a large range.

Commonly Used External Sort Benchmarks

As external sorting for database systems is very important to the database in-

dustry, there are a number of external sort benchmarks that have been proposed over the

years. The most commonly used sort benchmarks are the Gray, Penny, Minute, and Joule

sorts. The Gray sort is a measurement of how many TB of entries can be sorted in one

minute. The Penny sort is the amount of data that can be sorted for a penny’s worth of

system time. Minute sort is the amount of data that can be sorted in 60 seconds or less.

The JouleSort is one of the newer benchmarks that measuring the number of records that

can be sorted per joule. The JouleSort is described in more detail in the next section.

10

10

Bytes

90

Bytes

10 GB

100 GB

or

1 TB

Payload

Key

Payload

Key

Figure 2.1: The breakdown of the entries sorted

JouleSort

The JouleSort is a database benchmark that was proposed by a group from Stan-

ford [15]. They saw a need in the database benchmark field for something that would

measure the power efficiency of a sort. They pointed out that energy consumption, both

for cooling and power the database systems accounts for millions of dollars a year that

companies spend for operating a data center. They therefore thought that energy efficiency

should be taken into account when trying to measure database sorts against each other.

They proposed that the benchmark use 100 byte entries, the same as the majority

of popular external sorting benchmarks. The JouleSort also requires that the entire list to

be sorted must begin and finish on completely non-volatile memory to assure that the sort

is a true external sort. The benchmark has 3 different size classifications: 10 GB, 100 GB,

and 1 TB. The entire system’s power consumption is measured, including the cooling costs

for the system while it is sorting the alloted entries. The number of entries sorted is then

divided by the amount of joules the system required to sort to find the number of entries per

joule the system can sort. The sort proposed here follows the requirements of the JouleSort

benchmark, focusing on the 10 GB sort.

11

Figure 2.2: The two phases of an enterprise database sort

2.3 Related Work

2.3.1 Parallel Database Sorting

Taniar et al. [14] proposed an approach to database sorting that would take advan-

tage of parallelism for many-core systems. They also proposed three specific types of sorts

that would lend themselves to parallelism. The three new sorts that Taniar et al. proposed

used redistribution and repartitioning of data to increase the speed of the sorts [14].

The paper from Taniar et al. [14] looked into why sorts are efficient. In the paper,

Taniar et al. pointed out that external database sorts can be effectively described in two

distinct phases: a sort phase and a merge phase. The sort phase, or first phase, is where

the data goes from one unsorted list, to multiple sorted lists as can be observed on the left

12

side of Figure 2.2. The merge phase, or second phase, is where all of those sorted lists are

merged until there is only one large sorted list as shown on Figure 2.2. It is pointed out

in the paper that the first phase of the sort has a direct and substantial effect on the sort

time. Because of this, it was decided to focus on the first phase of the sort.

The paper focuses on the second phase of the sort, the final merge. The paper also

proposes the novel idea of redistribution and repartitioning of data to increase the speed.

The redistribution proposed takes place after the first phase. There would be a range of

entries assigned every available processor, splitting the range evenly. After the first phase,

each entry is sent to the processor for the range in which it belongs. Repartitioning is very

similar, but the phases are merged; the sort starts out by partitioning the entries to the

processor that correlates with the range the entry belongs in. Each processor then does its

own local sort, which would result in one sorted list.

Taniar et al. show that their new methods create a considerable of parallelism [14].

There is one major drawback though: both methods rely on the sorted keys to not have

a large range of available positions. The authors mention that this can be an issue, and

attempt load balancing by creating more ranges than processors, so that ranges with a

small number of entries can just get multiple ranges. This solution would help if the total

range is not extremely large however. This thesis, focuses on a sort of 10 GB of entries,

with a range of entries over 100 times the size. In a random environment it would be near

impossible to effectively load balance each processor in this situation.

2.4 Proposed Enterprise Database Sort

This thesis proposes a novel approach to the first phase of an external database

sort, utilizing a low power many-core system. The algorithm proposed takes advantage of

the large amount of parallelism that is possible with a many-core system. As the sort is

created with the focus of setting up the second phase of an external database sort, the sort

creates sorted lists that are as large as possible.

The algorithm is proposed to operate on a low powered many-core system, as a

co-processor to a general purpose CPU. With this setup, the main processor is still be able

13

to utilize the system resources as the co-processor is sorting the first phase of entries. This

thesis also explores the most energy efficient setup for the proposed algorithm. Varying

sizes of memories, of processors on-chip, and clock speed are all explored.

14

Chapter 3

Attempted Implementations

3.1 Phase One Sorts

The first phase of an external database sort is extremely crucial. This is because

the size of the sorted lists created dictates the number of passes through the data that the

second phase requires. Because the first phase is so important, it is the focus of this research.

Many avenues were explored in an attempt to create the most efficient sort possible. In the

end, the SAISort was decided as the most effective option, but the attempted sorts helped

lead to the end decision, and is described here.

3.1.1 Sequential Internal Sorts

Popular Uniprocessor Sorts

One of the first implementations attempted was modifying a popular and efficient

uniprocessor internal sort to work on a many-core system such as Quick Sort. Because of

the limited memory that each processor has on the many-core framework assumed, it was

quickly decided that using each of the processors to sort individual lists as if each were

a uni-core processor would not be efficient. The internal memory on each of the chips is

assumed to only hold 10 entries at most, so without further functions the phase one lists

would only be 10 entries long. The many-core chip general characteristics used also dictate

that all of the processors cannot be loaded and unloaded in parallel, so time would be

15

wasted simply bringing the entries to and from the processors.

Many uniprocessor sorts were also ruled out because of their complexity. The

instruction memory of the setup was a limiting factor. It was assumed that each processor

could store only 128 lines of code. With only 128 lines of assembly language code, it turned

out to be very difficult to program any algorithm that was very complex.

Altering a uniprocessor sort so that it would work across the entire chip was also

explored. In this algorithm, the list would be loaded whose entries spanned all of the pro-

cessors. The quicksort was attempted in such a fashion. With this implementation, a lot of

processor to processor communication would be required for the comparisons though, which

would create a bottleneck. Each of the subroutines called could possibly be ran on different

processors, but this parallelism only becomes available after a number of subroutines have

been called. For example, on the 164 core chip being assumed here, 163 subroutines must

be called before the chip is completely utilized.

In the end, the SAISort that was used and described here was a hybrid of the two

previously mentioned attempts. The sort is explained in more detail in subsequent sections,

but the general idea of the sort is that each processor sorts as many entries as it can hold,

then outputs the lowest entry on to the next processor in a chain. If only the number of

entries that can be held by the processors is input, then the output of the last processor

would be a sorted list.

3.1.2 Merge Sorts

Bitonic Merge

A Bitonic Merge sort was explored extensively. The sort implements very effi-

ciently on a many-core system, as it allows for a considerable amount of parallelism to

be taken advantage of. The many core system being designed for also lends itself well to

the implementation of the system. The network of a Bitonic Merge Sort moves towards a

sorted list in a fairly linear fashion, with an entry point of an unsorted list, and an exit point

of a sorted list which fits with the assumed chip architecture. The network does require

that nodes can send information long distance to contact processors that are more than

16

neighboring, but again this fits with the setup as long distance communication is available.

In the end, it was simply the assembly language code size that did not allow the

implementation of this sort on the chip. Creating a Bitonic Merge algorithm using the 128

lines of assembly language code available was attempted, but the algorithm was just too

large. If it were possible to shrink the algorithms size down to fit in the alloted instruction

memory space, or if the instruction memory were increased, a Bitonic Merge Sort should

be explored.

Merge Tree

To take advantage of the parallelism that the multi-core processor offers, it was

decided to investigate using a merge tree style sort. To accomplish this, the entries would

be loaded into the chip, then merged along a path through the processor until the result was

a sorted list. The first processor of each line would be loaded with the maximum number

of entries. The first processor would sort these entries. The sorted lists would then be

merged on the chip into one continuous sorted list. To reduce bottlenecks, it would also be

beneficial to use processors as buffers with enough processors to buffer every entry so that

the preceding merge processors are not required to wait for the next merge processor.

As can be observed in Figure 3.1 however, a merge tree does not fully utilize all of

the available processors. In Figure 3.1, only 22 lines can be input, creating sorted lists of

only 220 entries at the output assuming each processor were holding the maximum number

of entries. This solution would require less processing time than other solutions, as other

than the very beginning, all of the comparisons are simply to merge two sorted lists. The

number of lists that would be sorted are enough of a limiting factor to make this option

not worth it though. When sorting 220 entries, the second phase of the 10 GB sort being

considered here would require 19 passes through the data to come to one list. If all of

the processors can be completely filled, it is possible to start off with sorted lists of 1641

entries which would only require 17 passes through the data. As is discussed later, the C++

program used for the second phase sort takes 7.5 seconds and 371 joules for every pass, so

this sort would use over 1,000 joules more than a sort that sorted 1641 entries.

17

Unsorted Sorted

Buffer Processors

Merge/Sort Processors

Figure 3.1: Processor mapping of phase one merge

SAISort With Fast Lane

The sort that was decided upon was the SAISort which is described in Section 4.1

on page 26. It is effectively a single processor sort on all available processors, with each

processor being linked sequentially. Because all of the processors are linked sequentially,

the bottleneck of the sort is the fact that every entry must move through every processor

in the chip. In an attempt to fix this bottleneck, the idea of a fast lane was explored.

