
On-Chip Network Designs for Many-Core Computational Platforms

By

ANH T. TRAN

B.S. (Posts and Telecommunications Institute of Technology, Hochiminh, Vietnam) 2003

M.S. (University of California, Davis, USA) 2009

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

ELECTRICAL ENGINEERING

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Chair, Dr. Bevan M. Baas

Member, Dr. Kent Wilken

Member, Dr. Soheil Ghiasi

Committee in charge

2012

– i –

c© Copyright by Anh T. Tran 2012

All Rights Reserved

To my wife Khanh Nguyen, and our daughter Anh-My Tran

To my Parents

– ii –

Abstract

Processor designers have been utilizing more processing elements (PEs) on a single chip

to make efficient use of technology scaling and also to speed up system performance through in-

creased parallelism. Networks on-chip (NoCs) have been shown to be promising for scalable in-

terconnection of large numbers of PEs in comparison to structures such as point-to-point intercon-

nects or global buses. This dissertation investigates the designs of on-chip interconnection networks

for many-core computational platforms in three application domains: high-performance network

designs for applications with high communication bandwidths; low-cost networks for application-

specific low-bandwidth dynamic traffic; and reconfigurable networks for platforms targeting digital

signal processing (DSP) applications which have deterministic inter-task communication character-

istics.

An on-chip router architecture named RoShaQ is proposed for platforms executing general-

purpose applications with dynamic and high communication bandwidths. RoShaQ maximizes

buffer utilization by allowing sharing of multiple buffer queues among input ports hence achieves

high network performance. Experimental results show that RoShaQ is 17.2% lower latency, 18.2%

higher saturation throughput and 8.3% lower energy dissipated per bit than state-of-the-art virtual-

channel routers given the same buffer capacity averaged over a broad range of traffic patterns.

For mapping applications showing low inter-task communication bandwidths, five low-

cost bufferless routers are proposed. All routers guarantee in-order packet delivery so that expensive

reordering buffers are not required. The proposed bufferless routers have lower costs and higher

performance per unit cost than all buffered wormhole routers — the smallest proposed bufferless

router has 32.4% less area, 24.5% higher throughput, 29.5% lower latency, 10.0% lower power and

26.5% lower energy per bit than the smallest buffered router.

A globally asynchronous locally synchronous (GALS)-compatible reconfigurable circuit-

switched on-chip network is proposed for use in many-core platforms targeting streaming DSP and

embedded applications which show deterministic inter-task communication traffic. Inter-processor

communication is achieved through a simple yet effective source-synchronous technique which can

sustain the ideal throughput of one word per cycle and the ideal latency approaching the wire delay.

This network was utilized in a GALS many-core chip fabricated in 65 nm CMOS. For evaluating

– iii –

the efficiency of this platform, a complete IEEE 802.11a baseband receiver was implemented. The

receiver achieves a real-time throughput of 54 Mbps and consumes 174.8 mW with only 12.2 mW

(7.0%) dissipated by its interconnects.

A highly parameterizable NoC simulator named NoCTweak is also proposed for early

exploration of performance and energy efficiency of on-chip networks. The simulator has been

developed in SystemC, a C++ plugin, which allows fast modeling of concurrent hardware modules

at the cycle-level accuracy. Area, timing and power of router components are post-layout data based

on a 65 nm CMOS standard-cell library. NoCTweak was used in many experiments reported in this

dissertation.

– iv –

Acknowledgments

My journey as a PhD student at UC Davis is coming to an end; and now I am thinking back

to the many people who have supported me along the way. The journey has been full of learning

and growth, and I owe a great deal to the support and friendship of a large number of people who

have made this time so special and enriching.

First and foremost, I have the deepest gratitude to my advisor, Professor Bevan Baas.

Working under his supervision has been a true blessing, and I am grateful for all his guidance and

encouragement during my research. I have learned a great deal from him, not only in the field of my

research, but in many other ways as well. My work here has mostly benefited from his enthusiasm,

knowledge and constructive comments. I could not have hoped for a better advisor, and I will

forever be indebted to him.

I would like to thank Professor Kent Wilken and Professor Soheil Ghiasi for serving on my

doctoral committee and providing valuable feedback on this dissertation. I am grateful to Professor

Rajeevan Amirtharajah and Professor Matthew Farrens for evaluating my research proposal and

giving me useful directions so that I can fulfill my PhD program. I also would like to thank Professor

Anh-Vu Pham who helped me a lot when I started my graduate student life here at UC Davis.

I want to extend my appreciation to Dean, a great friend and also a co-author in my several

papers. I never forget the times we worked together like crazy in the last minutes before paper

submission deadlines. Those times were so painful but the rewards brought by paper acceptances

later made us hard to change that bad habit.

I also would like to thank past and current VCL lab members: Zhibin, Bin, Aaron, Jon,

Jeremy, Emmanuel, Brent, Micheal, Samir, Houshmand, Nima, Zhiyi, Tinoosh, Wayne, Trevin,

Stephen, Lucas, Henna. I have enjoyed many discussions with them on various topics and found

that there is always something I can learn from them.

I was so glad to have Ning working with me on the final project of the EEC116 VLSI

design class in Spring 2007. Chip layout with Magic was difficult but became much easier with him

along. Together, we won the first place in this class project which strongly encouraged me to pursue

my research in digital VLSI design.

– v –

Specially, I want to express my deep appreciation to my beloved wife Khanh, to whom

this dissertation is dedicated. Her constant love and tremendous support has allowed me to spend

most time and effort on this work. She also brought me the most wonderful gift, our lovely daughter

Amy.

I also want to thank all my friends and relatives who have helped and supported me during

my time here in Davis. They have turned my experience in Davis to be a memorable one.

My work done at UC Davis was supported by a Vietnam Education Foundation (VEF)

graduate fellowship, National Science Foundation (NSF) CAREER award No. 0546907, grants

CCF Grant No. 0903549 and CCF Grant No. 1018972, Semiconductor Research Corporation (SRC)

research grants GRC 1598.001, CSR 1659.001, and GRC 1971.001, C2S2 grant 2047.002.014,

ST Microelectronics CMOS standard-cell libraries and chip fabrication, UC Davis summer research

and conference travel awards, Intel and Intellasys grants.

– vi –

Contents

Abstract iii

Acknowledgments v

List of Figures x

List of Tables xiv

1 Introduction 1

1.1 The Era of Many-Core System Designs . 1

1.2 The Scope and Organization of this Dissertation 3

2 Background, Related Work and Contributions 5

2.1 On-Chip Network Background . 5

2.1.1 Network Topologies . 5

2.1.2 Data Transferring Techniques . 8

2.1.3 Flow-Control Methods . 9

2.1.4 Routing Strategies . 10

2.1.5 Network Deadlock . 11

2.1.6 Network Livelock . 12

2.2 On-Chip Router Designs . 13

2.2.1 Basic Circuit Components of a Router . 13

2.2.2 High-Performance Router Designs . 15

2.2.3 Low-Cost Router Designs . 16

2.3 Communication Methods for GALS Many-Core Systems 18

2.4 Contributions . 20

3 High-Performance On-Chip Networks with Shared-Queue Routers 22

3.1 Motivation . 23

3.1.1 Typical Router Architectures . 23

3.1.2 Opportunities for Achieving Higher Throughput 26

3.2 RoShaQ: Router Architecture with Shared Queues 27

3.2.1 The Initial Idea . 27

3.2.2 RoShaQ Architecture . 29

3.2.3 RoShaQ Datapath Pipeline . 30

3.2.4 Design of Allocators . 31

3.2.5 RoShaQ’s Properties . 33

– vii –

3.3 Experimental Results . 34

3.3.1 Experimental Setup . 34

3.3.2 Latency and Throughput . 35

3.3.3 Power, Area and Energy . 40

3.4 Related Work . 43

3.5 Summary . 44

4 Low-Cost Router Designs with Guaranteed In-Order Packet Delivery 46

4.1 Conventional Wormhole Router Architecture and Cost Analysis 47

4.1.1 Wormhole Router Architecture . 47

4.1.2 Performance Analysis and In-Order Packet Delivery 48

4.1.3 Area and Power Costs . 49

4.2 Bufferless Packet-Switched Routers Providing In-Order Packet Delivery 51

4.2.1 Bufferless Router Architecture . 51

4.2.2 Network Performance Analysis . 52

4.2.3 In-order Packet Delivery with Deterministic Routing 53

4.2.4 Adaptive Routing with ACK Controlling 53

4.2.5 Adaptive Routing with Packet Length Awareness (PLA) 54

4.3 Bufferless Circuit-Switched Routers . 55

4.3.1 Architecture . 55

4.3.2 Performance Analysis and In-Order Packet Delivery 57

4.4 Experimental Results on Latency and Throughput 58

4.4.1 Performance Over Synthetic Traffic Patterns 58

4.4.2 Performance Over Embedded Application Traffic Patterns 65

4.5 Area, Power and Energy . 67

4.5.1 Evaluation Methodology . 67

4.5.2 Power and Energy over Synthetic Traffic Patterns 68

4.5.3 Power and Energy over Embedded Application Traces 74

4.5.4 Comparative Analysis and Discussion . 74

4.6 Related Work . 76

4.7 Summary . 78

5 A Reconfigurable Source-Synchronous On-Chip Network for GALS Many-Core Plat-

forms 79

5.1 Motivation For A GALS Many-Core Platform . 80

5.1.1 High Performance with Many-Core Design 80

5.1.2 Advantages of the GALS Clocking Style 80

5.2 Design and Evaluation of a Reconfigurable GALS-Compatible Source-Synchronous

On-Chip Network . 82

5.2.1 Architecture of Reconfigurable Interconnection Network 83

5.2.2 Approach Methodology . 85

5.2.3 Link and Device Delays . 85

5.2.4 Interconnect Throughput Evaluation . 89

5.2.5 Interconnect Latency . 91

5.2.6 Discussion . 92

5.3 An Example GALS Many-core Platform: AsAP2 93

5.3.1 Per-Processor Clock Frequency and Supply Voltage Configuration 94

5.3.2 Source-Synchronous Interconnection Network 96

– viii –

5.3.3 Platform Configuration, Programming and Testability 97

5.3.4 Chip Implementation . 97

5.3.5 Measurement Results . 98

5.4 Related Work . 101

5.5 Summary . 102

6 Application Mapping Case Study: 802.11a Baseband Receiver on AsAP2 104

6.1 Architecture of a Complete 802.11a Baseband Receiver 105

6.2 Mapping the 802.11a Baseband Receiver on AsAP2 109

6.2.1 Programming Methodology . 109

6.2.2 Application Mapping . 110

6.2.3 Critical Data Path and Reception of Multiple Frames 113

6.3 Performance, Power Evaluation and Optimization 115

6.3.1 Performance Evaluation . 115

6.3.2 Power Consumption Estimation . 117

6.3.3 Power Optimization . 118

6.4 Measurement Results . 121

6.5 Summary . 122

7 Conclusion and Future Directions 123

7.1 Dissertation Summary . 123

7.2 Future Work . 125

A NoCTweak: a Highly Parameterizable Simulator for Early Exploration of Perfor-

mance and Energy of Networks On-Chip 127

A.1 Configurable Simulation Parameters . 128

A.2 Statistic Outputs . 132

A.2.1 Network Latency . 132

A.2.2 Network Throughput . 133

A.2.3 Power Consumption . 133

A.2.4 Energy Consumption . 134

A.3 Simulation Examples . 134

A.3.1 Different Network Sizes . 135

A.3.2 Different Buffer Depths . 137

A.4 Related Work . 139

A.5 Summary . 140

B Related Publications 141

C Glossary 143

Bibliography 146

– ix –

List of Figures

1.1 The trends in clock frequency scaling, power dissipation and core performance of

several commercial chips [1] . 1

1.2 The number of transistors integrated and the number of processing cores built in

several commercial chips [1, 8] . 2

2.1 Point-to-point interconnects among processing elements (PEs): a) 3 PEs; b) 10 PEs 5

2.2 Bus interconnection topology . 6

2.3 Ring interconnection topology . 6

2.4 Mesh interconnection topology . 7

2.5 Examples of routing a packet from a source router to a destination router: a) a

single path with XY dimension-ordered routing; b) multiple paths with an adaptive

routing. Different adaptive routing algorithms would provide different numbers of

possible paths. 10

2.6 Examples of network deadlock and deadlock-free routing: a) deadlock caused by

a channel dependent loop from four packet routing paths made by routers in the

network; b) deadlock-free with XY routing: allows only 4 turn types; c) deadlock-

free with West-First adaptive routing: allows up to 6 turn types. In (b) and (c), a

turn marked with ‘X’ in red means it is prohibited while the router routes a packet. 11

2.7 Multiple processing cores in a chip are interconnected by a 2-D mesh network of

routers. NI: Network Interface; R: Router. 14

2.8 A typical buffered router architecture. P: the number of router ports. 14

3.1 Typical router architectures and their pipelines: (a) 4-stage wormhole (WH) router;

(b) 5-stage virtual-channel (VC) routers. QW: Queue Write; LRC: Lookahead

Route Computation; VCA: Virtual Channel Allocation; SA: Switch Allocation;

ST: Switch Traversal; LT: Output Link Traversal; (X): a pipeline bubble or stall.

P: the number of router ports. 24

3.2 Average packet latency simulated on a 8×8 2D-mesh network over uniform random

traffic pattern . 25

3.3 Power and area costs of circuit components in a VC router with 2 VCs × 8 flits per

input port: (a) power breakdown; (b) area breakdown. 26

3.4 Crossbar designs for a virtual-channel router: (a) P:P crossbar with V buffer queues

of an input port are multiplexed; (b) PV:P crossbar that connects directly to all input

buffer queues. P: the number of router ports; V: the number of queues per input port. 26

– x –

3.5 Development of our ideas for sharing buffer queues in a router: (a) shares all queues;

(b) each input port has one queue and shares the remaining queues; (c) allows input

packets to bypass shared queues. P: the number of router ports; V: the number of

VC queues per input port in a VC router; N: the number of shared queues. 28

3.6 RoShaQ router microarchitecture. SQA: shared-queue allocator; OPA: output port

allocator; SQ Rx state: shared queue receiving/writing state; SQ Tx state: shared

queue transmitting/reading state. P: the number of router ports; N: the number of

shared queues. 29

3.7 RoShaQ pipeline characteristics: (a) 4 stages at light load; (b) 7 stages at heavy

load. QW: Queue Write; LRC: Lookahead Routing Computation; OPA: Output Port

Allocation; SQA: Shared Queue Allocation; OST: Output Switch/Crossbar Traver-

sal; LT: Output Link Traversal; SQST: Shared-Queue Switch/Crossbar Traversal;

SQW: Shared-Queue Write; (X): a pipeline bubble or stall. 31

3.8 Output virtual-channel allocator (VCA) in a virtual-channel router. P: the number

of router ports; V: the number of virtual channels per input port. 32

3.9 Output switch allocator (SA) in: a) VC router with crossbar inputs multiplexed;

b) VC router with full crossbar. P: the number of router ports; V: the number of

virtual channels per input port. 32

3.10 Output port allocator (OPA) and shared queue allocator (SQA) structures in a RoShaQ

router. P: the number of router ports; N: the number of shared queues. 33

3.11 Latency-throughput curves over uniform random traffic 36

3.12 Communication graph of a video object plan decoder application (VOPD) and the

corresponding injection rate of each processor used in our simulation: (a) required

inter-task bandwidths in Mbps; (b) the corresponding injection rates of processors

in flits/cycle. 38

3.13 Normalized latency of real applications . 39

3.14 Synthesis results: (a) power; (b) area. 40

3.15 Normalized energy per packet over synthetic traffic patterns 41

3.16 Normalized energy per packet over real application traffic patterns 42

4.1 Wormhole router architecture. P: the number of router ports. 48

4.2 Pipeline traversal of flits inside a wormhole router. BW: Buffer Write; LRC: Looka-

head Routing Computation; SA: Switch Arbitration; ST: Switch/Crossbar Traversal;

LT: Link Traversal. 48

4.3 Area and power consumption of wormhole routers: a) area breakdown; b) power

breakdown. 49

4.4 The proposed bufferless packet-switched router that utilizes pipeline registers for

storing data flits at input ports. P: the number of router ports. 50

4.5 Illustration of the activities of two nearest neighboring routers while forwarding a

packet . 52

4.6 Pipeline traversal of each data flits inside a bufferless router 53

4.7 An example of packet length aware adaptive routing with guaranteed in-order deliv-

ery in bufferless routers. Packets with length of 5 flits sent from source node (0,3)

to destination node (5,0) are allowed to adaptively route starting from node (3,3). . 54

4.8 The proposed bufferless circuit-switched router architecture. P: the number of

router ports. 56

4.9 Pipeline traversal of flits inside a circuit-switched router 57

4.10 Latency vs. injection rate curves of routers over uniform random traffic 60

– xi –

4.11 Network throughput of routers over uniform random traffic 61

4.12 Network throughput of routers over transpose traffic 62

4.13 Communication graph of a video object plan decoder application (VOPD) and the

corresponding injection rate of each processor used in our simulations: (a) required

inter-task bandwidths in Mbps; (b) the corresponding injection rates in flits/cycle of

processors. 65

4.14 Transferring latency of 1 million packets over embedded application traces 67

4.15 Average power of routers over uniform random traffic 71

4.16 Average energy per packet of routers over uniform random traffic 73

4.17 Average router power over embedded application traces 73

4.18 Average router energy per packet over embedded application traces 74

4.19 Performance per area and transferred data bits per unit energy of routers averaged

over all synthetic and embedded traffic patterns 75

5.1 Task-interconnect graph of an 802.11a WLAN baseband receiver. The dark lines

represent critical data interconnects. 81

5.2 Illustration of a GALS many-core heterogeneous system consisting of many small

identical processors, dedicated-purpose accelerators and shared memory modules

running at different frequencies and voltages or fully turned off. 82

5.3 The many-core platform from Fig. 5.2 with switches inside each processor that can

establish interconnects among processors in a reconfigurable circuit-switched scheme. 83

5.4 (a) A unidirectional link between two nearest-neighbor switches includes wires con-

nected in parallel. Each wire is driven by a driver consisting of cascaded inverters.

(b) A simple switch architecture consisting of only five 4-input multiplexers. . . . 83

5.5 Illustration of a long-distance interconnect path between two processors directly

through intermediate switches. On this interconnect, data are sent with the clock

from the source processor to the destination processor. 84

5.6 A simplified view of the interconnect path shown in Fig. 5.5 85

5.7 A side view of three metal layers where the interconnect wires are routed on the

middle layer. Each wire has ground capacitances with upper and lower metal layers

and coupling capacitances from adjacent intra-layer wires. 86

5.8 Circuit model used to simulate the worst case and best case inter-switch link delay

considering the crosstalk effect between adjacent wires. Wires are simulated using

a Π3 lumped RC model. 87

5.9 Timing waveforms of clock and data signals from the source processor to the desti-

nation FIFO . 88

5.10 Interconnect circuit path with a delay line inserted in the clock signal path before

the destination FIFO to shift the rising clock edge to a stable data window 89

5.11 Maximum frequency of the source clock over various interconnection distances and

CMOS technology nodes . 90

5.12 Maximum interconnect latency (in ns) over various distances 91

5.13 Maximum communication latency in term of cycles at the maximum clock fre-

quency over interconnect distances . 92

5.14 Block diagram of the 167-processor computational platform (AsAP2) [13] 93

5.15 Simplified block diagram of processors or accelerators in the proposed heteroge-

neous system. Processor tiles are virtually identical, differing only in their compu-

tational core. 94

5.16 The Voltage and Frequency Controller (VFC) architecture 95

– xii –

5.17 Each processor tile contains two switches for the two parallel but separate networks 96

5.18 Die micrograph of the 167-processor AsAP2 chip 98

5.19 Maximum clock frequency and 100%-active power dissipation of one programmable

processor over various supply voltages . 99

5.20 Measured maximum clock frequencies for interconnect between processors over

various interconnect distances at 1.3 V. An Interconnect Distance of one corre-

sponds to adjacent processors. 100

5.21 Measured 100%-active interconnect power over varying inter-processor distances at

594 MHz and 0.95 V . 101

6.1 Block diagram of a complete 802.11a baseband receiver 105

6.2 Structure of a received frame. S: 16-sample short-training symbol; GI2: 32-sample

double guard interval; L: 64-sample long-training symbol; GI: 16-sample single

guard interval; SIGNAL and DATA fields: 64 samples each. 105

6.3 Plot of the timing metric M(n) with S NR = 20dB. Thdet and Thsyn are thresholds

used for frame detection and timing synchronization, respectively. 106

6.4 The constellation of 16-QAM subcarriers in the frequency domain with ǫ = 10 ppm

at 5 GHz: a) without CFO compensation; b) with CFO compensation. 107

6.5 Mapping of a complete 802.11a baseband receiver using only nearest-neighbor in-

terconnect. The gray blank processors are used for routing purposes only. 110

6.6 Mapping of a complete 802.11a baseband receiver using a reconfigurable network

that supports long-distance interconnects . 111

6.7 Finite State Machine model of the receiver . 114

6.8 The overall activity of processors while processing a 4 µsec OFDM symbol in the

54 Mbps mode . 115

6.9 The total power consumption over various values of VddLow (with VddHigh fixed at

0.95 V) while processors run at their optimal frequencies. Each processor is set at

one of these two voltages depending on its frequency. 120

A.1 A simulated platform includes multiple cores interconnected by a 2-D mesh network

of routers . 128

A.2 Performance of the networks in different sizes: a) average packet latency vs. flit

injection rate; b) average network throughput vs. flit injection rate. 136

A.3 Power and energy consumption of routers in different network sizes: a) average

router power vs. flit injection rate; b) average energy per packet vs. flit injection rate. 137

A.4 Performance of the networks of routers with different buffer depths: a) average

packet latency vs. flit injection rate; b) average network throughput vs. flit injection

rate. 138

A.5 Power and energy consumption of routers with different buffer depths: a) average

router power vs. flit injection rate; b) average energy per packet vs. flit injection rate. 139

– xiii –

List of Tables

3.1 Router configuration used in experiments. Each router has 80 buffer entries in total 34

3.2 Zero-load latency and saturation throughput of routers over eight different synthetic

traffic patterns . 37

3.3 Seven embedded applications and three E3S benchmarks used in our experiments . 38

3.4 Router power at 1.2V, 1GHz and area comparison 40

4.1 Router configuration used in experiments . 58

4.2 Zero-load latency (in cycles) of routers over synthetic traffic patterns 63

4.3 Saturation throughput (in flits/cycle) of routers over synthetic traffic patterns 64

4.4 Seven embedded applications and three E3S benchmarks used in our experiments . 66

4.5 Area (in µm2) of routers . 68

4.6 Saturation power (in mW) of routers over synthetic traffic patterns 70

4.7 Saturation energy per packet (in pJ/packet) of routers over synthetic traffic patterns 72

5.1 Dimensions of interconnect wires at the intermediate layer based on ITRS [126] and

with resistance and capacitance calculated by using PTM online tool [128] 86

5.2 Delay values simulated using PTM technology cards 88

5.3 Average power consumption measured at 0.95 V and 594 MHz 99

6.1 Operation of processors while processing one OFDM symbol in the 54 Mbps mode,

and their corresponding power consumption . 116

6.2 Power consumption while processors are running at optimal frequencies when:

a) Both VddLow and VddHigh are set to 0.95 V; b) VddLow is set to 0.75 V and VddHigh

is set to 0.95 V . 119

6.3 Estimation and measurement results of the receiver over different configuration modes121

A.1 Performance, saturation power and energy of routers in networks with different sizes 136

A.2 Performance, saturation power and energy of routers with different buffer depths . 138

– xiv –

List of Listings

A.1 Platform Options . 128

A.2 Synthetic Traffic Patterns . 129

A.3 Embedded Application Traces . 130

A.4 Traffic Options . 130

A.5 Router Settings . 130

A.6 Environmental Settings . 132

A.7 Running NoCTweak Simulator In a Terminal . 135

– xv –

1

Chapter 1

Introduction

1.1 The Era of Many-Core System Designs

CMOS technology continues to scale following Moore’s law [2] that not only allows more

transistors integrated on a single chip but also offers faster speed for circuit elements. As a result,

designers have taken these advantages for improving the overall system performance in several

ways. A straightforward method is through increasing the system’s operating clock frequency by

either utilizing these faster transistors or adding more pipeline stages with “cheaper” registers. As

shown in Fig. 1.1, clock frequency of commercial chips linearly increased with each new generation

of CMOS generation until the mid-2000s.

Unfortunately, integrating more circuits on chip while operating at higher clock rates

1970 1975 1980 1985 1990 1995 2000 2005 2010

0

1

10

100

1,000

10,000

clock frequency (MHz)

chip power (W)

core performance (IPC)

Figure 1.1: The trends in clock frequency scaling, power dissipation and core performance of several

commercial chips [1]

2

1970 1975 1980 1985 1990 1995 2000 2005 2010

0

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

of transistors per chip (x 1K)

of cores per chip

Figure 1.2: The number of transistors integrated and the number of processing cores built in several

commercial chips [1, 8]

makes the chip dissipate more power. This is because power consumption is tightly proportional

to the overall chip capacitance and the operating clock frequency [3]. Around 2005, chip power

dissipation started hitting a ceiling. Heat sink and fan-cooled systems were no longer easy to cool

the chip as its total power consumption started exceeding 100W [4]. Consequently, clock frequency

no longer increases in order to keep the chip’s dissipated power in the acceptable range.

Improving the system performance can be achieved by adding more features to the proces-

sors making them execute more instructions per clock cycle such as adding more cache, supporting

superscalar, vector computing, very large instruction width, branch speculation, and out-of-order

execution [5]. However, because of the limitation of instruction level parallelism which can be ex-

ploited in present applications, the performance gain has been being diminished as show in Fig. 1.1.

Moreover, processor complexity significantly increases which outweighs the performance gain and

also dissipates a lot more power. As a result, only few new features have been added into the proces-

sors recently; even worse, some expensive features such as speculation and out-of-order execution

have been removed from recent chips to keep their power consumption low [6, 7].

While the core complexity has stopped increasing, the number of transistors which can be

integrated in a single chip keeps going up. Eventually, this drives the system architects to put more

cores on the chip for achieving higher performance by exploiting the thread/task level parallelism of

3

applications instead of the limited instruction level parallelism [5, 9]. Fig. 1.2 confirms this obser-

vation. Since the mid-2000s, when the clock frequency got its limitation along with the core perfor-

mance reaches saturation, the number of cores integrated on a single chip started increasing. This

increase has been taking place even faster than the scaling factor predicted by Moore’s law (about 2

times every 18 months or 2 years) because designers have been preferring to use the optimized and

simple cores rather than the power-hungry complex ones [10,11]. Moreover, once designers become

familiar to many-core design methods, more cores will be likely integrated into the chip even at the

same CMOS process. Following the trend shown in this figure, we could see 200+ cores on a chip

in 2015; and 1000-core chips would be possible in 2020. For fine-grain many-core platforms like

AsAP [12, 13], 4000+ cores could be integrated on a single chip in 2020.