The general idea of this fast lane would be that if there were an entry that could be

assumed to be lower than a certain subsection of the entries it would be forwarded. As can

18

Sorted

Unsorted

if in < LowestLocal {

out = in;

}

else {

//Find rank out of the

//10 local keys and

//save ptr accordingly;

out = LowestLocal;

}

Processors

Sort Processors

Figure 3.2: Chip mapping of SAISort with ”fast lane”

19

be seen from Figure 3.2, the entry would be forwarded along the side of the chip as far as it

could be moved without looping back and forth sequentially through all of the processors.

This would save a considerable amount of processing time. This method is actually fairly

close to the idea presented by Taniar et. al [5]. In this implementation each of the different

rows would be the ”buckets” described in their paper.

The difficulty of this method, which in the end was the reason that it wasn’t used

is that ranges of numbers would be required that would not overflow a row. This limitation

was also described Section 2.3.1 on page 12 when discussing Taniar et. al [5]. As mentioned

earlier, there are 100 times the amount of possible key values for the keys than there are

entries to be sorted. This means it would be near impossible to create 6 ranges that would

equally distribute the entries across the processors with randomly generated keys.

3.2 Phase Two Buffer Sort

A phase two sort was created to run on the many-core processor described in this

thesis. To create an optimal sorting algorithm the number of memory accesses required

should be minimized. If the SAISort described later was used for merging multiple sorted

lists together then a wait for the output would be required to see what list the entry came

from before another input could be sent. One of the larger time consumers would be the

memory accesses, so a simulation was created, described in Section 3.2.3 on page 25 that

showed using the SAISort would not be an effective use of energy for merging a large amount

of presorted lists because of the amount of time that each entry would spend moving through

the chip. Implementing a string of merges while buffering entries in processors, removed

the requirement of waiting for each new entry individually.

In designing this Buffer Sort it was found that there is a trade off between merging

more lists at one time, and fewer lists at one time. If a large number of lists are merged

at one time, then a small number of passes through the data are required before one list is

reached, meaning there are fewer total reads and writes of the entire database stored on the

external memory. If a smaller number of lists are merged more phases would be required,

but there could be larger buffers, meaning the chance of stalling the chip would be reduced

20

because the buffers could hold many entries.

Because the largest downfall of the previous method was the amount of time each

entry would take to move its way through 164 processors, each entry had to go through a

smaller number of processors before it exited the chip. It was decided that it would be more

efficient to make a system that would use physical buffers to store extra entries from a list.

It was also known that the larger the number of lists combined at once, the less amount of

combines would be required before the lists were all merged into one. When looking at how

to plan out the processor, it was found that if more than 24 entries were merged at one time

a considerable amount of processors would be required for use as transmission lines, to the

point that the chip would stall its output as entries worked their way around the processor,

which is what should be avoided. Because of this, it was decided to use a setup that would

allow the combining of 24 lists at a time. After deciding on how to execute the sort, it was

implemented onto the AsAP2 processor.

3.2.1 Implementation at Processor Level

There are three distinct programs running on the processors in the Buffer Sort:

transmission, buffer and merge programs. Because of the nature of the AsAP2 processor,

it was decided that the most power efficient way to send the entries to the buffers would be

to use processors that would function solely as transmission processors. These processors

would be in charge of making sure the data ended up where it needed to be. The buffer

program functions purely as a buffer to the merge lines so that they don’t stall during

a memory access. The merge processors are where the real computation happens; each

processor merges two sorted lists into one. Setting the merge processors up in a row allows

them to merge multiple sorted lists together.

Transmission Processors

The transmission program should send off the entries to the correct buffers as

soon as possible. Because the transmission processors do not store any entries on their

internal memory, they simply decide where the entry belongs, and move it along. The

processors in the AsAP2 chip can simultaneously output to both of their output FIFOs.

21

This simultaneous output was taken advantage of by having each transmission processor

broadcast the incoming entry to two different transmission processors. When an entry

comes into the processor, it loads the tag to check if the entry should be forwarded. If the

entry should be forwarded, the key is output simultaneously to both its output FIFOs. If

the entry does not belong, the entry in the FIFO is simply deleted, and the program waits

for the next input.

Buffer Processors

The buffer processors job is to hold enough entries that the merge processor is

never without entries to merge. It also should use as few instructions as possible to keep

the speed of the program up. The processor accepts inputs from the previous processor to

fill up all of the processor’s internal memory. The next entry that comes after the processor

is full causes the processor to output the lowest stored entry before the input entry is stored.

When a reset command is input to the processor, it outputs all of the entries that are stored

to the next processor in the line. It then outputs the reset command to let the neighboring

processor know that that was the end of the list. After the reset command is sent, the

processor resets itself and begins accepting entries from the next sorted list.

Merge Processors

The merge processors merge multiple lists into one. Because it is assumed that the

processors can communicate with only nearest neighbors, the processors merge two lists at

a time. The algorithm itself is fairly simple, the lowest entry from the two lists are simply

compared, with the lower entry being output to the next processor. The next processor

then compares that entry with the lowest entry from another list. This continues on until

all of the input lists are merged.

At the processor level, the program completes the merge with as few operations as

possible, as the merge is the bottleneck. The program only loads the first byte of incoming

data before it checks for a reset code. If there is no reset command, it downloads the rest

of the key, leaving the payload in whatever FIFO the processor utilizes. The processor then

loads a byte from its other entry point to check it for a reset code, then the key of that

22

entry. The program then compares the two keys, outputs the lower key and outputs the

payload from the input FIFO to the output FIFO for the lower entry. The next input is

then compared with the stored key and this continues until a reset code is found. The reset

codes are a bit of data sent at the end of a list of sorted entries.

When a reset command is found from one of the input FIFOs, the chip stops

receiving data from that FIFO. The chip then begins to output directly from the other

FIFO to the output of the chip. This situation occurs when one list has finished before

the other has, meaning that all of the remaining entries from the remaining list have larger

valued keys than all of the entries on the finished list. Because of this, the output list is still

ordered correctly by simply outputting the remaining list to completion. When the second

list reaches completion and the second reset command is input, the program then sends out

a reset command to the next processor letting it know that the input lists are completed.

The processor then resets itself and begins accepting inputs from both attached FIFOs to

begin merging the next two lists input.

3.2.2 Chip Mapping

The buffer sort should be mapped out in a way that as many lists as possible are

merged at once, while buffering enough entries that memory accesses cause as few stalls as

possible. To accomplish this, there must be a decent buffer for the merge processors. The

merge processors should also be next to each other. The first processor in the merge line

can take two lists through buffers, and the rest of the merge processors in a row take a

buffer and the neighboring merge processor as its entries. In this way the chip can merge

many sorted lists, while each processor performs the much easier task of comparing two

keys together.

After much deliberation and simulation it was decided that it would be most

efficient to merge 24 lists at the same time. Different configurations for the processors

inside the chip to optimize the buffer space were worked out, and it was found that up to

24 buffers could fit in a way that would have effectively no stalls (if all of the entries come

from one of the two lists furthest from the output, there will be a few stalls, but this is

very unlikely and even if it does occur will only slightly slow down the chip). When adding

23

a 25th buffer to the chip, another transmission line and merge line would be required on

top of the two already there, which takes away a large amount of processors available for

buffers. This would make stalls fairly prevalent, slowing down the chip considerably. After

it was known that there could only be up to 24 merged lists at a time, a simulation was

created to model one gigabyte of data being sorted using a varying number of merged lists

from 2 to 24, see Figure 3.3. The simulation showed that 24 lists merged would give the

quickest speed, and because the main power costs are the fixed costs of the memory and

the development board, 24 is the most power efficient solution as well.

0 5 10 15 20 25
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8x 10
4

Number of Lists Merged

S
o
r
t
e
d
R
e
c
s

/

J
o
u
l
e

Figure 3.3: Simulation results of records sorted per joule for 1 GB and different buffer sizes

There are two rows in the middle of the chip that merge the incoming list with the

running list that is going down the chip, see Figure 3.4. At the far right, the two merged

lists are combined before they are output from the chip. The perimeter processors are

used to transmit the data to fill the lists. The bottom row can be used for administrative

processors, and the rest of the processors are used as buffer space, where their data memory

and FIFOs are used to store three entries per processor if they key and payload are kept

together, and 15 if they are separated. As the entries go into the processor they are tagged

24

24 Sorted Lists

of Entries

1 Merged List

of Entries

Buffer Processors

Merge Processors

Transmission Processors

Figure 3.4: Processor mapping for buffer sort

25

by an administrative processor, which specifies which list the entry came from.

3.2.3 Benefits / Limitations of AsAP2 Implementation

The Buffer Sort described here has limitations that outweigh the benefits of such

an implementation. The benefit would be that the entire external sort could take place on

the many-core processor, which would leave the general purpose processor available. The

limitation however is the speed of the AsAP2 chip, running at 1 GHz, combined with only

being able to merge 24 lists at a time makes the chip simply not fast enough to accomplish

this fairly sequential task of merging. If more parallelism could be taken advantage of, the

AsAP2 might still be a viable option, but right now it is not.