1.2 The Scope and Organization of this Dissertation

With a large number of processing cores expected to be integrated on a single chip in

the near future, several challenging issues need to be addressed such as processor designs, inter-

processor interconnections, memory architectures, programming models and languages, application

mapping and scheduling techniques, power management methods, testing and verification flows

and reliability issues [14]. This dissertation mainly focuses on investigating the design, simula-

tion and evaluation of on-chip interconnection networks; other topics are beyond the scope of this

work and are reserved for our future work. The dissertation presents the research results on three

domains of on-chip interconnection networks: high-performance network designs for applications

with high communication bandwidths; low-cost networks for application-specific low-bandwidth

dynamic traffic; and reconfigurable networks for platforms containing many cores operating in inde-

pendent clock domains which target DSP applications with deterministic inter-task communication

characteristics.

The dissertation is organized as follows: Chapter 2 reviews background and related work

on the designs of on-chip networks, and describes the main contributions of this work. Chap-

ter 3 presents a novel on-chip router utilizing shared-queues for achieving high throughput and

low latency on-chip networks. Chapter 4 proposes bufferless on-chip routers for low-cost net-

work designs but still achieve higher performance per unit cost than traditional buffered routers.

4

Chapter 5 presents the design of a reconfigurable source-synchronous on-chip network for globally

asynchronous locally synchronous (GALS) many-core platforms with a real chip design example.

Application mapping on this platform with a case study implementation of a 802.11a baseband re-

ceiver is described in Chapter 6. Chapter 7 concludes this dissertation and suggests main directions

for future work. Many results reported in this work are provided by a network-on-chip simulator

which is presented in Appendix A. Appendix B lists my publications related to the contents of this

dissertation. The glossaries of technical terms used in this dissertation are defined in Appendix C.

5

Chapter 2

Background, Related Work and

Contributions

2.1 On-Chip Network Background

2.1.1 Network Topologies

Point-to-point connections are normally used in systems on chip with a few processing

elements (PEs) because these connections provide the ideal communication performance among

PEs [15]. As shown in Fig. 2.1(a), a 3-PE chip using point-to-point interconnects is simple and

straightforward. However, when the number of PEs increases, the number of direct interconnect

PE

PE PE

PE

PE

PE

PE
PE PE

PE

PE
PE

PE

(a) (b)

Figure 2.1: Point-to-point interconnects among processing elements (PEs): a) 3 PEs; b) 10 PEs

6

PE PE PEPE

. . .

Figure 2.2: Bus interconnection topology

PE

PE

PE PE

. . .

PE PE

. . .

Ring Switch

Figure 2.3: Ring interconnection topology

links becomes too high as shown in Fig. 2.1(b) that makes them impossible to route due to the

wiring congestion with limited metal layers on chip. Furthermore, each PE must handle a large

number of I/Os making its interface design highly complicated. Therefore, point-to-point intercon-

nect topology is impractical for use in many-core systems.

Another common topology for connecting multiple PEs in a chip is the shared bus struc-

ture as shown in Fig. 2.2 which is used in the Cavium processor [16]. Shared bus architecture

has low area cost and is design-mature which is supported by industrial standards such as ARM

AMBA [17], OpenCores Wishbone [18] and IBM CoreConnect [19]. In addition, supporting broad-

cast communication is its excellent natural characteristic which is useful in shared-memory mul-

ticore systems with a snooping cache-coherence protocol [20, 21]. For a large number of PEs,

however, the design of the central arbiter for handling and granting bus access to PEs becomes

highly complicated. Moreover, the high latency of long global bus length at submicron CMOS

process plus round-trip request-grant signals from PEs to the central arbiter seriously degrades the

overall performance of the system. As a result, this poor scalability prevents the use of the shared

bus interconnect architecture in many-core systems [15].

The ring connection structure as used in Cell processor [22] is a good alternative for the

shared bus. Ring is simple and can be scaled to connect to many cores as shown in Fig. 2.3. Besides

that, the traffic behavior on rings is predictable which is important in debugging and optimizing

7

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

Switch or Router

Figure 2.4: Mesh interconnection topology

systems. However, when integrating a large number of nodes on the ring, the communication latency

becomes high enough to degrade the overall performance of mapped applications. A result reported

by Kumar et al. showed that the number of elements connected to a bus or a ring should not exceed

20 [23].

For high-performance platforms such as Niagara 2 [24] or application-specific multicore

systems that require real-time interconnection bandwidth, a centralized crossbar fabric is used to

setup fast non-blocking interconnects between processing elements (PE). However, the complexity

and costs of the centralized crossbar are proportional to the square of the number of its ports [25];

thus area and power consumption dramatically increase if increasing the number of PEs.

An adoption in many-core designs is by using many small crossbars in a distributed man-

ner with each crossbar can be viewed as a switch or router that connects to a PE. These switch-

es/routers are interconnected together in some ways to create a larger network. Many distributed net-

work topologies are found in the literature such as fat-tree [26], mesh [27], torus [28], hexagon [29],

spidergon [30], butterfly [31] and dragonfly [32]. Among them, the mesh architecture as shown in

Fig. 2.4 is most popular due to its regular structure with uniform router design, easy scalability and

high compatibility to standard silicon fabrication technologies [33]. Indeed, the mesh network is

used in most of the recent many-core chips such as Intel SCC 48-core [34], TFlops 80-core [35],

Tilera 64-core [36]. In this dissertation, unless otherwise specified, we mainly focus on design and

optimization of routers and switches for 2-D mesh networks (although they could be modified to

work in other topologies).

8

2.1.2 Data Transferring Techniques

There are two common techniques for transferring data among PEs on on-chip networks:

circuit-switching and packet-switching [37]. In circuit-switching network, each source processor

sends a probe message for setting up a path to its destination. When the destination receives the

probe message, it sends an acknowledge message back to the source. Once the source processor

receives this acknowledge message, it sends the whole data message to the destination on the path

which has been setup. After finishing sending the whole data message, the path must be released.

Previous circuit-switching network designs include two separate networks: one for path

settings and one for data transferring [37–39]. The path-setting network acts like a packet-switching

network with buffered routers which speeds up the path setup time by allowing interleaving multiple

probe messages in input router buffers. In Chapter 4 of this dissertation, we propose low-cost circuit-

switching networks using only bufferless routers. The bufferless router is shared for both setup and

data packets instead of two separate networks as in previous work.

In packet-switching network, processors inject data packets into the network as soon as the

network can accept them. They do not need to wait for path setting before sending packets. There

are three basic techniques for forwarding data in packet-switching networks: store-and-forward,

cut-through and wormhole [27]:

• Store-and-forward: router must store the entire packet into its buffer before making a routing

decision.

• Cut-through: router determines the output port and forwards the packet as soon as the packet

header, which contains the destination address, is available. Even though a cut-through router

can achieve lower latency and higher throughput than a store-and-forward router, they both

require large buffers that must be deep enough to store an entire packet in case network

congestion occurs.

• Wormhole: is a specific design of the cut-through router but does not require buffering the

whole packet. It allows flits1 of one packet to spread into many consecutive routers like a

worm, hence its name.

1flit is a flow control unit in a wormhole packet-switched router. A data packet consists of multiple flits: a head flit,

several body flits and one tail flit. Typically, the flit size is equal to the router link width.

9

Due to its buffer-using efficiency, wormhole forwarding technique currently is most pop-

ular in designing on-chip packet-switched routers and is also utilized in all router designs presented

in this dissertation.

2.1.3 Flow-Control Methods

Because the capacity of input buffers is limited, some flow control methods were proposed

to avoid buffer overflow causing packet loss. Three well-know methods among them are credit-

based, handshaking and stop-go [25]:

• Credit-based flow-control: each input buffer calculates how many free entry slots it has, then

sends this information (credit) back to the upstream router. Based on the received credit

information, the upstream router decides how many flits will be sent before stalling or until

the credit is updated. The credit information can be also used for choosing output channels

by adaptive routing algorithms.

• Handshaking flow-control: upstream and downstream routers exchange messages such as ac-

knowledgement (ACK) and non-acknowledgement (NACK) for noticing whether the packets

have been correctly received. The upstream router optimistically sends flits whenever they

become available. If the downstream router has a buffer slot available, it accepts the flit and

sends an ACK back to the upstream router. If no buffer slots are available when the flit arrives,

the downstream router drops the flit and sends a NACK. The upstream router holds onto each

flit until it receives an ACK; if it receives a NACK, it retransmits the flit.

This method is costly because each sending router must store all sent flits until it receives the

corresponding ACK or NACK messages. Besides that, dropping and retransmitting packets

consume extra power. Therefore, this method may be used in computer networks [40] but

is not appropriate for on-chip router designs which have only limited power and silicon area

budgets.

• Stop-and-go (or on/off) flow-control: only one bit is used to indicate whether the downstream

buffer is full or not. The upstream router keeps sending flits until it notices a full signal from

the downstream router.

10

S

D

S

D

(a) (b)

Intermediate Router

S Source Router

D Destination Router

Figure 2.5: Examples of routing a packet from a source router to a destination router: a) a single

path with XY dimension-ordered routing; b) multiple paths with an adaptive routing. Different

adaptive routing algorithms would provide different numbers of possible paths.

In this dissertation, the on/off flow control is utilized in all bufferless on-chip routers

presented in Chapter 4 while the credit-based method is used for buffered routers proposed in Chap-

ter 3. Because 1-bit synchronizer is safer than multi-bit synchronizers between different clock do-

mains [41, 42], on/off flow control is also used in our reconfigurable source-synchronous networks

for GALS many-core platforms described in Chapter 5.

2.1.4 Routing Strategies

There are two packet routing strategies in on-chip networks: deterministic and adap-

tive [43].2 For 2-D mesh networks, the simplest deterministic routing algorithm is dimension-

ordered. In the XY dimension-ordered routing as depicted in Fig. 2.5(a), each packet is routed on

the X dimension of the array until it reaches the router having the same column as its destination,

then is routed on the Y dimension to reach the destination. YX dimension-ordered routing is in the

similar way but packets are routed on the Y dimension first then on the X dimension to reach the

destinations.

Adaptive algorithms allow routing a packet on multiple paths to its destination as depicted

in Fig. 2.5(b). The output channel of each packet at a router in the network is decided depending on

the congestion condition at the deciding time. This allows packets to avoid congestion channels at

run-time hence can achieve higher network throughput than dimension-ordered routing policies in

several regular traffic patterns. However, without routing constraints, an adaptive routing strategy

may cause network deadlock, livelock, or both.

2Lookup-table based routing is understood as deterministic or adaptive routing depending on how the router chooses

the output channel for a packet at run-time.

11

(a) (b) (c)

Figure 2.6: Examples of network deadlock and deadlock-free routing: a) deadlock caused by a

channel dependent loop from four packet routing paths made by routers in the network; b) deadlock-

free with XY routing: allows only 4 turn types; c) deadlock-free with West-First adaptive routing:

allows up to 6 turn types. In (b) and (c), a turn marked with ‘X’ in red means it is prohibited while

the router routes a packet.

2.1.5 Network Deadlock

A network incurs deadlock when packets in the network indefinitely stop moving. The

main reason for network deadlock is the forming of channel dependent loops from packets in the

network caused by an adaptive routing algorithm [44, 45]. Fig. 2.6(a) shows an example of the

classic deadlock caused by four routers routing packets to their output channels creating a depen-

dent loop. In this situation, each packet waits for its front packet to get moved; however, because

the paths of packets formed a loop, they have indefinitely blocked together causing deadlock. To

avoiding deadlock, some constraints must be applied into routing algorithms for preventing forming

channel dependent loops among packets.

The most simple and well-known deadlock-free adaptive routing strategy is based on the

turn models proposed by Glass [46]. In these models, some turns are prohibited while routing a

packet. For example, the West-First turn model allows six turns as shown in Fig. 2.6(c). In this turn

model, two turns are prohibited, packets are not allowed to turn from the North or South direction

to the West direction. With six allowed turns, it guarantees no channel dependent loop to be formed

from the packet-routing paths. The XY routing policy is a special case of the turn models in that it

only allows four routing turns as depicted in Fig. 2.6(b). Clearly, the West-First model allows more

routing paths than the XY model due to its more allowed turns. In the same class with the West-First

model, there are two other turn models called North-Last and Negative-First [46].

Another turn-based deadlock-free adaptive routing is by eliminating two turns depending

on the current router position of the packet in the network named Odd-Even turn model [47]. For

example, when a packet is traversing a node in an even column, turns from East to North and

12

from North to West are prohibited. For packets traversing an odd column node, turns from East to

South and from South to West are prohibited. Although this Odd-Even model is deadlock-free, it

causes different implementations for routers on even and odd columns. Other deadlock-free adaptive

routing strategies were proposed such as ROMM [48], GOAL [49], O1TURN [50], DyAD [51],

DyXY [52]. However, while they offer only modest performance improvements compared to the

turn models, they are highly complicated which are costly in both design and test thus are rarely

used in practical many-core systems.

Another reason for causing deadlock is because of resource sharing inside a router design

such as all input ports share the same set of buffer queues [53]. For this architecture, deadlock

can be avoided if the router supports a mechanism allowing packets to avoid indefinitely waiting

on a busy shared resource. A solution, which is presented in Chapter 3, is by allowing packets to

opportunistically bypass busy shared buffer queues.

An uncommon but hard-detected deadlock reason is because of the programmers while

mapping applications on a many-core system. Even though the underlying on-chip network is

deadlock-free, the software protocol created by a programmer may cause deadlock [54]. The

protocol-based deadlock problem is out of the scope of this work, in which we assume the program-

mers themselves are aware of the deadlock potential while implementing applications on many-core

platforms.

2.1.6 Network Livelock

Another concern while designing a routing algorithm is network livelock. Livelock hap-

pens when a packet moves indefinitely in the network without ever reaching its destination even

though there is no deadlock. The main reason causing network livelock is by a non-minimal adap-

tive routing. Non-minimal routing allows packets to misroute out of the shortest paths to the des-

tinations. Without a certain mechanism, a misrouted packet can be misrouted again in next routers

hence moves indefinitely around in the network without reaching its destination. The simplest so-

lution to avoid livelock is to use the XY dimension-ordered or minimal adaptive routing strategies

such as turn models mentioned above. Another solution is to limit the number of misrouted times

of a packet. When its misrouted times hit a threshold, it is forced to go on the minimal paths to its

13

destination.