Because the physical AsAP2 chip does not currently have a viable method to

output information, simulations were relied upon to test the feasibility of the algorithm

created. The described program was run on the AsAP2 chip to find how quickly the

algorithm merges input lists. This information was used to create a MatLab script, to

accurately simulate the amount of time it would take the previously described merge to

merge lists of 329 (the total sorted list size of the SAISort with the payload and key attached

without using the on-chip memories) into one 1 GB list.

The simulation showed that this sort is not nearly as efficient at the phase two

database sort when compared to a general purpose CPU implementation. The simulation

showed that it would take 39.799 sec to sort each individual 1 GB of information. This

equation was used: 50 ns (RAM access time) + 34.375 ns (transfer time for 110 B at

3.2 BG/s) + 156000 ns (time to fill up all of the processors being used) + 100000000 ns

(number of entries) * 1000 ns (time to output one entry). It would take 100.157 sec to merge

the 10-1 Gb lists into one final list. The total time for the merge would then be 10X39.799 s

+ 100.157 s = 498.147 seconds. This is in comparison to the 142.5 seconds for the phase

two C++ implementation described later. The Buffer Sort described here takes 3.5 times

the time to merge the same lists, and the power consumption is only approximately half.

Because of this, for the remainder of this thesis it is assumed that the C++ implementation

would execute the second phase of the proposed sort.

26

Chapter 4

Proposed Sort

4.1 Phases

To implement an efficient database sort, an algorithm that minimizes the number

of memory accesses is desirable. After looking at past sorts, one of the more important

factors for efficiency is the beginning of the sort, where there are no sorted lists. To look

at this problem, the total sort was split into two phases as described in Section 2.3.1 on

page 11. In the first phase the sort goes from a completely unsorted list to many small

sorted lists. The second phase is a merge to combine the sorted lists into one sorted list.

The number of entries per list that the first phase can sort directly and drastically

affects how long it takes for the merge to output one sorted list. As the first phase is so

critical, the first phase is focused on. Because many-core systems will very likely play a

pivotal role in the future, it was decided to create an algorithm that would try and take

advantage of the parallelism that a many-core system makes possible.

A few assumptions about the many-core system the sort would be running on were

used during the creation of the algorithm that were touched on earlier in this thesis, but

are described in detail here. It was assumed that there was some sort of communication

between the cores on the chip, so that the entries could be passed around the processor.

It was also assumed that each core would have some sort of dedicated internal memory,

though the created algorithm could easily be changed for a shared memory setup.

27

4.1.1 Phase One / SAISort

To keep things efficient, the algorithm should output a sorted list that is as close

to the size of the entire internal memory of the chip as possible for the first phase. To

accomplish this, the algorithm should have many cores working in parallel that stay coor-

dinated to create one large list. It was also important to keep the complexity of the sort on

each core simple so that it could easily be used on different systems.

It was decided that the way to accomplish this would be an insertion sort on the

processor level, with each processor being connected in a line. Because the algorithm uses

an insertion sort in a serial array, it is called the Serial Array of Insertion Sorts or SAISort.

The general idea is that each processor keeps as many entries as it can on its internal

memory. As each new entry comes to the core, it inserts the entry in the stored list where

it belongs, and outputs the lowest entry to the next processor. If only the number of entries

that can fit in the chip’s internal memory is input to the chip, by the time the list leaves

the chip, it is sorted.

After all of the processors are full, a way to quickly output all of the entries stored

in the chip, so a separate output mode was created. After all of the entries are input, a

code is input to put the first processor into output mode. The first thing the processor does

is send the output code to the next processor, so that all of the used processors go into

the mode as soon as possible. When the processors are in their output mode, they simply

output all of their saved entries, then begin moving entries straight from the input to output

of the chip to reduce the time it takes to move the entries into the internal memory, then

back out.

Implementation at Processor Level

The processor implementation is straight forward. When the first entry is input,

it is stored as the lowest entry in the memory. The next entry is then compared with the

first, creating a sorted list of two entries. This continues until the internal memory is full.

The entries that come after the memory is filled are compared first with the lowest entry.

If the new entry’s key is lower than the lowest in the memory, the new entry is immediately

28

output to the next processor. If the entry’s key is higher, then the lowest entry is output to

the next processor. The new entry’s key would then be compared up the stored list until

its correct position were found. The incoming entry would then be loaded into the correct

position.

Each processor also must be able to output all of its stored entries after the total

number of entries has been input. To accomplish this, there is an output mode described

previously. To engage the output mode, a command byte is put on every entry that holds the

output and reset command. The program checks all entries to see if the output command

byte is detected. If the output command is detected, the processor sends off the output

command to the next processor then outputs all of the saved entries in its main memory.

When all the saved entries are output, the algorithm simply move entries from the input

straight to the output. The processors then checks the entries that are moved from input

to output for the reset command byte. If the reset code is found, it is sent on to the next

processor. As soon as the reset code has been sent, then resets itself to be ready to receive

the first entry of the next list to be sorted.

Parallelism

Even though every processor operates on its own list independently, there is a

large amount of parallelism with the SAISort. When the program first starts up, all of the

processor’s memories are empty, so the first entry only has one processor working. The first

entry after the first processor’s memory is filled up starts the second processor working as

well, so by the end of the first list, all the processors in the many-core system are working

at the same time.

After this initial startup, all of the processors continue to work in parallel because

the next unsorted list is input as soon as the first processor sends out its reset command.

In this way the chip can fill up with new entries even as it is outputting a sorted list. When

the final list is being output, there is a period of time where all of the processors are not

working, though the total time that all the processors aren’t working is close to negligible

as there are hundreds of thousands of sorted lists being output for any such sort.

The workload is not exactly evenly distributed across all of the processors. As

29

the chain of processors gets nearer to the end, the entries are closer to being sorted. The

entries that go into the first processor are spread out in a random fashion, so there is a

high chance that the processor only compares keys with the first or second entry before the

correct position is found. Because of the nature of the algorithm, the entries that make

their way to the processors near the point they are output, are lower than the entries saved

in the previous processors. This means that there is a higher likelihood that the algorithm

is required to check with many of the saved entries before the correct position is found.

Likewise, the closer to the end, the sooner the processor goes into the output mode. For

example the last processor would only be required to sort the number of entires that can

fit in its main memory before it would go into the output mode which does not require a

lot of computation time. Because of these two extremes, it is actually the center processors

that end up doing the most computations. This is explored in further detail in chapter 5.

Chip Mapping

When mapping this algorithm, it was necessary to focus on a setup that would

use the least amount of power. To accomplish this, it is necessary to use every processor

available for the algorithm. It was also important to use the most energy efficient mode of

data transfer available to the chip. Nearest neighbor transmission is assumed to be the most

energy efficient data transfer, so while mapping the processor data path, every processor on

the path should communicate to its neighbor. Care must also be taken that no processor is

cut from the chain while mapping so that every available processor is utilized.

SAISort With Payload Attached

The simplest way to execute this sort would be to leave the payload attached

to the key as it goes through the multi-core system. This means that there would be no

necessity to separate the two, and no pointer system so that the entries could be re-united.

The large downfall of this method is, that the internal memory of the multi-core chip would

not be able to save nearly as many entries into its internal memory. Even though it would

be necessary to add an additional 10 bytes to the entries to save an address to the payload,

the size of each entry with payload attached would be five times the size of its separated

30

counterpart. This also means that in the end, the initial sorted list that the SAISort creates

would be one fifth the size of a list that could be created when the key and payload are

separated.

The payload attached sort would be implemented fairly simply. The algorithm

would also not have as much processing time as the payload separated sort because there

would be less entries to compare. In this sort, each processor would save entries until

its internal memory was full, then compare down the list for the correct position for the

incoming entry. Here, the entire entry would be switched in the internal memory since there

would be such a small number of saved entries. For the implementation of this a shared

cache on the processor could be used, or just the local memory for energy savings.

The simplest implementation of the algorithm would be to not use any shared cache

on the chip. Not using any memory other than what local to each processor would mean

that the many-core chip would have the same program loaded to every single processor.

No processor would required to transmit data or administrate the memory. The detriment

would be that not as many entries would be sorted per run.

For the implementation, a path should be mapped out that maximizes the amount

of processors used. The sorting program would then be loaded onto all of these processors.

As soon as each list gets through all of the utilized processors, the list is output from the

chip as a new list is loaded. This version of the sort could operate slightly faster than its

shared cache counterpart as final merge is not required as the entries leave the processor.

Using a shared cache on a chip can increase the number of sorted lists, but can

also increase the power consumption of the chip. To make their use effective, the increased

number of sorted lists should reduce the second phase of the sort enough that the increased

power was worth it. Whether or not a shared cache would be used would also come down

to the chip itself, if the cache cannot be turned to a state where its power consumption is

low, then there would be less detriment to using it.

To implement the algorithm using the shared cache, different programs would be

implemented for some of the processors on the chip. The algorithm would be implemented

with sorting processors as described earlier, but processors would also be required to exe-

cute a merge. Depending on the way the chip is used, processors would also be used for

31

transmission and for communicating with the shared cache.

The mapping of the system would be similar to the simpler implementation without

shared cache. After the entries had gone through as many-cores as possible, the sorted list

would be sent to the shared cache. While the entries were being saved into the shared

cache a second set of entries would be input. Sets of entries would continue to be sorted

and saved into the shared cache until the cache was full. One more set of entries would be

sorted through the cores, and as those entries arrived at the last processor, they would be

compared with the lowest entry of the saved lists, with the lowest entry being output from

the processor. This merge would continue until all of the entries were output from the chip.

SAISort With Payload Separated

The second way this sort can be implemented is by separating the payload and

key. Separating the 90 byte payload reduces the size of the entries considerably. Since

the SAISort algorithm utilizes all the available memory on the chip, the size of the output

sorted list is increased with smaller entries. To implement this, another key that shows

where the payload is stored would be required. Even though the sort being explored here

is only 10 GB, the key used should have enough bits of address to implement the same

algorithm with a 1 TB sort. Because of this a 10 B key is used to address the payloads.

The payload separated sort utilizes a slightly more complicated algorithm. Be-

cause every core can store 5 times the number of entries compared to the payload attached

algorithm, moving the actual entries around with every inserted number would take a de-

cent amount of computation time. To remedy this, pointers are set to each of the entries,

and when the entries are re-ordered, only the pointers are moved around. In this way, only

the pointers are moved instead of all the entry. The rest of the algorithm is implemented

the same as when the key and payload are attached.

The SAISort with the payload separated uses the shared cache the same as it does

with the payloads still attached. The algorithm saves entries in groups to the shared cache,

and does a final merge as all of the entries leave. The algorithm also operates the same

without the cache, utilizing the number of processors that maximizes the efficiency of the

sort.

32

SAISort With Payload Saved in Shared Memory

The last category explored was separating the key and payload in the multi-core

processor, saving the payload in the shared memory. This sort would operate much as the

key separated sort; the chip would save the payload to the shared memory, and attach a

pointer to the key that shows where the payload is stored. After the keys were sorted, a

processor as the entries were output would combine the key back with its payload.

4.1.2 Phase Two / Buffer Sort

After the initial sort, the sorted lists are merged together into one sorted list.

The output of the first phase is thousands of sorted lists. The second phase merges as

many of these lists as possible at a time. Each pass through the data reduces the number

of lists and increase their size. The algorithm makes passes through the data until all of

the lists are merged into one. This algorithm is fairly implementation specific, depending

on the size of the processor’s internal memory, communication abilities and shared cache

implementation. The goal of the program is simply to merge as many lists as possible at a

time. An implementation of this Buffer Sort was described earlier in Section 3.2 on page 19

where it was shown to not be the most energy efficient option at least for the AsAP2 chip.

4.1.3 Phase Two / Co-Processor Binary Merge

Another option for the second phase of the sort would be using a general purpose

processor. Depending on the many-core processor used, this might be the more efficient

method. The first phase SAISort is where the efficiency is gained over a general purpose

implementation. When running a merge for the second phase though, a general purpose

processor performed slightly better. This is the reason that this thesis proposes the SAISort

to operate on a many-core chip as a co-processor to a general purpose CPU. The general

purpose processor would run the database system, and use the co-processor to quickly and

efficiently sort the first phase of database sorts.

This second phase implementation would be executed by a merge performed on

the general purpose CPU, as this is commonly used in database sorting [14]. Having the

33

general purpose CPU would also allow the CPU to take care of separating the key from

the payload for the previously mentioned executions that require it. It would then input a

group of unsorted entries into the many-core processor. The output lists would be merged

together by the general purpose processor until there was one sorted list.

4.2 AsAP2 Chip Implementation

The previously described SAISort algorithm was implemented and ran on an actual

many-core processor. The selected platform was the 167 processor chip created by Truong et

al. of the VLSI Computation Lab at the University of California, Davis [16]. A background

of the chip is given here, then the details of the SAISort implementation on the chip is

described.

4.2.1 AsAP2 Background

The first version of the AsAP processor was created by Baas et al. [17] and Yu et

al. [18] on 180 nm technology and was utilized for DSP applications [19] [20]. The chip has

36 programmable processors and can operate at frequencies over 610 MHz at 2.0 V. Each of

the 36 processors has a local oscillator on it, so that every processor operates asynchronously

with respect to neighboring processors on the chip [21].

The described algorithm was implemented on the second version of the chip:

AsAP2 created by Truong et al. [16]. The chip was fabricated using 65 nm technology and

has 167-processors. 164 of those processors are programmable, along with three algorithm

specific processors. The algorithm specific processors are: Viterbi, FFT, and video motion

estimation processors [16], though none of them were used to implement the SAISort.

Each programmable processor uses RISC instructions, along with a few added

instructions such as a min/max instruction that were used for the algorithm. The pro-

grammable processors were created with die size in mind and have a few limitations, though

they are still within the assumptions made earlier in this thesis. Each programmable pro-

cessor has an instruction memory of 128 lines of code. The on-chip memory comes in at

256 bytes (arranged as 128 16-bit words). Each processor also has two 128 byte dual clock

34

Tile

Core

DVFS

Osc

Comm

Config. and Test

Viterbi

Decoder

FFT

16 KB Shared

Memories

Motion

Estimation

Figure 4.1: The layout of the AsAP2 chip

FIFO memories (arranged as 64 16-bit words) [22].

The AsAP2 chip’s processors can each individually and dynamically change their

supply voltages and clock frequencies [23]. This allows processors to alter their voltage for

varying workloads across the processors. The processors also use a negligible amount of

energy when they are stalling while waiting for an input, which was taken advantage of in

this implementation as the workload is not distributed evenly.

There are three 16 KB on-chip shared memories on the AsAP2 chip [24] [25].

As can be seen on Figure 4.1, the three memories are at the bottom of the chip, and

two processors each can communicate directly with the memories (though long-distance

communication can be used from any processor to the processors that communicate with the

memories). These three on-chip shared memories are be used as described in Section 4.1.1 on

page 30, and their implementation and the layout to utilize them is described in Section 4.2.2

35

on page 37.

4.2.2 SAISort Implementation on AsAP2

Implementation at Processor Level

The algorithm mentioned earlier was created with a minimal amount of instruc-

tions to keep the process time low, and also to allow the algorithm to be implemented on

systems that do not have a large amount of instruction memory. Even with the simple algo-

rithm, address generators on the chip were taken advantage of to make sure that the entire

program could fit in the instruction memory of 128 instructions. The address generator

allows the processors to handle the 51 word entries (50 2-byte words with a 2-byte tag) for

the key and payload attached mode by creating pointers for the key and payload separated

implementation as described earlier. The programs have an initializing configuration rou-

tine that initializes all of the data for the algorithm including masks to find certain codes

like the reset code.

The key and payload stored together SAISort implementation first searches to see

if the key has the output command. If it does, it sends the output command to the next

processor, flushes the entries currently saved in the processor, then outputs all incoming

entries in order until the reset command is found in the key. When the reset command is

found, the processor outputs the reset command to the next processor, then prepares itself

to receive the next entry. If there is no output code, the program checks to see how many

entries are already in the processor. If the processor is empty it loads the incoming entry

to the higher slot. If there is only one entry already saved it calls the sorting routine to

determine where the two entries should be stored in processor. If there are already two

entries it moves to the main part of the sorting algorithm.

In the main part of the algorithm the keys of the incoming entry, and lowest saved

entry are compared one word (2 bytes) at a time. If it is found that the incoming key is

lower than the lowest stored value, it outputs the incoming entry directly to the output. If

it finds that the incoming entry is higher than the lowest in the processor it outputs the

lowest stored entry, then calls the sorting routine to determine which position the incoming

36

Figure 4.2: The flow of the payload seperated sort: the payload is replaced with A 10 byte
address, then the key and address are sorted

and higher stored entry should be saved in. The sorting routine compares the keys of the

two entries, one word at a time, storing the lower entry in the location reserved for it, and

store the higher entry in its respective slot.

The largest difference for the algorithm created for sorting the keys that have been

separated from their payload is that 10 entries can be stored per processor, instead of 2.

With this sort, the payload of each entry is the 10 bytes that addresses the entry to its

corresponding payload. The process that the entries go through is shown in Figure 4.2.

Pointers are also be utilized in this implementation to reduce the number of times that the

entries have to be shuffled while sorting. The program uses an output code and reset code

in the same way previously described for the payload attached sort. If the output key is

not found, the program checks to see how many entries are stored. If there are less than

10, the entry is saved to the nearest free spot in memory. The key is then compared to the

stored entries one by one. Once the correct spot is found, the pointers that point to the

saved entries are updated.

Once the processor is completely full, the next entry input only has its key saved.

The key is still be checked for the output command, then the key is compared to the lowest

saved entry in the processor. If the new entry is lower than the lowest saved, its key is

37

output, then the 10 byte payload is sent from the input to output FIFO. If the lowest saved

entry is the lower, then that entry is output. The new entry’s key is then saved to the newly

vacated position in memory, and the 10 byte payload from the input FIFO is saved in the

memory spot as well. The program then compares down the list of saved entries to find

where the new entry belongs. Once its position is found, the pointers are updated.

The pointers utilized are necessary for the effective implementation of the sort.

The pointers were implemented by using the AsAP2’s address generators. The address

generators are initialized by saving a word to a specific spot in the processor’s memory that

defines the starting and ending memory address for the generator. To take advantage of

this, 10 words in the memory were used as the pointers. Each of these 10 memory locations

had the starting and ending addresses of 10 different spots in the memory stored in them.