Livelock may also occur in the network of bufferless routers using a packet deflecting

or dropping strategy. Packet deflecting causes packet misrouted hence could lead to livelock. A

dropped packet will be retransmitted by its source; however it may be dropped again thus can never

reach its destination. The solution for avoiding these kinds of livelock is by timestamping the

transmitted packets [55]. Packet’s timestamp is initialized at zero and increases with each network

clock cycle. When network congestion happens, a packet with the highest timestamp is prioritized

to go on the minimal path and is not dropped hence is guaranteed to reach its destination. Because

timestamping of a packet increases with each clock cycle, a packet (even misrouted or dropped)

eventually will have its timestamp to be greatest compared to others hence get prioritized to route

to its destination. Therefore, there is no livelock for every packet.

Livelock also occurs at routers with an unfair resource allocation policy. With bad luck, a

packet may never win the resource arbitration, hence does not have the chance to move even if there

is no deadlock (other packets still get granted to advance in the network). A simple solution to avoid

this livelock case is using fair resource arbitration such as round-robin or oldest-first arbiters [25,43].

In this dissertation, we utilize both XY-routing and minimal turn-based routing algorithms

along with round-robin arbiters for all the proposed routers for avoiding network deadlock and

livelock.

2.2 On-Chip Router Designs

2.2.1 Basic Circuit Components of a Router

Fig. 2.7 depicts a multicore system in which processors communicate together through a

2-D mesh network of routers. Each router has five ports which connect to four neighboring routers

and its local processor. A network interface (NI) locates between a processor and its router for

transforming processor messages into packets to be transferred on the network and vice versa.

A typical router architecture is shown in Fig. 2.8. The figure only shows details of one in-

put port for simple view. At first, when a flit arrives at an input port, it is written to the corresponding

buffer queue. Assuming without other packets in the front of the queue, the packet starts deciding

the output port using its routing computation circuit implementing either the XY dimension-ordered

14

Core

R
NI

buffer

buffer

buffer

b
u

ffe
r

b
u

ffe
r

South

North

E
a
s
t

W
e
s

t

Loca
l

Xbar

Control

Logic

Figure 2.7: Multiple processing cores in a chip are interconnected by a 2-D mesh network of routers.

NI: Network Interface; R: Router.

buffer

Routing

Comp.

Switch

Arbiters
.

.
.

. . .

credits in

. . .

credit out

flit in flit out

. . .

. . .

P x P

Crossbar

in port

state

out port

states

. . .

Figure 2.8: A typical buffered router architecture. P: the number of router ports.

or an adaptive routing algorithm. After that, it arbitrates for its output port because there may be

multiple packets from different input queues having the same desired output port. If it wins the out-

put switch allocation, it will traverse across the crossbar and the output link toward the downstream

router.

Therefore, a router typically has five basic circuit components: buffers for temporarily

holding packets, routing circuits for determining the output channels of packets, arbiters to handle

access permission to output channels by multiple packets, a crossbar for switching packets from

input buffers to output channels. In addition, the router also includes credit counters for maintaining

the available slots of buffers used by a flow controlling policy. It also contains simple finite state

machines for keeping track the states of input and output ports (idle, wait, busy) which are used by

15

internal router operations as described above.

2.2.2 High-Performance Router Designs

If the input buffer has only one queue and the router uses wormhole packet transferring

technique, the router is called a wormhole (WH) router. In a WH router, if a packet at the head of

a queue is blocked (because it is not granted by the switch arbitration (SA) or the corresponding

input queue of the down stream router is full), all packets behind it also stall. This head of line

blocking problem can be solved by a virtual-channel (VC) router [56]. In this VC router design,

an input buffer has multiple queues in parallel, each queue is called a virtual-channel, that allows

packets from different queues can bypass each other to advance to the crossbar stage instead of

being blocked by a packet at the head queue. Because now an input port has multiple VCs, a virtual-

channel allocator (VCA) is needed to allocate available output VCs for each input VC before packets

in input VCs get granted by the SA to traverse to the next routers. Although VC router improves

the network throughput, the VCA operation added in each router increases the packet latency.

Peh et al. and Mullins et al. proposed speculative techniques for VC routers allowing a

packet to simultaneously arbitrate for both VCA and SA giving a higher priority for non-speculative

packets to win SA; therefore reducing low-load latency in which the probability of failed speculation

is small [57, 58]. This low latency, however, comes with the high complexity of SA circuitry and

also wastes more power each time the speculation fails. A packet must stall even if it wins SA but

fails VCA, and then has to redo both arbitration at the next cycle. When the network load becomes

heavy, speculation often fails hence speculative routers achieve the same throughput as VC routers

while consuming higher power and energy.

An express virtual channel (EVC) router architecture was proposed by Kumar et al. which

uses virtual lanes in the network to allow packets to bypass nodes along their paths in a non-

speculative fashion, hence reduces packet delay and improve network throughput [59]. However,

an EVC router requires a complicated fine-grained buffer management which allows sharing buffer

slots among normal and express VCs. The total number of VCs (both normal and express) is large

that complicates the VC allocator designs and is costly in terms of area and power. A complex flow

control is needed to avoid starvation because packets on express VCs have higher priorities than

16

normal VCs. Moreover, EVC router only works with a dimension-ordered routing policy, does not

work with adaptive ones.

Another approach for boosting the network throughput over certain regular traffic patterns

and application-specific traces by maximizing channel utilization with bidirectional links was pro-

posed by Lan et al. [60]. In their proposed BiNoC network, when an output channel of a router

is idle, it can be used as an input channel. Therefore a router can send two flits in parallel in two

bidirectional links to the next router. This method allows achieving better network performance

when the traffic is heavy in one direction of nearest neighboring router pairs. However, the router

buffer space is doubled because it needs buffers for both input and output channels. Besides that,

the control circuits for avoiding data conflict on bidirectional links are also complicated. As a re-

sult, BiNoC router has much higher area and power costs and consumes higher energy than typical

routers.

Chapter 3 in this dissertation presents another approach for achieving high network through-

put with low average energy per packet by allowing multiple input packets to share a set of buffer

queues. Sharing buffers maximizes the buffer utilization for reducing packet stall times thus im-

proving the overall network throughput. The router also allows packets to bypass shared-queues

hence reduces packet latency at low loads without the need of speculation.

2.2.3 Low-Cost Router Designs

Along with high-performance on-chip networks, the research domain on low-cost router

designs is becoming increasingly attractive due to the tightly constrained area and power budgets

for each circuit module in many-core chips. Kim proposed a low-cost router design in which the

crossbar is partitioned to support different traffic on X and Y directions [61]. All operations of the

router are combined into one cycle with the input buffers are reduced to only two slots which are

fit enough to cover the round-trip flow-control delay. However, intermediate buffers are added for

packets turning from the X direction to the Y direction which adds more cost to the router. The

arbitration policy which prioritizes packets in flight may cause unfairness hence needs a sophisti-

cated mechanism for avoiding starvation. Moreover, this router does not support adaptive routing

strategies.

17

Low-swing crossbar and link designs reduce router power by operating at lower supply

voltages [62, 63]. However, these designs use custom circuit modules which have high design and

test costs than standard-cell based designs. While other router components are supplied by regular

voltages, low supply voltages for crossbar and links need additional voltage-level converters which

also increase the router complexity. Some previous work also proposed using voltage and frequency

scaling (VFS) technique for saving dynamic router power [64–66]. These designs requires sophisti-

cated control circuits with significant area overhead. Besides that, router traffic frequently changes

cycle by cycle making these VFS control circuits often active hence consume extra power which

diminishes the power saving achieved by the VFS itself.

It has been observed that buffers consume the largest portions of the whole router area and

power [67]; therefore, bufferless designs which totally remove buffers out of the routers, recently,

are becoming more attractive. Michelogiannakis et al. proposed elastic routers which use elastic

pipelining latches on inter-router links as storage elements instead of explicit input buffers [68].

With this approach, the channels act as small FIFOs hence allow elastic routers to operate similarly

to buffered wormhole routers. Elastic elements are built from latches and using the “ready-valid”

handshake flow controlling method. Latches, however, are not well compatible with CAD tools

which have timing analysis and optimization algorithms based on edge-triggered registers. More-

over, handshaking flow control requires non-trivial sophisticated circuit designs.

Another approach for bufferless router designs is to utilize a “hot-potato” routing principle

which either drops the flit or deflects it to another output port if its desired output port is busy [55,69–

71]. Dropping flits requires the router to support a mechanism for noticing the sources to retransmit

the dropped packets. Deflecting flits causes flits to go to non-minimal paths which are potential

for deadlock and livelock. Therefore, the routers must add more complex control logic and priority

scheduling circuits to avoid these problems. As a result, these previous bufferless router designs

were shown to consume even higher energy than buffered routers [72]. Furthermore, flit dropping

and deflecting cause the out-of-order delivery of not only packets but also the flits of each packet.

This requires additional buffers at receiving processors for reordering flits and packets before they

are consumed by the processors. The area and power consumed by these reordering buffers can be

higher than the buffers removed from the routers hence negates the initial benefit of the ideas in

designing bufferless routers.

18

The proposed bufferless router designs presented in Chapter 4 guarantee in-order packet

delivery without packet dropping or deflecting hence achieves lower area and power with higher

performance per unit cost than buffered routers. Clock-gating is another well-known and efficient

method for reducing dynamic power which has been well applied for on-chip routers [73]. We also

apply clock-gating for all router designs presented in this dissertation.

2.3 Communication Methods for GALS Many-Core Systems

For practical digital designs, clock distribution becomes a critical part of the design pro-

cess for any high performance chip [74]. Designing a global clock tree for a large many-core chip

becomes very complicated and it can consume a significant portion of the power budget, which can

be up to 40% of the whole chip’s power [4]. One effective method to address this issue is through

the use of globally-asynchronous locally-synchronous (GALS) architectures where the chip is parti-

tioned into multiple independent frequency domains. Each domain is clocked synchronously while

inter-domain communication is achieved through specific interconnect techniques and circuits [75].

Due to its flexible portability and “transparent” features regardless of the differences among compu-

tational cores, GALS interconnect architecture becomes a top candidate for multi- and many-core

chips that wish to do away with complex global clock distribution networks.

The methodology of inter-domain communication is a crucial design point for GALS

architectures. One approach is purely asynchronous clockless handshaking, which uses multiple

phases (normally two or four phases) of exchanging control signals (request and ack) for transfer-

ring data words across clock domains [76,77]. Unfortunately, these asynchronous handshaking tech-

niques are highly complicated and use unconventional circuits (such as the Muller C-element [3])

typically unavailable in generic standard cell libraries. Besides that, because the arrival times of

events are arbitrary without reference timing signals, their activities are difficult to verify in tradi-

tional digital CAD design flows.

The so-called delay-insensitive interconnection method extends the clockless handshak-

ing techniques by using some coding techniques such as dual-rail or 1-of-4 for avoiding the re-

quirement of delay matching between data bits and control signals [78]. These circuits also require

specific cells that do not exist in common ASIC design libraries. Quinton et al. implemented a

19

delay-insensitive asynchronous interconnection network using only digital standard cells; however,

the final circuit has area and energy requirement many times larger than those of a synchronous

design [79].

Another asynchronous interconnect technique is by using pausible or stretchable clock

where the rising edges of the receiving clock is paused following the requirements of the control

signals from the sender. This makes the synchronizer at the receiver wait until the data signals

stabilize before sampling [80,81]. The receiving clock is artificial meaning its period can vary cycle

by cycle; so it is not particularly suitable for a processing elements with synchronous clocking that

need a stable signal clock in a long enough time.

An important note is that all asynchronous techniques mentioned above were conven-

tionally proposed for point-to-point interconnects [82–84]. When applied to router designs with

multiple input ports, these techniques become very difficult to manage due to the arbitrary and un-

predictable arrival times of multiple input signals. They require adding more sophisticated circuits

mainly for ensuring the router to operate correctly; and needless to say, the router becomes very

complicated to test and debug [85].

An alternative for transferring data across clock domains is the source-synchronous com-

munication technique that was originally proposed for off-chip interconnects. In this approach, the

source clock signal is sent along with the data to the destination. At the destination, the source clock

is used to sample and write the input data into a FIFO queue while the destination clock is used to

read the data from the queue for processing. This method achieves high efficiency by obtaining

an ideal throughput of one data word per source clock cycle with a very simple design that is also

similar to the synchronous design method; hence it is friendly with common digital standard cell

design flows [13, 86, 87].

In addition, a source-synchronous communication path can also be scaled, allowing easy

setup of a long-distance interconnection between two arbitrary processors. Using dual-clock FIFOs

for interfacing between clock domains is also easy to be applied to multi-port router designs rather

than only short-distance point-to-point interconnects as by asynchronous handshaking techniques.

Due to its advantages, we adopt the source-synchronous communication technique for designing a

ultra low cost and high-performance reconfigurable on-chip networks for many-core GALS plat-

forms which is presented in Chapter 5.

20

2.4 Contributions

The main contributions presented in this dissertation are:

• It presents an on-chip network router design using shared-queues [88, 89]. Sharing buffer

queues in the router allows maximizing its buffer utilization hence achieves high network

throughput by reducing packet stall times at input ports. The router also achieves low latency

by allowing packets to effectively bypass shared-queues when the network loads become

low. Due to its higher performance, which allows it to transfer more packets in a certain

time window, the shared-queue router also consumes lower energy per transferred packet

compared to virtual-channel routers. Experimental results show that, averaged over a broad

range of traffic patterns, the proposed shared-queue router has 18% higher throughput, 17%

lower latency and 9% lower energy per packet than virtual-channel routers given the same

buffer space capacity.