When comparing, an address generator is used to cycle between the 10 pointers, and another

address generator is used to compare the data stored where the pointers point at. In this

way, the 20 bytes of each entry are kept in the same memory location, the pointers are

simply changed when the order is changed.

The sort program that stores the payload in the shared memory would sort the

same way the payload and key separated sort would. The only difference would be adminis-

trative processors at the input and output of the chip that would assign the pointer address

to the key and save the payload to the shared memory on the AsAP2 chip, then combine

the two back again after the sort was completed.

Processor Mapping

When deciding the mapping for the programs, a maximum amount of processors

should be utilized, while keeping a continuous string of utilized processors from the input of

the chip to the output of the chip. When utilizing the on-chip shared memory, allowances

would also be required for processors to transfer the entries to the memories and a processor

to merge the lists as they were output. To make the shared memory programs efficient, the

number of processors that are not sorting should be kept to a minimum.

The mapping for not using the shared memory is fairly straightforward, all the

processors should be utilized if possible, and the processors should be kept in a continuous

38

string to allow for nearest neighbor communication. After some trial and error, the mapping

path shown in Figure 4.3 was decided upon. This path allows for a continuous path from

beginning to end for the power efficient nearest neighbor communication while using all of

the 164 programmable processors. This means that the SAISort outputs 329 entries if the

payload is kept with the key, and 1641 entries if the key and payload are separated.

Mapping for utilizing the shared memory required that some of the processors

be used simply for interfacing with the shared memories, and that some of the processors

be used for transferring the entries to those processors. This mapping would be used for

both the sort with key and payload attached and the sort where the key and payload are

separated inside the chip. After working through numerous mappings, the mapping showing

in Figure 4.4 was found to minimize the number of processors that would not be used for

sorting. In this way, there are still 151 processors used to sort lists.

4.3 C++ Implementation

To provide a very clear comparison to the implementation on the AsAP2 chip, a

C++ program was created that mimicked the phases of the of the AsAP2 chip as closely

as possible. Because the second phase of the sort depends so heavily on the size of lists

created in the first phase, a sort was desired that would allow the size of the sorted lists

to be defined by the user. It would then be possible to make comparisons for each of the

algorithms created. To make good comparisons, programs were created that kept the key

and payload separate, or together. Quicksort was used for its ease of implementation and

efficiency for the first phase. The second phase is a binary merge. The system that the

code was run on, is a laptop with an Intel Core i7 720 processor. It also has 4 gigabytes of

DDR3 RAM and a 320GB 7200RPM SATA Hard Drive.

4.3.1 Phase One / Quicksort

To create the C++ quicksort, a simple implementation was desired. An algorithm

from www.24bytes.com was used as a template for the code [26]. The quicksort algorithm

did indeed turn out to be fairly simple. The program loads all of the entries, then creates

39

Sorted

Unsorted

if in < LowestLocal {

out = in;

}

else {

//Find rank out of the

//10 local keys and

//save ptr accordingly;

out = LowestLocal;

}

Figure 4.3: Processor mapping without using on-chip memories

40

if in < LowestLocal {

out = in;

}

else {

//Find rank out of the

//10 local keys and

//save ptr accordingly;

out = LowestLocal;

}

Unsorted

Sorted

Figure 4.4: Processor mapping using on-chip memories

41

pointers for each entry. The program then choses the final entry of a list as its midpoint,

swaps entries until there are two lists, one list above the midpoint and one below. The

program then calls the quicksort routine for the two lists recursively until each quicksort

routine is simply choosing the higher and lower of two entries. After a sorted list is created,

the program then uses the pointers to save the entire list with payload and key into an

array stored in the RAM of the computer. The user can define the size of the unsorted list,

along with the size of the lists that are output.

To create a realistic benchmark for the SAISort, an efficient C++ program was

required. The first version of the program swapped the entire entry, key and payload during

the quicksort phase. The time for the sort was extremely high, so solutions to make the

sort more efficient were explored. It was decided to use pointers so that time wouldn’t be

wasted moving the entire key and payload with every swap, and this drastically increased

the speed of the sort. After the entries are all loaded into a string, each entry is assigned

a pointer. The quicksort then uses the address stored by the pointers to compare the 10

byte keys. If an entry swap is required, the pointers are switched. To increase the speed of

the sort, the i7 was utilized to its fullest extent by running 8 copies of the program on the

system to use all 4 cores and 4 hyper threaded strings.

To keep the comparison relevant, this phase of the sort needed to match the

AsAP2 SAISorts first phase as closely as possible, and there were many aspects to the way

the sort program runs that keeps things similar. The AsAP2 program assumes that 2 GB

of information would be loaded to RAM, then streamed to the processor, followed by a final

merge to 10 GB. To mimic this, the entire 2GB of entries are loaded into the machine’s

RAM at the same time. This way the program is not held back by hard drive access times.

The first phase is executed after all of the entries are loaded, creating sorted lists the size

the user defined to match a case of the AsAP2 sort. The sorted lists are then left in the

RAM for the second phase to use.

4.3.2 Phase Two / Binary Merge

The second phase of the sort is effectively a binary merge. Two sorted lists are

saved into separate variables, and merged back into the array to create one sorted list out

42

of the two. The program does an entire pass through all of the entries, merging two lists to

one. After this first pass, there are half as many lists that are twice the size. The program

then continues to do passes through the lists, until it gets down to just one sorted list. As

the focus of this work is on the first phase of the database sort, this phase two binary merge

was used with the SAISort.

The second phase begins with 2 GB of many small sorted lists (depending on the

number of entries sorted per list in the first phase). During this phase of the sort, pointers

are not used as a binary merge does not have as many swaps as a quicksort. After the

binary merge portion of the program has done enough passes, there is one 2 GB sorted list

left. To complete the entire sort, the 2 GB would be saved back into the hard drive, and

another 2 GB would be loaded into the RAM. This would continue until there are five lists

of 2 GB in the hard drive. From there, a final merge would take place. This final merge

would use the RAM to buffer as much of each of the five lists as possible, and save the final

10 GB sorted list back to the hard drive.

43

Chapter 5

Results and Analysis

The algorithm was created for the first phase of a database sort, so the results

highlight the first phase but still show the whole picture with results for a whole system

running both phases. The metric compares the C++ implementation of the algorithm to

the AsAP2 implementation for the first phase. Because of the way the C++ implemen-

tation was created, the comparisons for each AsAP2 algorithm are compared to the C++

implementation for the same number of sorted lists and size of list. For completeness sake,

and to show a clearer picture of how the sort compares to other database sorts, estimated

JouelSort numbers of records sorted per joule are also shown. The comparison of records

per joule has the same C++ merge for the second phase of both implementations as the

buffer merge is not as energy efficient when looking at a complete system.

The programs created were run on an AsAP2 chip. Psuedorandom numbers were

generated for the keys of the entries, then sent through the chip. The chip is not connected

to a board that would allow the I/O speeds required to run the database sort in real time,

so it was observed that when an unsorted list was input, a sorted list came out. Energy

numbers for the SAISort were calculated by simulating the programs with NC-Verilog to

find the average runtime, then energy numbers were used for the AsAP 2 chip along with

the rest of the components of the system.

To find the energy consumption of the C++ program, the created program was run

on a Core i7 laptop. Eight iterations of the program ran concurrently to use all of the threads

44

available to an i7 processor that has four cores utilizing hyper-threading. The runtime for

the programs were found by using a stopwatch, averaging out the numbers of five tests.

The stopwatch was started at the initialization of the first program, and stopped when the

last of the eight programs was done sorting (all 8 programs always stopped within a second

of each other). The energy consumption of the laptop was calculated using documented

numbers.

5.1 Calculations of Energy Consumption

5.1.1 Calculation of Power Consumption

Even though the complete system of using an AsAP2 chip to sort and output to

a hard drive was not physically implemented, power numbers were found for each of the

components of a system that could implement the system if the AsAP2 were connected to

a board with sufficient I/O speed. The JouleSort requires that all numbers be accounted

for, idle power numbers were used for parts of the system that would not be active during

the first phase SAISort. The added power for the on-chip shared memory is so small that

it does not change the significant digits of the total, so this number is used in calculations

with or without the shared memories. The numbers used are:

SAISort Phase One With Payload Attached:

Core i7 in idle mode = 1.82 W

RAM = 2 × 1.8 W = 3.6 W

HD in idle mode = 8 × 0.85 W = 6.8 W

AsAP2 at 68% active using all 164 processors at 1.06 GHz = 5.2 W

On-chip shared memories 3 × 4.5 mW = 13.5 mW

Total power consumption during sort 1.82 W 3.6 W + 6.8 W + 1.2 W + 0.0135 W

= 19.6 W

SAISort Phase One With Payload And Key Separated:

Core i7 in idle mode = 1.82 W

45

RAM = 2 × 1.8 W = 3.6 W

HD in idle mode = 8 × 0.85 W = 6.8 W

AsAP2 at 15% active using all 164 processors at 1.06 GHz = 7.3 W

On-chip shared memories = 3 × 4.5 mW = 13.5 mW

Total power consumption during sort = 1.82 W 3.6 W + 6.8 W + 7.3 W + 0.0135 W

= 19.6 W

The algorithm is proposed to work on a chip that would be used as a co-processor,

with a general purpose CPU as the main processor. While the co-processor is sorting the

first phase of entries, the main processor could be utilizing the system resources for other

activities. Because of this, the power used solely by the processors in the sorting algorithm

are useful. Even if the co-processor takes a longer amount of time to complete its first phase

sort, it still could be an effective solution if the power saved is enough.

The power used by the AsAP2 chip is very low, even with all 164 general purpose

processors operating at 100% active with a 1.06 GHz clock at 1.2 V, the AsAP2 chip only

takes 7.79 W of power [27]. The chip is also very power efficient with stalls, consuming a

negligible amount of power because each processor can completely turn off their oscillator.

The created algorithm does not operate at 100% active, as NOP operations were a necessity

for the algorithm to function correctly. The algorithms also utilize an output phase that

takes considerably less time than the sorting phase. The throughput is not changed because

of the output phase, but it allows the processors to spend more time in a low power state.

This means that the payload and key attached sort averages out to approximately 68%

active for the used processors. The key and payload separated sort has more stalled time

as the address generators are used extensively, which require added NOPs. The key and

payload separated sort’s output mode also expels all of the entries quicker than the attached

sort, as there are less bytes of data in use. The average chip is active approximately 15%

of the used time. This means that the payload attached and separated sorts require only

5.2 W and 1.2 W respectively.

In the key separated sort, the processors active percentage varies considerably as

can be seen in Figure 5.1. The first processor being used sorts every entry that goes into the

46

chip, but with a random sampling of entries there is a high probability that the incoming

entries keys are far apart. The sorting algorithm is only required to compare with a few

saved entries before finding where it belongs in this situation, and the processor ends up

being active around 7% of the time. The last processor only sorts ten entries before going

into the output phase, so also ends up not being as active; around 5%. The center processors

end up being used the most, because they still have a decent number of entries to sort, and

the entries that make it to the center processor are all lower than the entries saved in the

previous processor, so there is a higher likelihood that more saved entries are compared

before the correct position is found. The center processors average around 20% active, and

are the most active processors on the chip for the key separated sorting algorithm described.

!"#$ %&#$ %!#$ '#$ (#$ "#$

Figure 5.1: Heatmap of active percentage of each processor in the key separated sort

47

The C++ implementation utilized a core i7 processor. The numbers used for the C++

implementation were:

C++ implementation for phase one:

Core i7 at 70% TDP = 31.5 W

RAM = 2 × 1.8 W = 3.6 W

HD in idle mode = 8 × 0.85 W = 6.8 W

31.5 W + 3.6 W + 6.8 W = 41.9 W

C++ implementation for phase two:

Core i7 at 70% TDP = 31.5 W

RAM = 2 × 1.8 W = 3.6 W

HD = 8 × 1.8 W = 14.4 W

31.5 W + 3.6 W + 14.4˜W = 49.5 W

5.2 C++ Performance Comparison to SAISort

The AsAP2 algorithm is slightly slower than the C++ implementation, though

the power savings are considerable. As can be see from Table 5.1, it is slower by less than

five seconds when not using the on-chip shared memory, and between 7.5 and 17 seconds for

the shared memory merge implementations. Even though the sort times were only about

double in the slowest case, the AsAP2 operates at approximately 1/6 of the power of the

mobile i7 processor with all AsAP2 cores operating, so the total energy consumed for the

AsAP2 sort is considerably less than the C++ implementation. The gap gets even larger

when the AsAP2 is ran at a lower frequency, though the time to sort the first phase also

increases.

In Table 5.2, the implementations with the payload and key separated are shown.

In all of the situations tested, the Core i7 processor invariably achieved the shortest sort

time, and the AsAP2 implementation achieved considerably lower power numbers. Because

the AsAP2 implementation takes longer to output each entry than the RAM access time

48

Records Sorted Time Energy of Chip Total System
Per Phase (Seconds) (Joules) Energy (Joules)
One List

Core i7
329

11 347 461
AsAP2 @ 1.3 V

15 79 261
No on-chip memories

Core i7

533

13 410 545
AsAP2 @ 1.3 V

30 12 379Payload stored in
on-chip memories
AsAP2 @ 0.75 V

138 3 1,689Payload stored in
on-chip memories

Core i7

783

15 473 629
AsAP2 @ 1.3 V

22.5 109 384Sorted list stored in
on-chip memories
AsAP2 @ 0.75 V

103.5 36 1,301Sorted list stored in
on-chip memories

Table 5.1: Time and energy to sort several quantities of unsorted records keeping the
payload and key together

and transfer time, the implementation is processor limited. This is actually beneficial, as

this means that if the algorithm efficiency is improved, or if the processor it is implemented

can run at a higher clock frequency, the throughput would be increased. This also means

that the main processor in the proposed setup could be actively using the RAM as well.

If a high throughput is not required, it can be seen that even larger energy re-

ductions can occur. The voltage and clock frequency of each AsAP2 processor can easily

be reduced. Because of the exponential relationship of power and frequency, if the chip is

running at a low frequency, the power required is drastically reduced. As is observed in

Tables 5.1 and 5.2, reducing the frequency to 260 MHz reduces the energy consumed by the

chip is cut to almost 1/4 of the energy consumed at 1.06 GHz.

The most power efficient setup when compared to the C++ implementation is

when the payload is stored into the shared memory. This low power is achieved because

only 57 of the 164 processors are active to sort 533 entries, as 533 entries payloads are all

that can fit into the shared memory. As mentioned earlier, the AsAP2 chip can effectively

49

shut off processors that are not being used, so that they take a negligible amount of energy.

This allows for the significant energy reduction shown in Table 5.2, where the AsAP2

implementation takes around 1/33 of the energy the core i7 consumes.

Records Sorted Time Energy of Chip Total System
Per Phase (Seconds) (Joules) Energy (Joules)
One List

Core i7
1,641

12.5 394 913
AsAP2 @ 1.3 V

30 35 405
No on-chip memories

Core i7

3,911

13.5 425 986
AsAP2 @ 1.3 V

77.7 90 1041Sorted list stored in
on-chip memories
AsAP2 @ 0.75 V

357 30 4,398Sorted list stored in
on-chip memories

Table 5.2: Time and energy to sort two different quantities of unsorted records keeping the
payload and key separated for the initial sort

Simply having low power for the first phase does not necessarily make a good sort,

because the second phase must be taken into consideration. The first phase of the sort sets

up the second phase of the sort, where the number of merges required for the second phase

are directly related to the size of the lists created in the first. While sorting 533 entries is

considerably more efficient than the payload attached setups without on-chip memory, this

is still less than half the output achieved by the payload separated setups.

The phase one algorithms that separate the key from the payload are the ones that

provide the greatest efficiency to the phase two merge, and the AsAP2 implementation is

more power efficient in these sorts as well. The number of records sorted can be considerably

larger when the keys are separated from their payload, five times as many as the payload

attached counterparts in fact. This allows the second phase merge sort to only use less

passes through the data, as compared to the payload attached sorts.

The AsAP2 algorithm that sorts the key and payload separated has a lower

throughput due to the added compares that take place in each processor when one 10

entries can be held, instead of two. As previously mentioned, the output mode is consider-

ably quicker, and a large amount of the added time are in NOP instructions to allow the

50

compares to work correctly, so the processors are active only a fraction of the time which

reduces the power consumption.

5.3 AsAP2 Implementation Performance Comparisons

To show a complete picture of how the algorithms run, it was necessary to create

and run a second phase sort. The AsAP2 chip did not turn out to be the ideal platform

to complete the merge function, as the chip’s speed and memory limitations would not

allow an efficient merge to be created that would function with large lists. The Buffer Sort

algorithm mentioned earlier was completed to prove that the entire sort could be run on

one chip, but it was decided that the most desirable approach would be to use the AsAP2

as a co-processor. In this way, a general purpose CPU could quickly and efficiently merge

the lists that were sorted by the AsAP2 processor’s phase one sort.

The merge sort was created using C++ and was run on a mobile Intel Core i7

laptop setup. The phase two sort which was created is a simple non-optimized program.

After numerous tests, it was found that the C++ merge program sorts each pass through the

data in approximately 7.5 seconds. As the lowest number of merges required for the second

phase is 15, the second phase takes at least 112 seconds to complete with this program.

This time is actually larger than the 87 seconds the JouleSort’s algorithm takes to complete

the entire sort. As the focus of this project is to create an efficient first phase sort, this

second phase implementation is used to show how the sorts compare with each other, and

is not submitted as a replacement option for current second phase sorting algorithms.

As can be seen from Table 5.3, the vast majority of energy and time for the total

sort occurs during the second phase of the sort. It can also be observed from Table 5.3 that

all of the attempted implementations still take less energy, and therefore have more records

sorted per joule than the sort from Rivoire et al. [15].