This work received a Best Paper Award at the IEEE International Conference on Computer

Design (ICCD) in 2011.

• It investigates approaches for designing low-cost on-chip networks with bufferless routers [90,

91]. Bufferless routers achieve ultra low area and power costs by removing costly physical

buffers out of the router datapath. The proposed bufferless routers also guarantee deliver-

ing data packets in-order, hence eliminate the need of highly complex reordering buffers at

processors. The bufferless router designs cover both packet-switching and circuit-switching

techniques. Experimental results show that, the proposed bufferless packet-switched router is

33% less area, 10% lower power 25% higher throughput, 30% lower latency and 27% lower

energy per bit than the smallest buffered router. The proposed bufferless circuit-switched

router is 32% less area, 10% lower power, 42% higher throughput, 28% lower latency and

34% lower energy per bit than the smallest buffered router.

• It presents a GALS-compatible source-synchronous reconfigurable on-chip network for many-

core platforms [92, 93]. The platforms mainly target streaming digital signal processing and

embedded applications which typically have a high degree of task-level parallelism among

computational kernels and deterministic inter-task communication traffic patterns. A GALS

21

167-processor chip named AsAP2 equipped with this network was implemented in 65 nm

CMOS showing the network area to be only 7% of the processor core and to dissipate about

10% of total power while running a complex application [13].

• It describes an example mapping implementation of a complete IEEE 802.11a/11g baseband

receiver on AsAP2 [94,95]. The implementation occupies 25 processors which is 30% fewer

processors compared to a version mapped on a platform having only nearest neighbor inter-

connects. The receiver achieves a real-time throughput of 54 Mbps and consumes 130 mW

which is 1.7 times faster and 2.1 times lower power compared to an implementation on the

state-of-the-art software defined radio SODA processor [96].

• It reports an open-source simulator for early exploration of performance and energy efficiency

of networks on-chip [97]. This simulator has been developed using SystemC, a C++ plugin,

which allows fast modeling of concurrent hardware modules at the cycle-level accuracy. The

statistic output results provided by the simulator are the average network latency, throughput,

router power and energy per transferred data bit. Area, timing and power of router compo-

nents are post-layout data based on a 65 nm CMOS standard-cell library.

22

Chapter 3

High-Performance On-Chip Networks

with Shared-Queue Routers

In a typical router, each input port has an input buffer for temporarily storing packets in

case that output channel is busy. This buffer can be a single queue as in a wormhole (WH) router or

multiple queues in parallel as in virtual-channel (VC) routers [56]. These buffers, in fact, consume

significant portions of area and power that can be more than 60% of the whole router [87]. Bufferless

routers remove buffers from the router so save much area [55, 70]; however, their performance

becomes poor in case packet injection rates are high. Due to having no buffers, previous router

designs proposed to drop and retransmit packets or to deflect them once network contention occurs

that can consume even higher energy per packet than a router with buffers [72] (Chapter 5 proposes

other approaches for designing bufferless routers which achieves lower energy per transferred packet

than buffered routers).

Another approach is by sharing buffer queues that allows utilizing idle buffers [98] or

emulating an output buffer router in order to obtain higher throughput [99]. Our work differs from

those router designs by allowing input packets at input ports to bypass shared queues so that it

achieves lower zero-load latency. In addition, the proposed router architecture has simple control

circuitry making it dissipate less packet energy than VC routers while achieving higher throughput

by letting queues share workloads when the network load becomes heavy.

The main contributions of this chapter are:

23

• exploring and analyzing shared-queue router architectures that maximize buffer utilization

for boosting network throughput.

• proposing a router architecture which allows input packets to bypass shared queues for reduc-

ing zero-load packet latency.

• evaluating and comparing the proposed router with VC routers in terms of latency, throughput,

power, area and packet energy over both synthetic and embedded application traffic patterns.

This chapter is organized as follows: Section 3.1 provides the motivation of this work.

Section 3.2 presents our router architecture with all its components in details. The experimental

results are shown in Section 3.3 with analysis and comparison against VC routers. Section 3.4

reviews related work and, finally, Section 3.5 summarizes the chapter.

3.1 Motivation

We first review conventional on-chip router architectures with brief evaluation of their

performance, and then drive the motivation of our new router design using shared queues.

3.1.1 Typical Router Architectures

Fig. 3.1(a) shows a typical WH router with four pipeline stages. The figure shows details

of only one input port for simple view. The traveling process of a flit through a WH router is

described as follows:

• At first, when a flit arrives at an input port, it is written to the corresponding buffer queue.

This step is called buffer write (BW) or queue write (QW).

• Assuming without other packets in the front of the queue, the packet starts deciding the output

port for its next router (based on the destination information contained in its head flit) instead

of for the current router (known as lookahead routing computation (LRC) [100]). At the

same time, it arbitrates for its output port at the current router because there may be multiple

packets from different input queues having the same output port. This step is called switch

allocation (SA).

24

(a) (b)

queue

Routing

Comp.

Switch

Allocator

.
.
.

. . .

credits in

. . .

credit out

flit in flit out flit in

Routing

Comp.
Switch

Allocator

VC

Allocator
. . .

credits in

. . .

. . .

credits out

flit out

. . .

. . .

. . .P : P

Xbar

. . .P : P

Xbar

queue

queue

. . .

in port

state

in VC

states

. . .

. . .

out port

states

. . .

LRC

SA
ST LT

LRC

VCA
SA ST LT

out VC

states

. . .

Head flit

ST LTBody or Tail flits SA ST LT

Head flit

Body or Tail flits

QW

QW

QW

QW

Figure 3.1: Typical router architectures and their pipelines: (a) 4-stage wormhole (WH) router;

(b) 5-stage virtual-channel (VC) routers. QW: Queue Write; LRC: Lookahead Route Computation;

VCA: Virtual Channel Allocation; SA: Switch Allocation; ST: Switch Traversal; LT: Output Link

Traversal; (X): a pipeline bubble or stall. P: the number of router ports.

• If it wins the output switch allocation, it will traverse across the crossbar. This step is called

crossbar traversal or switch traversal (ST).

• After that, it then traverses on the output link towards next router. This step is called link

traversal (LT).

Both LRC and SA are done by the head flit of each packet; body and tail flits will follow

the same route that has already been reserved by the head flit, except the tail flit should release the

reserved resources once it leaves the queue.

Although there are different ways to pipeline a router, a typical wormhole router is nor-

mally pipelined into four stages as shown in Fig. 3.1(a) corresponding to four operating steps de-

scribed above [25]. This is similar to how we pipeline a traditional processor into five stages cor-

responding to its five basic operating steps: instruction fetch (IF), instruction decode (ID), execute

(EX), memory access (MEM), and register write back (WB).

In a WH router, if a packet at the head of a queue is blocked (because it is not granted

by the SA or the corresponding input queue of the down stream router is full), all packets behind it

25

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

injection rate (flits/cycle/node)

n
e
tw

o
rk

 l
a
te

n
c
y
 (

c
y
c
le

s
)

WH (16 entries)

VC (2 VCs x 8 entries)

VC−fullXbar (2 VCs x 8 entries)

Figure 3.2: Average packet latency simulated on a 8×8 2D-mesh network over uniform random

traffic pattern

also stall. This head of line blocking problem can be solved by a virtual-channel (VC) router [56] as

shown in Fig. 3.1(b). In this VC router design, an input buffer has multiple queues in parallel, each

queue is called a virtual-channel, that allows packets from different queues to bypass each other to

advance to the crossbar stage instead of being blocked by a packet at the head queue (however, all

queues at one input port can be still blocked if all of them do not win SA or if all corresponding

output VC queues are full).

Because now an input port has multiple VC queues, each packet has to choose a VC of

its next router’s input port before arbitrating for output switch. Granting an output VC for a packet

is given by a virtual-channel allocator (VCA); and this VC allocation is performed in parallel with

the LRC; hence the router now has five stages as shown in Fig. 3.1(b). As a result, although a VC

router achieves higher saturation throughput than a WH router while having the same number of

buffer entries per input port, it also has higher zero-load latency due to deeper pipeline.

Fig. 3.2 shows the latency-throughput curves of a 8×8 2-D mesh network over uniform

random traffic pattern with packet length of 4 flits. As shown in the figure, a VC router with 2

queues per input port (each queue has 8 entries) has 11% throughput gain compared to a WH router

with 16 entries per queue; but its zero-load latency is 36 cycles that is also 20% higher than that of

a WH router (30 cycles).

26

���

��������

��

	

�������

�

������

�
�

�������

���

���

������

���

	

�������

���

��������

��

������

���

Figure 3.3: Power and area costs of circuit components in a VC router with 2 VCs × 8 flits per input

port: (a) power breakdown; (b) area breakdown.

. . .

. . .P : P

Xbar

queue

queue

. . .

. . .

. . .(PxV) : P

Xbar

queue

queue

. . .
. . .

(a) (b)

Figure 3.4: Crossbar designs for a virtual-channel router: (a) P:P crossbar with V buffer queues of

an input port are multiplexed; (b) PV:P crossbar that connects directly to all input buffer queues.

P: the number of router ports; V: the number of queues per input port.

3.1.2 Opportunities for Achieving Higher Throughput

Fig. 3.3 shows area and power breakdowns of a 2×8 VC router synthesized on a 65-nm

CMOS process. As shown, buffer queues occupy 54% area and consume 70% power of the whole

router; while crossbar consumes only 8%. If we use a higher radix crossbar, we could achieve

higher throughput with a cost overhead still small compared to the cost of buffers as will be shown

in Section 3.3.

Fig. 3.4 shows two crossbar designs for VC routers. The first one is for the traditional

VC router where the input queues of each input port are multiplexed before being connected to the

crossbar. The second one allows all input queues to connect directly a full input degree crossbar.

With this full-degree crossbar, after allocated an output VC, a packet from a queue can directly

arbitrate for its output port then would advance to next router if it wins; while with multiplexed-

input crossbar, queues of the same input port have to compete together first before arbitrating for

an output port. Clearly, the probability of winning both arbitration stages is less than winning only

one arbitrator; hence, a VC router with full-crossbar (full-Xbar) achieves higher throughput than a

27

typical VC router given the same number of VCs and buffer entries as also shown in Fig. 3.2.

We also observe that, although the buffers are costly, they are not well utilized. Given an

on-chip communication traffic, not all input queues have packets for processing at the same time.

A few input ports can receive packets all the time while others are often empty. Clearly, we wish

at this situation, idle queues would share their storage capacity with busy queues at other input

ports that would allow more packets to be advanced rather than to be stalled, hence should improve

more throughput. This motivates us to design a router which can maximize the utilization of these

high-cost buffer queues by taking advantage of full-degree crossbars. This router should achieve

the best performance in both cases: when the traffic load becomes heavy, the router allows utilizing

shared buffers reducing packet stall times at input ports so that it can achieve higher throughput than

a full-Xbar VC router; while at low-load packets can bypass shared queues hence has low latency

similar to a wormhole router.

3.2 RoShaQ: Router Architecture with Shared Queues

3.2.1 The Initial Idea

For maximizing queue utilization, input ports of a router can share all queues as depicted

in Fig. 3.5(a). With this architecture, incoming packets from an input port can be written to any

shared queue. However, this architecture has critical drawbacks explained as follows. Because

there is no buffer at input ports, when a packet from a upstream router needs to be forwarded, it

has to send a request to downstream router and wait to receive the grant before sending data. As a

result, the shared queue arbitrator for each router is highly complicated because it must handle many

external requests from multiple shared queues of all neighboring routers. Furthermore, the round-

trip inter-router request/grant delay can take several cycles plus the intra-router pipeline making

zero-load network latency very high [53].

To alleviate this latency, each input port is dedicated one buffer queue and shares all

remaining queues as depicted in Fig. 3.5(b). With this design, since each output port connecting to

an input queue of downstream router, shared queues arbitrate for an output port that is similar to

a wormhole router. Input queues of each router also compete together to get grants to the shared

queues. All request/grant signals are intra-router signals, hence reduces latency and also allocation

28

. . .

queue

queue

queue

. . .

. . .

. . .
. . .

queue

queue

. . .

P : (PxV)

shared

queues

Xbar

(PxV) : P

output

Xbar

queue

queue

queue

. . .

. . .

queue

. . .

queue

. . .

. . .
. . .

shared queues

(a)

(b)

(c)

shared queues

shared queues

input queues

input queues

P : N

shared

queues

Xbar

N : P

output

Xbar

P : N

shared

queues

Xbar

(P+N) : P

output

Xbar

Figure 3.5: Development of our ideas for sharing buffer queues in a router: (a) shares all queues;

(b) each input port has one queue and shares the remaining queues; (c) allows input packets to

bypass shared queues. P: the number of router ports; V: the number of VC queues per input port in

a VC router; N: the number of shared queues.

29

(P+N) : P

output

Xbar

shared queue

. . .

. . .

P : N

shared

queues

Xbar

. . .

. . .

. . .
. . .

Routing

Comp.

in port

state

SQ Rx

state

SQ Tx

state

OPA

out port

states

. . .

SQA

input queue

. . .

. . .

. . .

. . .
credits in

credit out

flit in

flit out

. . .

. . .

. . .

credit

1

P

1

N

1

1

P

N

1

P

Figure 3.6: RoShaQ router microarchitecture. SQA: shared-queue allocator; OPA: output port

allocator; SQ Rx state: shared queue receiving/writing state; SQ Tx state: shared queue transmit-

ting/reading state. P: the number of router ports; N: the number of shared queues.

complexity. With this architecture, however, packets from input queues must be buffered into the

shared queues again before being sent to output ports. This is actually unnecessary in the case when

network load is low that unlikely causes much contention at output channels.

From this observation, we move on one more step by allowing input queues to bypass the

shared queues as shown in Fig. 3.5(c). With this design, a packet from an input queue simultane-

ously arbitrates for both shared queues and an output port; if it wins the output port, it would be

forwarded to the downstream router at the next cycle. Otherwise, that means having congestion at

the corresponding output port, it can be buffered to the shared queues. Intuitively, at low load, the

network would have low latency because packets seem to frequently bypass shared queues. While

at heavy load, shared queues are used to temporarily store packets hence reducing their stall times

at input ports that would improve the network throughput. In the next subsection, we will show in

detail circuit components that realize this router architecture.

3.2.2 RoShaQ Architecture

RoShaQ, a Router architecture with Shared Queues based on the idea of Fig. 3.5(c), is

shown in Fig. 3.6. When an input port receives a packet, it calculates its output port for the next

router (lookahead routing), at the same time it arbitrates for both its decided output port and shared

queues. If it receives a grant from the output port allocators, it will advance to its output port in the

30

next cycle. Otherwise, if it receives a grant to a shared queue, it will be written to that shared queue

at the next cycle. In case that it receives both grants, it will prioritize to advance to the output port.

Shared-queues allocator (SQA) receives requests from all input queues and grants the

permission to their packets for accessing non-full shared queues. Packets from input queues are

allowed to write to a share queue only if: 1) the shared queue is empty; or 2) the shared queue is

containing packets having the same output port as the requesting packet. This shared queue writing

policy guarantees deadlock-free for the network as will be explained in Subsection 3.2.5 below.

The output port allocator (OPA) receives requests from both input queues and shared

queues. Both SQA and OPA grant these requests in round-robin manner to guarantee fairness and

also to avoid starvation and livelock. Input queue, output port, shared-queue states maintain the

status (idle, wait or busy) of all queues and output ports, and incorporate with SQA and OPA to

control the overall operation of the router. Only input queues of RoShaQ have routing computation

logic because packets in the shared queues were written from input queues so they already have

their output port information. RoShaQ has the same I/O interface as a typical router that means they

have the same number of I/O channels with flit-level flow control and credit-based backpressure

management [25].

3.2.3 RoShaQ Datapath Pipeline

After a packet has been written into an input queue in the first cycle, in the second cycle

it simultaneously performs three operations: LRC, OPA and SQA. At low network loads, there is

a high chance the packet will the OPA due to low congestion at its desired output port; hence it is

granted to traverse through the output crossbar and output link towards next router. Therefore, it

incurs four stages including link traversal as depicted in Fig. 3.7(a) that is similar to a WH router

pipeline.

When network loads become heavy, the packet at an input queue may fail to get granted

from OPA, but it can get a grant from SQA and is allowed to traverse the shared-queue crossbar and

write to the granted shared queue in next cycles. After that, it arbitrates for the output port again and

would traverse across the output crossbar and output channel toward the next router at next cycles

if it is granted by the OPA at this time. Thus, in this situation, it incurs seven inter-router stages as

31

(a)

Head flit

Body or Tail flits

LRC

OPA

SQA

OST LT

OST LT

(b)

Head flit

Body or Tail flits

LRC

OPA

SQA

at heavy load case:

SQST OPA OST LT

SQST OST LT

QW

QW

at light load case:

QW SQW

QW SQW

Figure 3.7: RoShaQ pipeline characteristics: (a) 4 stages at light load; (b) 7 stages at heavy

load. QW: Queue Write; LRC: Lookahead Routing Computation; OPA: Output Port Allocation;

SQA: Shared Queue Allocation; OST: Output Switch/Crossbar Traversal; LT: Output Link Traver-

sal; SQST: Shared-Queue Switch/Crossbar Traversal; SQW: Shared-Queue Write; (X): a pipeline

bubble or stall.

shown in Fig. 3.7(b). This larger number of traversing stages, in fact, allows the router to utilize

shared-queues for reducing stall times of packets at input queues, hence improves throughput at

heavy network load.

In both cases, body and tail flits of a packet traverse through the router in the same way

as its head flit, except they do not need to arbitrate for resources (output ports and shared queues)

that were already reserved by the head flit. The tail flit should also release these reserved resources

once it leaves the queue.

3.2.4 Design of Allocators

This subsection describes the design of allocators for VC and RoShaQ routers. Let P and

V be the number of router ports and number of VC queues per port in a VC router, respectively. Its

VCA circuit is shown in Fig. 3.8 that has two stages of arbiters [57]. Each arbiter in the first stage

chooses which output VC for a specific input VC; while an arbiter in the second stage chooses an

input VC among several input VCs that were granted to the same output VC at the first stage. In

total, this VCA consists of 2PV (PV:1) arbiters.

Fig. 3.9 shows the SA circuit designs for a typical VC router and for a VC router with full

32

PV : 1

arbiter

(1)

PV : 1

arbiter

(V)

PV : 1

arbiter

(1)

PV : 1

arbiter

(V)

PV : 1

arbiter

(1)

PV : 1

arbiter

(V)

PV : 1

arbiter

(1)

PV : 1

arbiter

(V)

in port (1)

in port (P)

out port (1)

out port (P)

total of 2PV (PV:1)arbiters

. . .

. . .
. .

. .

. .
. .

. .

. .
. .

. .
. .

. .
. .

. .
. .

. .
. .

. .

Figure 3.8: Output virtual-channel allocator (VCA) in a virtual-channel router. P: the number of

router ports; V: the number of virtual channels per input port.

crossbar. Because input queues in the typical VC router are multiplexed before being connected to

the crossbar, its SA has two stages as shown in Fig. 3.9(a). The first stage decides which input VC

wins the input crossbar port; while the second stage chooses one among these winning input VCs

for output ports. This SA consists of P (V:1) and P (P:1) arbiters. For a full-Xbar VC router, all

input VCs directly arbitrate for output ports; so its SA consists of P (PV:1) arbiters, each for one

output port as depicted in Fig. 3.9(b).

The OPA and SQA of RoShaQ router are shown in Fig. 3.10. The OPA includes P

V : 1

arbiter

(1)

V : 1

arbiter

(P)

P : 1

arbiter

(1)

P : 1

arbiter

(P)

PV : 1

arbiter

(1)

PV : 1

arbiter

(P)

total of P (V:1) and P (P:1) arbiters total of P (PV:1) arbiters

(a) (b)

. .

. .

. .

. .

. .

. .

. .

. .

. . .

. . .

. . .

Figure 3.9: Output switch allocator (SA) in: a) VC router with crossbar inputs multiplexed; b) VC

router with full crossbar. P: the number of router ports; V: the number of virtual channels per input

port.

33

(P+N) : 1

arbiter

(1)

total of P (P+N:1) arbiters

. .

. .

. . .

(P+N) : 1

arbiter

(P)

. .

. .

N : 1

arbiter

(1)

N : 1

arbiter

(P)

P : 1

arbiter

(1)

P : 1

arbiter

(N)

total of P (N:1) and N (P:1) arbiters

. .

. .

. .

. .

. . .

. . .

Ouput Port Allocator: Shared Queue Allocator:

Figure 3.10: Output port allocator (OPA) and shared queue allocator (SQA) structures in a RoShaQ

router. P: the number of router ports; N: the number of shared queues.

(P+N:1) arbiters; each chooses one queue among input queues and shared queues that have the

same output ports, where N is number of shared queues. In order for the total number of buffer

queues to be identical to that of a VC router (PV queues in total), N is equal to P(V − 1) because

each input port has one queue. So, the OPA is exactly the same as the SA of a full-Xbar VC router.

The SQA includes two stages to allocate P input queues to N shared queues; so its circuit is the

same as the SA of a VC router. This SQA is much low cost than a VCA; as a result, OPA and SQA

of RoShaQ consume less area and lower power than VCA and SA of both typical and full-Xbar VC

routers as will be shown in next section.

3.2.5 RoShaQ’s Properties

• A network of RoShaQ routers is deadlock-free. At light loads, packets normally bypass shared

queues, so RoShaQ acts as a wormhole router hence the network is deadlock-free [44]. At

heavy loads, if a packet cannot win the output port, it is allowed to write only to a shared

queue which is empty or contains packets having the same output port. Clearly, in this case

RoShaQ acts as an output-buffered router which was also shown to be deadlock-free [101].

• A network of RoShaQ routers is livelock-free. Because both OPA and SQA use round-robin

arbiters, each packet always has a chance to advance to the next router closer to its destination;

so the network is also free from livelock.

• RoShaQ supports any adaptive routing algorithm. The output port for each packet is only

computed at its input queue, not at shared queues. Therefore, any adaptive routing algorithm

34

Table 3.1: Router configuration used in experiments. Each router has 80 buffer entries in total

Router Name Description

VC2 2 queues/input port, 8 entries/queue

VC2-fullXbar the same as VC2, but using fullXbar

RoShaQ5 1 queue/input port, 5 shared queues, 8 entries/queue

VC4 4 queues/input port, 4 entries/queue

VC4-fullXbar the same as VC4, but using fullXbar

RoShaQ15 1 queue/input port, 15 shared queues, 4 entries/queue

which works for wormhole routers also works for RoShaQ.

• RoShaQ can be used for any network topology. If we hide all design details inside RoShaQ,

we would see RoShaQ only has one buffer queue at each input port similar to a wormhole

router. Therefore, we can change the number of RoShaQ’s I/O ports to make it compatible

with any network topology known in the literature along with an appropriate routing algo-

rithm.

3.3 Experimental Results

3.3.1 Experimental Setup

Table 3.1 describes six router configurations used in our experiments. VC2 and VC4

have 2 and 4 VC queues per input port, respectively. For fair evaluation, each queue of VC2 has

8 flit-entries while each queue of VC4 has 4 flit-entries. VC2-fullXbar and VC4-fullXbar have

the same buffer configurations as VC2 and VC4 except their crossbars are in full-degree (10:5

crossbar for VC2-fullXbar and 20:5 crossbar for VC4-fullXbar). For comparing with VC2 and VC2-

fullXbar where each has total of 10 queues, RoShaQ5 that has 5 shared queues is used. Similarly,

for comparing with VC4 and VC4-fullXbar where each has total of 20 queues, we use RoShaQ15

that has 15 shared queues. All routers have the same 80 flit buffer entries in total.

For evaluating performance of VC, full-Xbar VC and RoShaQ routers, we developed

three cycle-accurate simulators, each for one router model. Experiments are performed over eight

common synthetic traffic patterns, seven real-world multitask applications and three E3S embedded

benchmarks which have large number of tasks.

35

3.3.2 Latency and Throughput

Synthetic Traffic Patterns

We conducted the experiments over eight common synthetic traffic patterns which cover

a wide range of interconnect patterns on 2D mesh networks [25]. For uniform random traffic, each

source processor chooses its destination randomly with uniform distribution in packet-by-packet

basic. For other patterns, destination of each source node is decided based on the location of the

source as follows 1:

• bit-complement: from [x, y] to [x̄, ȳ]

• transpose: from [x, y] to [y, x]

• bit-shuffle: from [x2x1x0, y2y1y0] to [x1x0y2, y1y0x2]

• tornado: from [x, y] to [(x+3)%8, (y+3)%8]

• bit-rotate: from [x2x1x0, y2y1y0] to [x0x2x1, y0y2y1]

• neighbor: destination is randomly chosen among four nearest neighbors of the source on a

probability of 80%, and is randomly among other processors on a probability of 20%.

• regional: destination is randomly chosen among processors with distances to the source of at

most 3 on a probability of 70%, and is randomly among other processors on a probability of

30%.

Performance of each router is evaluated by running simulations of 100,000 cycles with

20,000 warmup cycles on a 8×8 2-D mesh network where each network node consists of a processor

and a router. Processors inject and consume packets into and out off the network, and each packet

length is four 32-bit flits. As mentioned in Subsection 3.2.5, we can employ any routing algorithm

proposed in the literature [43] for routers; however, for comparing the performance purely achieved

by different architectural designs, we use the same XY dimension-ordered routing algorithm for all

routers in this work. Latency of a packet is measured from the time its head flit is generated by the

1Here x, y are values of horizontal and vertical coordination of a node in a 8×8 mesh; x2 x1 x0 and y2y1y0 are binary

representatives of x and y, respectively.

36

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

injection rate (flits/cycle/node)

n
e
tw

o
rk

 l
a
te

n
c
y
 (

c
y
c
le

s
)

VC2

VC2−fullXbar

RoShaQ5

VC4

VC4−fullXbar

RoShaQ15

Figure 3.11: Latency-throughput curves over uniform random traffic

source to the time its tail flit is consumed by the destination. Average network latency is the mean

of latency of all packets in the network.

The average packet latency of networks corresponding to six router configurations over

uniform random traffic is given in Fig. 3.11. As shown, even having the same number of buffer

entries, VC4 has higher saturation throughput than VC2 that is identical with results reported by

Peh et al. [57].2 Increasing the number of crossbar input ports improves throughput significantly.

As shown, VC2-fullXbar achieves saturation throughput even higher than VC4. VC4-fullXbar has

15% saturation throughput higher VC4 (0.39 flits/cycle vs. 0.35 flits/cycle).

RoShaQ5 achieves a saturation throughput of 0.37 flits/cycle which is 3% higher than

VC2-fullXbar. RoShaQ15 achieves 0.40 flits/cycle throughput that is 3% higher VC4-fullXbar and

14% higher than VC4. More importantly, both RoShaQ5 and RoShaQ15 have zero-load latency

of 30 cycles similar to a WH router that is 17% lower than all VC routers with and without a full-

degree crossbar (36 cycles). From these results, for simplicity, from now on we only provide the

comparison results among RoShaQ15, VC4 and VC4-fullXbar in the rest of this chapter. Compari-

son among RoShaQ5, VC2 and VC2-fullXbar gives a similar conclusion.