With a more efficient phase two algorithm, the numbers will be considerably higher

as the phase one algorithm created does set up the second phase well. For example, the

AsAP2 algorithm that had the highest energy numbers while running at full speed was

the implementation that kept the key and payload together and did not use the on-chip

51

Key and Payload Number of Total Phase Total Sort Total Sort Total Records
Attached Sorts Passes Through 2 Energy Time Energy Sorted

the Data (Joules) (Seconds) (Joules) Per Joule
Core i7

19 7,053
154 7,514 13,309

AsAP2 @ 1.3 V
158 7,314 13,672

No on-chip memories
Core i7

18 6,683

148 7,227 13,837
AsAP2 @ 1.3 V

165 7,062 14,161Payload stored in
on-chip memories
AsAP2 @ 0.75 V

273 8,371 11,946Payload stored in
on-chip memories

Core i7

17 6,311

143 6,940 14,410
AsAP2 @ 1.3 V

150 6,695 14,937Sorted list stored in
on-chip memories
AsAP2 @ 0.75 V

231 7,612 13,137Sorted list stored in
on-chip memories

JouleSort N/A N/A 86.6 8,600 11,628

Key and Payload Number of Total Phase Total Sort Total Sort Total Records
Detached Sorts Passes Through 2 Power Time Energy Sorted

the Data (Joules) (Seconds) (Joules) Per Joule
Core i7

16 5,940
133 6,853 14,593

AsAP2 @ 1.3 V
150 6,345 15,760No on-chip memories

Core i7

15 5,569

126 6,554 15,257
AsAP2 @ 1.3 V

162 6,230 16,051Sorted keys stored in
on-chip memories
AsAP2 @ 0.75 V

342 8,386 11,925Sorted keys stored in
on-chip memories

Table 5.3: Number of passes for the second phase, time, and energy to sort varying quantities
of unsorted records

52

memory, and this sort took 158 seconds and spent 7,314 joules of energy, with 19 passes

through the data required for the seconds phase. If the entire algorithm was simply a

binary merge, then 27 passes through the data would be required. This sort would take

202.5 seconds to complete while spending 10,034 joules of energy. This means that even

the least efficient sort attempted saves approximately 3,700 joules of energy, compared to

normal binary merge.

5.4 Hardware Variations

The AsAP2 chip was not designed with database sorting in mind. Because of this,

the hardware of the chip is not necessarily optimal for the task. Looking at a few variables

that could be changed for the next version of the chip, would allow an optimal setup to be

discovered, and would allow for trends to be observed.

The two variables that were focused on, were varying the number of processors

on-chip, and varying the quantity of on-chip shared memory. These two variables were

chosen because they can vary the output of the first phase significantly. They both would

also be fairly easy to implement, simply requiring more die space. As was shown in the

previous section, the most efficient algorithm created for the chip was where the key and

payload were separated before the first phase began. Because of this, the key and payload

separated sort shall be the subject of the variations. This will yield the more interesting

results, and the results would only be changed in scale with the key and payload attached

sort, the general trends will remain the same for both.

For the models created, it was assumed that each processor on the chip was effec-

tively the same as each individual chip on the AsAP2. That is to say that every chip can

hold up to 10 entries, and that the most efficient method of communication is still chip to

chip communication, so the power numbers for the algorithm presented in this thesis shall

still be used for the calculations.

For the calculations, we are interested the outcome of the entire database sort.

Because of this, the calculations look at altering the first phase of the sort, but still look at

the power consumed for the second phase of the sort. The second phase being calculated

53

for is the C++ implementation described earlier.

5.4.1 Varying the Number of Processors

It was decided to look at how the efficiency of the sort is affected by the number of

processors on the chip. For this simulation, it was assumed that there would be no on-chip

shared memory utilized, only local memory that can hold 10 entries. Increasing the number

of processors on the chip effectively increases by 10 the number of entries for each list in

the first phase.

0 500 1000 1500 2000 2500 3000
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9x 10
4

Number of Processors

R
e
c
o
r
d
s

p
e
r

J
o
u
l
e

Figure 5.2: Graph of records sorted per joule with varying processors

It can be seen in Figure 5.2 that there are optimal peaks. This is caused by the

nature of the second phase merge. When merging the lists into one, a number of passes

through the entire data is required before one list is achieved. Varying the phase one list

size without reducing the number of passes of the data in the second phase increases the

energy consumed by the first phase, while not changing the energy consumed by the second

phase. Because of this, the optimal points are where reducing the number of processors by

54

one would increase the number of passes through the data required.

As is shown in Figure 5.2, there is a clearly optimal number of processors. There

is a drastic improvement of records sorted per joule when there are a small number of

processors, up to about 300 processors, then the increase slows down. The most efficient

number of processors is 1,221 at 18,520 records sorted per joule. Past 306, the energy

required to power the first phase of the sort becomes more pronounced, so the graph slowly

decreases.

5.4.2 Varying the Quantity of On-Chip Memory

The other variable being explored is how differing quantities of on-chip shared

memory effects the records sorted per joule. Increasing the size of the memories increases

the number of sorted entries per list in the first phase of the database sort, just like increasing

the number of processors. For this simulation, the power consumption used was the same

as the per byte memory usage of the AsAP2 processor. The number of processors sorted

was held at a constant 164 for this simulation.

0 5 10 15 20 25 30 35 40
0.5

1

1.5

2

2.5

3
x 10

4

Size of On Chip Memory (MB)

R
e
c
o
r
d
s

p
e
r

J
o
u
l
e

Figure 5.3: Graph of records sorted per joule with varying quantities of on-chip memory

55

As the graph, Figure 5.3 shows, there is the same saw-tooth pattern that was seen

with the varying number of processors. The reason is still the same as well: at a certain

point of increased memory, one less pass of the data is required in the second phase which

causes a large jump in the efficiency.

The most efficient amount of memory also has a fairly clear maximum point of

efficiency. As Figure 5.3 shows, there is a optimal point at 4.24 MB with 27,720 records

sorted per joule. Because the sort is executed by sorting in chunks that would fill up

the internal memory of the processors, the sorted lists are a fixed length. Adding on-chip

memory would allow for multiple sorted lists to be saved, then they would be merged as

they exit the chip. As it was proved earlier in this thesis that the AsAP2 processor has not

been utilized efficiently to merge large lists, after only 4.24 MB of cache memory it would

be more efficient to merge with the main processor of the system.

5.5 Feasibility of Implementation

The implementation suggested in this thesis would be fairly easy to implement.

The AsAP2 chip could be attached to the main board of a database system, and could

receive instructions and data from the general purpose CPU through the north or south

bridge, as either would be able to supply the I/O speed required to the chip. A simpler

implementation would also be to place the AsAP2 chip on die with the general purpose

CPU.

56

Chapter 6

Future Work and Conclusion

6.1 Future Work

The efficiency of the phase one algorithm created shows that the AsAP2 chip is

a viable option as a co-processor in a database system. The efficiency achieved also shines

light on other operations that the AsAP2 might be able to efficiently execute. It would

be interesting to see the an implementation for database searches and data calculations for

example.

It would be also be useful to make the created sort an actual competitor for the

Joule Sort benchmark. To achieve this, it would be necessary to physically implement the

entire system. It would also require that an efficient second phase sort was used.

6.1.1 Searches

The general concept introduced here could be modified to allow for searches of

data on a many-core system. To implement such a system, each processor on the chip could

be given a specific field and data string to search for. For example processor 0,0 could be

assigned to look in the ”name” field for data matching ”John Doe”. This processor could

be connected with other processors that are looking at different fields and/or data. The

main processor could then simply input all of the entries to search into the system, each

processor would look for entries that match their given criterion. If a match is found, the

chip could either save the entry, save the entry address, or modify an attached key to show

57

which entry had the requested data.

If there are not enough different criterion to utilize all of the processors, multiple,

identical chains could be created. Each chain would have all of the criterion, and each would

have a processor at the input and output of the chip. The data could then be split into the

number of chains created. It could even be taken down to each processor searching for the

same criteria, with separate sections of data delivered to each. In this way, we could utilize

the parallelism that a many-core chip allows for.

6.1.2 Data Calculations

The AsAP2 could also be effectively utilized to allow for data calculations on

databases. Each processor on the chip could be programed with a specific field in an entry

and an operation to implement on the field. Take, for example, take a user that wants to

modify the pay of every employee on a database, for a cost of living increase. For this case

we would program each processor to add a percentage of each employee’s salary, and split

up the list of employees across all of the processors.

6.1.3 Physical Implementation

Rivoire et al. [15] are very specific that to be considered for their benchmark all

aspects of the system must be physically implemented so that all energy can be accounted

for. Currently the AsAP2 is not connected to a board with sufficient I/O to function in

a database sort. To remedy this situation, a development board that utilizes PCI express

could be used. The I/O would be sufficient, and there are many good options out there

that also have slots for RAM to buffer the AsAP2 chip as it sorts.

With the development board attached to a main-board through the PCIE slot, the

CPU of the system and the AsAP2 to operate as co-processors as presented in this thesis.

The system’s CPU could be used as the main processor, and could complete the second

phase of the sort. This would allow the system to run a normal operating system, which

would make connecting the system to multiple hard drives very simple.

58

6.1.4 Efficient Second Phase Sort

This thesis focused on an efficient first phase sort for a database. The efficiency in

comparison to a normal CPU was shown, which makes clear the possibility of a database

sort being executed with a low power many-core system. To get a complete picture though,

and to make the algorithm a competitor for the Joule Sort benchmark, it would be useful

to have an efficient second phase sort, as the C++ program created and presented in this

thesis was shown to not equal the efficiency of common database sorts. As there are plenty

of sorts that operate quicker than the C++ code created and presented here, it should not

be a large problem to find or create a second phase sort that would could be used with the

first phase sort presented here.