We run simulations for all eight synthetic traffic patterns; zero-load latency and through-

put of routers are listed in Table 3.2. As shown, RoShaQ outperforms both VC routers in seven

traffic patterns, except in transpose pattern. For transpose traffic, routers on the same row send

2Saturation throughput is defined as the injection rate at which network latency reaches about three times of the

zero-load latency [59]. In this work, the saturation throughput is assumed when network latency is 100 cycles.

37

Table 3.2: Zero-load latency and saturation throughput of routers over eight different synthetic

traffic patterns

Zero-Load Latency (cycles) Sat. Throughput (flits/cycle/node)

Traffic Patterns VC4 VC4-fullXbar RoShaQ15 VC4 VC4-fullXbar RoShaQ15

random 36.01 36.01 29.83 0.35 0.39 0.40

bit-complement 49.06 49.06 40.27 0.18 0.20 0.21

transpose 39.71 39.71 32.73 0.17 0.17 0.17

bit-shuffle 30.01 30.01 24.97 0.21 0.22 0.23

tornado 46.85 46.85 38.53 0.22 0.26 0.27

bit-rotate 30.04 30.04 25.01 0.20 0.23 0.24

neighbor 14.30 14.30 12.38 0.75 0.80 0.83

regional 22.68 22.68 19.08 0.60 0.69 0.76

Average 33.58 33.58 27.84 0.33 0.37 0.39

packets to the same output direction; therefore, at saturation, throughput is limited by the output

channel of the last router on that row. So all routers have the same saturation throughput of 0.17

flits/cycle.

Especially, for neighbor and regional patterns, because destination of each packet is quite

close to its source, the network incurs less congestion. Therefore, packets in RoShaQ routers often

bypass shared queues to achieve both lower latency and higher throughput than both VC routers.

On average over all eight traffic patterns, RoShaQ is 18% and 5% higher throughput than VC and

VC-fullXbar routers, respectively with 17% lower zero-load latency.

Real Application Communication Traffic

Many DSP and embedded applications can be represented by a communication task graph

where each task can be mapped onto one or multiple processing units (processors, accelerators or

memory modules) [95]. Fig. 3.12(a) depicts the task graph of a Video Object Plan Decoder (VOPD)

application [102] which also shows the inter-task communication bandwidth requirements.

For generating the experimental traffic of this application, we adopted the method pro-

posed by Hu et al. [103] and Lan et al. [60]. In this method, we transform the required bandwidth

on each inter-task connection into the injection rate of the corresponding sending task. A task which

requires large sending bandwidth also has large injection rate, and vice versa. Let bwi and bw j be

the required bandwidth of tasks Ti and T j to other tasks in the communication graph, then injection

38

T10

T0

T1

T2

T3

T4

T5

T6

T7

T8

T9

T11
T14

T12

T13

T15

70

16

362

362

362

49

357
353

300

313

313

50094

16

16

16

16

157

16

16

16

27

T10

T0

T1

T2

T3

T4

T5

T6

T7

T8

T9

T11
T14

T12

T13

T15

0.070

0.016

0.362

0.362

0.362

0.049

0.357
0.353

0.300

0.313

0.313

0.5000.094

0.016

0.016

0.016

0.016

0.157

0.016

0.016

0.016

0.027

(a) (b)

j

i

j

i

bw

bw

fir

fir
=

Figure 3.12: Communication graph of a video object plan decoder application (VOPD) and the

corresponding injection rate of each processor used in our simulation: (a) required inter-task band-

widths in Mbps; (b) the corresponding injection rates of processors in flits/cycle.

Table 3.3: Seven embedded applications and three E3S benchmarks used in our experiments

Applications No. Tasks Net. Size

Video object plan decoder (vopd) [102] 16 4×4

Multimedia system (mms) [104] 25 5×5

Multi-window display (mwd) [105] 12 4×3

WiFi baseband receiver (wifirx) [94] 25 5×5

H.264 CAVLC encoder (cavlc) [106] 16 4×4

MPEG4 (mpeg4 [107] 12 4×3

Video conference encoder (vce) [108] 25 5×5

E3S auto-indust (autoindust) [109] 24 6×4

E3S consumer (consumer) [109] 12 4×3

E3S telecom (telecom) [109] 30 6×5

rates of tasks Ti and T j on the corresponding links follow the equation
f iri

f ir j

=
bwi

bw j

. Therefore, if

given an injection rate of any task, we can easily calculate injection rates for all other tasks on all

links in the graph.

Fig. 3.12(b) shows an example for setting the injection rates of tasks which are corre-

sponding to the communication graph of VOPD application given in figure (a). In this example, if

we choose injection rate for task T0 to task T1 is 0.07 flits/cycle, then injection rate for task T1 to

task T2 is 0.07 × 362 / 70 = 0.362 flits/cycle. Similarly, we can drive injection rates for all tasks in

the application graph as shown in the figure.

In this work, we use communication graphs of seven real-world applications and three

E3S embedded benchmarks [109] which have large numbers of tasks for our experiments. Ap-

39

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

vo
pd

m
w
d

m
m

s
vc

e

w
ifi
rx

ca
vl
c

m
pe

g4

au
to

in
du

st

co
ns

um
er

te
le
co

m

av
er

ag
e

n
o

rm
a
li
z
e
d

 l
a
te

n
c
y

VC4 VC4-fullXbar RoShaQ15

Figure 3.13: Normalized latency of real applications

plication names and their number of tasks are shown in Table 3.3. Depending on the number of

application tasks, we decide the network size correspondingly. For example, an application with 16

tasks is mapped on a 4×4 network, an application with 24 tasks is mapped on a 6×4 network, and

so on which are also shown in Table 3.3. After network size for each application has been decided,

each task is randomly mapped to one processor in the network.

For evaluation of these embedded applications, we fix the injection rates of all tasks,

then application running latency is measured after a total of one million packets are successfully

transferred. For each application, we assume that the most busy task spends 50% times for execution

and 50% times for communication which means it aggressively executes one cycle and then sends

one output to the downstream task in next cycle, repeatably. With this assumption, the most busy

task in each application has an injection rate of 0.5; the injection rates of other tasks are computed

according to the their required bandwidth given in the graph using the method described above.

For clear comparison, we normalize the latency of each application running on different

routers to the latency when running on the typical VC router which are shown in Fig. 3.13. As

shown, RoShaQ has lower latency than both VC routers in all ten applications. On average, RoShaQ

is 26% and 12% lower latency than VC and VC-fullXbar routers, respectively.

40

Power (mW)

0

10

20

30

40

50

60

70

VC
4

VC
4-

fu
llX

ba
r

R
oS

ha
Q
15

P
o
w

e
r

(m
W

)

Buffers Crossbar

Allocators Others

(a)

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

VC
4

VC
4-

fu
llX

ba
r

R
oS

ha
Q
15

A
re

a
 (

m
m

^2
)

(b)

Figure 3.14: Synthesis results: (a) power; (b) area.

Table 3.4: Router power at 1.2V, 1GHz and area comparison

VC4 VC4- vs. RoShaQ15 vs. vs. VC4-

fullXbar VC4 VC4 fullXbar

Power (mW) 56.08 60.05 + 7% 58.26 + 4% -3%

Area (mm2) 0.078 0.093 +19% 0.091 +16% -3%

3.3.3 Power, Area and Energy

Three router models (VC4, VC4-fullXbar and RoShaQ15) in Verilog RTL are synthe-

sized targeting a 65 nm low-power CMOS standard-cell process using Synopsis Design Compiler.

Buffer queues are built from flip-flop registers; while each crossbar is a set of multiple multiplexers.

Environmental parameters for the compiler are set at 1.2 V, 25oC. We let the synthesis tool do all

optimization steps and automatically pick standard cells in the library in order for all routers to meet

1 GHz clock frequency in the worst case.

Fig. 3.14 shows the synthesis power and area of three routers. “Other” circuits in the

figure include state of queues, routing computation and credit calculating circuitry. For taking into

account the pipelined architecture of routers, the reported power and area of all components are also

included their output pipeline registers. As seen in the figure, in the typical router VC4, buffers are

expensive that occupy 54% area and consume 70% power of the whole router; while its crossbar

only occupies 8%. VC4-fullXbar increases number of crossbar input ports that makes its router 7%

larger area and 19% larger power than VC4 as listed in Table 3.4.

Because RoShaQ15 has two crossbars, its crossbars are 56% larger and consume 35%

41

0

0.2

0.4

0.6

0.8

1

1.2

ra
nd

om

tra
ns

po
se

co
m

pl
em

en
t

to
rn

ad
o

sh
uf

fle

ro
ta

te

ne
ig
hb

or

re
gi
on

al

Ave
ra

ge

VC4 VC4-fullXbar RoShaQ15

n
o

rm
a
li
z
e
d

 e
n

e
rg

y
 p

e
r

p
a
c
k
e
t

Figure 3.15: Normalized energy per packet over synthetic traffic patterns

higher power than the VC4-fullXbar’s crossbar. However, due to the simplicity of its allocators’

circuits and fewer routing computation blocks (5 for 5 input queues compared to 20 for 20 virtual-

channels in VC routers), the total router area and power of RoShaQ15 is 3% less than VC4-fullXbar

router. Compared to VC4, RoShaQ is 4% and 16% larger power and area.

Another metric to compare among router designs is the energy that routers in the network

dissipate for transferring data packets over a traffic pattern [37]. As is well known, a circuit with

low activity would consume low power even it has high active power. Let Pi be synthesis power of

component i (queues, crossbar, routing computation, arbiters, states, credit calculation) of a router;

let nri be the number of cycles in which a router r is active in the whole simulation time, then the

total energy router r consumes is:

Er =

∑

all i

nriPiTclk (3.1)

where Tclk is the clock period.

Therefore, the average packet energy spent on each router in the network is given by:

Ep =
1

NpNr

∑

all r

Er =
Tclk

NpNr

∑

all r

∑

all i

nriPi (3.2)

where Nr is the number of routers in the network and Np total received packets in the whole simu-

lation time.

For each synthetic traffic pattern, we choose the injection rates at which networks have

the same packet latency of 100 cycles that is where the networks start reaching saturation. For

42

0

0.2

0.4

0.6

0.8

1

1.2

vo
pd

m
w
d

m
m

s
vc

e

w
ifi
rx

ca
vl
c

m
pe

g4

au
to

in
du

st

co
ns

um
er

te
le
co

m

av
er

ag
e

n
o

rm
a
li
z
e
d

 e
n

e
rg

y
 p

e
r

p
a
c
k
e
t VC4 VC4-fullXbar RoShaQ15

Figure 3.16: Normalized energy per packet over real application traffic patterns

each simulation, we run 100,000 cycles, then router activity information and the number of received

packets are collected after 20,000 warmup cycles. Applied these statistic information into Eqn. (4.3)

with Tclk of 1 ns (1 GHz clock rate) and Nr of 64 (8×8 network), the normalized energy per packet

of each router over eight synthetic traffic patterns is given in Fig. 3.15.

As shown in the figure, although VC-fullXbar has higher throughput than VC router,

it consumes more energy over three traffic patterns transpose, bit-shuffle and neighbor. This is

because it has higher active power than VC routers as given in Table 3.4. However, averaged over

all eight traffic patterns, VC-fullXbar router is 2% lower energy per packet than VC router. RoShaQ

has lower energy than VC router over seven traffic patterns, except transpose because they have

the same throughput over this pattern but RoShaQ has higher active power. RoShaQ consumes

lower energy than VC-fullXbar routers over all traffic patterns. Averaging from all eight traffic

patterns, RoShaQ15 consumes 9% and 7% lower energy per packet than VC4 and VC4-fullXbar,

respectively.

For each real application, we set the injection rate for the task with largest required band-

width to 0.5 flits/cycle, and then drive the injection rates for other tasks using the method presented

in Subsection 3.3.2. Statistic activity information of each router and the total simulation cycles are

collected after one million packets are received. Again, these information are applied into Eqn. (4.3)

for estimating packet energy of each router.

Fig. 3.16 shows the normalized energy per packet each router consumes over ten real

43

applications. As shown, VC-fullXbar has higher energy than VC router over five applications vce,

cavlc, autoindust, consumer and telecom; while RoShaQ consumes lower energy than both VC and

VC-fullXbar routers over all applications. Averaged over all ten applications, RoShaQ is 23% and

14% lower energy per packet than VC and VC-fullXbar routers, respectively.

3.4 Related Work

Peh et al. and Mullins et al. proposed speculative techniques for VC routers allowing a

packet to simultaneously arbitrate for both VCA and SA giving a higher priority for non-speculative

packets to win SA; therefore reducing zero-load latency in which the probability of failed specula-

tion is small [57,58]. This low latency, however, comes with the high complexity of SA circuitry and

also wastes more power each time the speculation fails. A packet must stall if even it wins SA but

fails VCA, and then has to redo both arbitration at next cycle. Reversely, RoShaQ is non-speculative

architecture. An incoming packet in RoShaQ only stalls if it fails both OPA and SQA; therefore it

has high chance to advance either to be written to a shared queue (if it wins SQA) or be sent to

output port (if it wins OPA) instead of stalling at an input port, and also reducing re-arbitration

times.

Increasing crossbar input ports, that allows directly connecting to all virtual-channels of

an input port instead of muxing them, improves much network throughput for VC routers. Using

a large-radix crossbar is feasible and low-cost than adding more buffers as the results reported by

DeMicheli et al. [110]. Recently, Passas et al. designed a 128×128 crossbar allowing connecting

128 tiles while occupying only 6% of their total area [111]. This fact encourages us to build RoShaQ

that has two crossbars while sharing cost-expensive buffer queues. The additional costs of crossbars

are compensated by the simplicity of allocators and reducing the number of routing computation

circuits that make our router better VC routers in many-fold: throughput, latency and packet energy.