6.2 Conclusion

It has been shown that a low power, relatively low clock frequency many-core chip

can be effectively used to help create an efficient database sort. The energy consumption

of the phase one sort presented here is considerably lower than that of a C++ program

that sorted the same sized lists. While the time to sort for the presented algorithm was

slightly longer than the C++ counterpart, the time is still reasonable. It is even more

reasonable when looked in conjunction that the many-core system is proposed as a co-

processor. This allows the main processor of the system to utilize system resources as the

many-core processor is computing.

There is room for improvement of the sort, though this presented work lays the

groundwork for other interesting future work. Because this many-core system was proven

a viable option, new paths of research into other ways to exploit the parallel nature of

many-core systems can be explored. It was also shown, that even with an un-optimized

C++ merge program, the proposed algorithm was able to post decent energy consumption

numbers.

59

Bibliography

[1] Ratnesh K. Sharma, Rocky Shih, Cullen Bash, Chandrakant Patel, Philip Varghese,
Mohandas Mekanapurath, Sankaragopal Velayudhan, and Manu Kumar, V. On build-
ing next generation data centers: energy flow in the information technology stack. In
Proceedings of the 1st Bangalore Annual Compute Conference, COMPUTE ’08, pages
8:1–8:7, New York, NY, USA, 2008. ACM.

[2] Donald D. Chamberlin and Raymond F. Boyce. Sequel: A structured english query
language. In Proceedings of the 1974 ACM SIGFIDET (now SIGMOD) workshop on
Data description, access and control, SIGFIDET ’74, pages 249–264, New York, NY,
USA, 1974. ACM.

[3] J. Melton and A. Simon. Understanding the New SQL: A Complete Guide. Morgan
Kaufman, 1993.

[4] Goetz Graefe. Query evaluation techniques for large databases. ACM Comput. Surv.,
25:73–169, June 1993.

[5] David Taniar and J. Wenny Rahayu. Sorting in parallel database systems. In Proceed-
ings of the The Fourth International Conference on High-Performance Computing in
the Asia-Pacific Region-Volume 2 - Volume 2, HPC ’00, pages 830–, Washington, DC,
USA, 2000. IEEE Computer Society.

[6] EPA. EPA report to congress on server and data center energy efficiency. Technical
report, U.S. Environmental Protection Agency, 2007.

[7] Luiz André Barroso. The price of performance. Queue, 3:48–53, September 2005.

[8] Invest in Finland. Hp’s finnish data center reaches high level of energy efficiency, 2008.
This is an electronic document. Date of publication: October 29, 2008. Date retrieved:
January 25, 2010. Date last modified: October 29, 2008.

[9] Google. Hamina data center, 2011. This is an electronic document. Date of publication:
[Date unavailable]. Date retrieved: January 25, 2010. Date last modified: January 11,
2011.

[10] D.A. Patterson and J.L. Hennessy. Computer Organization and Design: The Hard-
ware/software Interface. Morgan Kaufmann, 2005.

[11] Dina Bitton, David J. DeWitt, David K. Hsaio, and Jaishankar Menon. A taxonomy
of parallel sorting. ACM Comput. Surv., 16:287–318, September 1984.

60

[12] K. E. Batcher. Sorting networks and their applications. In Proceedings of the April
30–May 2, 1968, spring joint computer conference, AFIPS ’68 (Spring), pages 307–314,
New York, NY, USA, 1968. ACM.

[13] C. A. R. Hoare. Algorithm 64: Quicksort. Commun. ACM, 4:321–, July 1961.

[14] David Taniar and J. Wenny Rahayu. Parallel database sorting. Inf. Sci. Appl., 146:171–
219, October 2002.

[15] Suzanne Rivoire, Mehul A. Shah, Parthasarathy Ranganathan, and Christos Kozyrakis.
Joulesort: a balanced energy-efficiency benchmark. In Chee Yong Chan, Beng Chin
Ooi, and Aoying Zhou, editors, SIGMOD Conference, pages 365–376. ACM, 2007.

[16] D. Truong, W. Cheng, T. Mohsenin, Zhiyi Yu, T. Jacobson, G. Landge, M. Meeuwsen,
C. Watnik, P. Mejia, Anh Tran, J. Webb, E. Work, Zhibin Xiao, and B. Baas. A 167-
processor 65 nm computational platform with per-processor dynamic supply voltage
and dynamic clock frequency scaling. In VLSI Circuits, 2008 IEEE Symposium on,
Jun. 2008.

[17] B. Baas, Zhiyi Yu, M. Meeuwsen, O. Sattari, R. Apperson, E. Work, J. Webb, M. Lai,
T. Mohsenin, D. Truong, and J. Cheung. AsAP: A fine-grained many-core platform
for DSP applications. Micro, IEEE, 27(2):34–45, Mar. 2007.

[18] Zhiyi Yu, M.J. Meeuwsen, R.W. Apperson, O. Sattari, M. Lai, J.W. Webb, E.W.
Work, D. Truong, T. Mohsenin, and B.M. Baas. AsAP: An asynchronous array of
simple processors. Solid-State Circuits, IEEE Journal of, 43(3):695–705, Mar. 2008.

[19] Zhiyi Yu. High Performance and Energy Efficient Multi-core Systems for DSP Ap-
plications. PhD thesis, University of California, Davis, CA, USA, October 2007.
http://www.ece.ucdavis.edu/vcl/pubs/theses/2007-5.

[20] Ryan Apperson Omar Sattari Michael Lai Jeremy Webb Eric Work Tinoosh Mohs-
enin Bevan Baas Zhiyi Yu, Michael Meeuwsen. Architecture and evaluation of an
asynchronous array of simple processors. Journal of VLSI Signal Processing Systems,
53(3):243.

[21] Wayne H. Cheng. Approaches and designs of dynamic voltage and frequency scaling.
Master’s thesis, University of California, Davis, CA, USA, January 2008. http://www.
ece.ucdavis.edu/vcl/pubs/theses/2008-1.

[22] Ryan Apperson, Zhiyi Yu, Michael Meeuwsen, Tinoosh Mohsenin, and Bevan Baas.
A scalable dual-clock FIFO for data transfers between arbitrary and haltable clock
domains. IEEE Transactions on Very Large Scale Integration Systems (TVLSI),
15(10):1125–1134, October 2007.

[23] Wayne H. Cheng and Bevan M. Baas. Dynamic voltage and frequency scaling circuits
with two supply voltages. In IEEE International Symposium on Circuits and Systems
(ISCAS), pages 1236–1239, May 2008.

[24] Michael J. Meeuwsen, Zhiyi Yu, and Bevan M. Baas. A shared memory module for
asynchronous arrays of processors. EURASIP J. Embedded Syst., 2007:21–21, January
2007.

http://www.ece.ucdavis.edu/vcl/pubs/theses/2007-5
http://www.ece.ucdavis.edu/vcl/pubs/theses/2008-1
http://www.ece.ucdavis.edu/vcl/pubs/theses/2008-1

61

[25] Michael J. Meeuwsen. A shared memory module for an asynchronous array of simple
processors. Master’s thesis, University of California, Davis, CA, USA, April 2005.

[26] 24bytes.com. Quick sort, 2010. This is an electronic document. Date of publication:
June, 2010. Date retrieved: July 20, 2010. Date last modified: June, 2010.

[27] D.N. Truong, W.H. Cheng, T. Mohsenin, Zhiyi Yu, A.T. Jacobson, G. Landge, M.J.
Meeuwsen, C. Watnik, A.T. Tran, Zhibin Xiao, E.W. Work, J.W. Webb, P.V. Mejia,
and B.M. Baas. A 167-processor computational platform in 65 nm CMOS. Solid-State
Circuits, IEEE Journal of, 44(4):1130–1144, Apr. 2009.

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Enterprise Database Sorting
	Energy Efficient Database Sorting
	Project Contributions
	Organization

	Overview of Enterprise Database Sorting
	Internal Sort
	Background
	Commonly Used Internal Sorts

	External Sorts
	Background
	Commonly Used External Sorts

	Related Work
	Parallel Database Sorting

	Proposed Enterprise Database Sort

	Attempted Implementations
	Phase One Sorts
	Sequential Internal Sorts
	Merge Sorts

	Phase Two Buffer Sort
	Implementation at Processor Level
	Chip Mapping
	Benefits / Limitations of AsAP2 Implementation

	Proposed Sort
	Phases
	Phase One / SAISort
	Phase Two / Buffer Sort
	Phase Two / Co-Processor Binary Merge

	AsAP2 Chip Implementation
	AsAP2 Background
	SAISort Implementation on AsAP2

	C++ Implementation
	Phase One / Quicksort
	Phase Two / Binary Merge

	Results and Analysis
	Calculations of Energy Consumption
	Calculation of Power Consumption

	C++ Performance Comparison to SAISort
	AsAP2 Implementation Performance Comparisons
	Hardware Variations
	Varying the Number of Processors
	Varying the Quantity of On-Chip Memory

	Feasibility of Implementation

	Future Work and Conclusion
	Future Work
	Searches
	Data Calculations
	Physical Implementation
	Efficient Second Phase Sort

	Conclusion

	Bibliography