IBM Colony router has a shared central buffer which is built from a time-multiplexed

multi-bank SRAM array with wide word-width in order that it can be simultaneously written/read

multiple flits (defined as a chunk) by input/output ports [112]. As a result, the central buffer is high

cost and not identical with input queue design. RoShaQ has all buffer queues (both input and share

queues) to be the same structure that allows reusing the existing generic simple queues reducing

44

practical design and test costs.

Latif et al. implemented a router with input ports sharing all queues [98] that is similar

to the architecture illustrated in Fig. 3.5(a). Its implementation on FPGA shows more power and

area-efficient than typical input VC routers. A similar approach is proposed by Tran et al. [53];

due to the high complexity of its allocators and also inter-router round-trip request/grant signaling,

however, its performance is actually poorer than a typical router.

Ramanujam et al. recently proposed a router architecture with shared-queues named DSB

which emulates an output-buffered router [99]. This router is similar to one illustrated in Fig. 3.5(b)

that has higher zero-load latency than a VC router. This is because a packet must travel through

both two crossbars and be buffered in both input and shared queues at each router even without

network congestion. Besides that, the timestamp-based flow control of DSB router design is highly

complicated and hence consumes much larger area and power than a typical VC router (that are

35% and 58%, respectively). RoShaQ allows input packets to bypass shared-queues hence achieves

lower zero-load latency compared to VC routers. RoShaQ also achieves much higher saturation

throughput than VC routers, with only small area and power overheads while consuming lower

average energy per packet.

Nicopoulos et al. proposed ViChar, a router architecture which allows packets to share

flit slots inside buffer queue so that can achieve higher throughput [113]. Our work manages buffers

at coarser grain that is at queue-level rather than at flit-level, hence allows reusing existing generic

queue design which makes buffer and router design much simpler and straightforward. ViChar’s

idea, however, is orthogonal with our work and can be applied to RoShaQ forming a router with

fined-grain shared buffers which could improve more network performance.

3.5 Summary

We have presented RoShaQ, a novel router architecture which allows sharing multiple

buffer queues for improving network throughput. Input packets also can bypass shared queues to

achieve low latency in the case that the network load is low. Compared to a typical VC router, while

having the same buffer space, over synthetic traffic patterns it has 17% lower zero-load latency and

18% higher saturation throughput on average with only 4% higher power and 16% larger area. It is

45

also 5% higher throughput than a full-crossbar VC router with 3% lower power and 3% less area.

While targeting the same average packet latency of 100 cycles where all routers start saturating,

RoShaQ has 9% and 7% lower energy dissipated per packet than typical VC and full-crossbar VC

routers, respectively.

We have also presented a method for evaluating and comparing performance and energy-

efficiency of routers over real multi-task embedded applications. Over these applications, RoShaQ

is 26% and 12% lower latency than typical VC and full-crossbar VC routers, respectively, while

targeting the same inter-task communication bandwidth requirements. In term of energy, RoShaQ

consumes 23% and 14% lower energy per packet than typical VC and full-crossbar VC routers,

respectively.

46

Chapter 4

Low-Cost Router Designs with

Guaranteed In-Order Packet Delivery

State-of-the art routers mainly target high network performance but suffer from high costs

in terms of area, power and dissipated energy. This is because these designs are highly complex

and use non-trivial techniques for boosting the performance such as express virtual-channel [59],

speculative pipelining [57,58], shared-buffers [88,99,113]. Furthermore, these routers only attempt

to route packets as fast as possible while do not care about the arrival order of these packets. As

a result, packets are normally delivered to their destination out-of-order; therefore we need to add

extra buffers at the receiving processors for reordering these data packets before they are able to be

consumed.

Murali et al. pointed out that network congestion causing out-of-order packet arrival is

traffic-dependent and is unpredictable at run-time hence requires very large reordering buffers in or-

der for having enough space to store all out-of-order packets. Consequently, these additional buffers

are highly complex and expensive in both area and energy consumption which are comparable to

the costs of routers themselves [114].

In this work, we target achieving low area and energy costs for routers rather than high

performance. However, we show that our bufferless routers achieve better than traditional buffered

routers in performance per cost metrics in terms of both achievable throughput per area and dissi-

pated energy per bit. All routers guarantee to deliver packets in-order, so no additional reordering

47

buffer is needed, hence achieve the most low design costs in general. The main contributions of this

work are:

• exploring low-cost bufferless on-chip routers operating with either circuit-switching or packet-

switching technique.

• proposing control mechanisms guaranteeing in-order packet delivery for bufferless routers for

adaptive routing policies.

• presenting the method for evaluating and comparing router designs in terms of latency, through-

put, area, power and energy using cycle-accurate simulation incorporating with the post-

layout data of router’s components.

The rest of this chapter is organized as follows: Section 4.1 provides an overview of con-

ventional wormhole packet-switched (PS) routers with a brief performance and cost analysis which

is the motivation for our low-cost bufferless router designs. Section 4.2 describes the proposed

bufferless packet-switched (PS) router architectures and presents techniques for guaranteeing in-

order packet delivery for adaptive routing strategies. The proposed bufferless circuit-switched (CS)

routers and their performance analysis are given in Section 4.3. Experimental results on router’s

latency and throughout are shown in Section 4.4 while the router’s costs in terms of area, power

and energy consumption are presented in Section 4.5. This section also gives some insights on the

trade-offs between performance and cost of router designs. Section 5.4 reviews related work and,

finally, Section 5.5 concludes the chapter.

4.1 Conventional Wormhole Router Architecture and Cost Analysis

4.1.1 Wormhole Router Architecture

Fig. 4.1 shows a typical WH router with three basic pipeline stages. The figure only

shows details of one input port for simple view. At first, when a packet flit arrives at an input port,

it is written to the corresponding buffer queue (BW). In the second cycle, assuming without other

packets in the front of the queue, the head flit starts deciding the output port for its next router (based

on the destination information contained in its head flit) instead of for the current router (known as

48

buffer

Routing

Comp.

Switch

Arbiters

.
.
.

. . .

credits in

. . .

credit out

flit in flit out

. . .

. . .
P x P

Crossbar

in port

state

out port

states

. . .

Figure 4.1: Wormhole router architecture. P: the number of router ports.

LRC

SA

ST +

LT
Head flit

ST +

LT
Body flit 1

BW

BW

ST +

LT
BWBody flit 2

Figure 4.2: Pipeline traversal of flits inside a wormhole router. BW: Buffer Write; LRC: Lookahead

Routing Computation; SA: Switch Arbitration; ST: Switch/Crossbar Traversal; LT: Link Traversal.

lookahead routing computation (LRC) [100]). At the same time, it arbitrates for its output port at

the current router because there may be multiple packets from different input queues having the

same output port. If it wins the output switch allocation (SA), it will traverse across the crossbar

(ST) and the output link (LT) toward the downstream router in the next cycle.

4.1.2 Performance Analysis and In-Order Packet Delivery

Both LRC and SA are done by the head flit of each packet; body and tail flits will follow

the same route that has already been reserved by the head flit, except the tail flit should release the

reserved resources once it leaves the queue. As a result, each flit would incur three delay cycles

per router as shown in Fig. 4.2. Therefore, the minimum latency for a packet of L flits to arrive the

destination at the distance of N is 3N + L−1 cycles. Of course, packet latency would increase when

the network load becomes heavy causing network congestion which makes packets wait longer at

intermediate routers before reaching their destinations.

For guaranteeing in-order packet delivery, XY dimension-ordered routing policy is used

49

(a) (b)

Figure 4.3: Area and power consumption of wormhole routers: a) area breakdown; b) power

breakdown.

for wormhole router. With XY routing, packets from a source would travel on the same path if they

go to the same destination. Because each input buffer of a wormhole router acts as a FIFO queue,

first-in first-out without bypassing, the packet sent first will arrive destination first. If it stalls at an

intermediate router due to network congestion, it would block all packets behind it, no bypassing is

allowed, hence in-order packet delivery is preserved.

4.1.3 Area and Power Costs

Increasing router buffer depth is a simple and straightforward method for improving net-

work performance [25], however, also dramatically increases router area and power costs. Fig. 4.3

shows the post-layout area and average power consumption of wormhole routers based on a 65-nm

CMOS standard-cell library over uniform random traffic at the same injection rate of 0.30 flits/-

cycle/node. The method for router area and power estimation will be presented in details in Sec-

tion 4.5. In this figure, we compare the costs of routers with different buffer depths varying from 2

flits to 16 flits per input buffer queue.1 As shown in the figure, most area and power of routers are

spent on buffer which increase from 31.4% and 30.1% in the router with 2 flits per buffer to 78.2%

and 66.5% in the router with 16 flits per buffer, respectively.

As also shown, area and power of control circuits (routing logic, arbiters, credit counters)

1Buffer depth in a power of 2 is commonly used due to the simplicity in design of buffer’s control circuits which

contains binary counters, pointer decoders, full/empty logic circuits.

50

in_flit

in port

state

Routing

Comp.

P x P

Crossbar

Switch

Allocator

. . .

in_forward_en

in_valid

out_forward_en

out port

state

out_valid

out_flit

.
.

.

.
.

.

. . .

. . .

out

ready?

E

Figure 4.4: The proposed bufferless packet-switched router that utilizes pipeline registers for storing

data flits at input ports. P: the number of router ports.

are quite small compared to other circuitry on the router datapath; therefore, cost efficiency gain

on the effort for optimizing these control circuits would be modest. Looking at the router datapath

in Fig. 4.1, clearly, crossbar and inter-router links are imperative parts of every router; therefore

any change on these parts for a router could also applied for other routers; so we do not focus

on their optimization in this work. One obvious thing allowing us to reduce the router’s cost is by

totally removing buffers out of the router which drives the key ideas for our bufferless router designs

presented in this chapter.

Removing buffers also eliminates the buffer write stage in the datapath of traditional

wormhole routers. This, in fact, immediately leads to two benefits: lower overall router area and

power costs, and reducing the latency cycles each flit spends on the router. Without buffers, as a

drawback, packets would incur more stalls when network load increases hence reduces the network

performance. However, we show that our bufferless routers achieve higher performance per unit cost

compared to buffered wormhole routers in the terms of both throughput per area and the amount of

transferred bits per unit energy.

51

4.2 Bufferless Packet-Switched Routers Providing In-Order Packet

Delivery

4.2.1 Bufferless Router Architecture

Instead of using buffers, in our bufferless routers, we utilize the existing pipeline register

to keep only at most one flit at each input port at a time as shown in Fig. 4.4. Input flit registers are

D-type enable-input flip-flops which are normally available in the standard cell libraries.2 For each

input port, a backward flow control signal is sent back to the upstream router to avoid overwriting

at its input register. At each clock raising edge, input flit register at each input port catches a new

flit from in flit bits if the corresponding in valid is high (otherwise, its old flit value is maintained).

When the head flit of a packet is available at an input register, the corresponding lookahead routing

computation logic (LRC) computes its output for the next router; at the same time it accesses the

switch allocator (SA) to query whether it is allowed to traverse through the crossbar (ST) and the

output link (LT) toward next router.

Once its SA request is granted, the corresponding flow control signal in forward en is

asserted to notice its upstream router that it is ready to accept a new flit. Otherwise, in forward en

is deasserted. Each input port or output port of the router has a finite state machine to keep trace its

states (IDLE, WAIT or BUSY). The head flit of a packet will set states of these ports and setup the

crossbar once it is granted, then body and tail flits will inherit these reserved resources for traversing

across the crossbar and the output link toward next router.

Once the tail flit is sent, it also resets the states of its input and output port so that they

are ready for serving new packets. Comparing with the wormhole router design in Fig. 4.1, our

bufferless router is almost similar, except of course the bufferless router does not have input buffers

and credit counters hence no credit exchange is needed between routers for flow controlling. Instead,

a single bit in forward en is used per each input port for the fine-grained flow control as explained

above. With this simple control flow method, we do not need to drop or deflect packet flits, thus the

network is lossless and allows realizing simple techniques for guaranteeing in-order packet delivery

as will be presented in next subsections.

2If the D-type enable-input flip-flop cell is not available in the library, it can be easily built from a standard D flip-flop

and a 2-input MUX.

52

Cycle

1

First Router Second Router

Does switch arbitration for the head flit Waits for the head flit

The head flit traverses the crossbar & link Waits for the head flit

The output port becomes not ready Receives the head flit, performs switch arbitration

The output port is still not ready
Sends a forward enable signal back to the 1

st
 router;

the head flit traverses the crossbar & output link

to the 3
rd

 router

Receives the forward enable signal;

the output port is now ready;

body flit 1 traverses the crossbar & link

Waits for body flit 1

The output port becomes not ready
Receives and forwards body flit 1 to the crossbar;

sends a forward enable signal back to the 1
st
 router

2

3

4

5

6

7

. . .

. . .

Receives the forward enable signal;

body flit 2 traverses the crossbar & link
Waits for body flit 2

8

Figure 4.5: Illustration of the activities of two nearest neighboring routers while forwarding a packet

4.2.2 Network Performance Analysis

Fig. 4.5 illustrates the brief activity of a router and its nearest downstream router while

transferring flits of a packet. At the first cycle, the head flit at an input port arbitrates for its desired

output port. If it wins the arbitration, it will traverse the crossbar and output link to the second

router at cycle 2. At cycle 3, the second router receives the head flit and arbitrates for the output

port toward the third router, while the first router marks its corresponding output port (which is

connected to router 2) to be not ready. Assuming without network congestion, the head flit at router

2 wins the switch arbitration, so it is granted to traverse the crossbar and output link toward router

3 in cycle 4; at the same time, router 2 sends a forward enable signal back to router 1.

At cycle 5, router 1 receives the forward enable signal, it immediately sends the first body

to router 2 without arbitrating for the switch again (the switch was already setup by the head flit).

At cycle 6, router 2 receives the first body flit and forwards it to router 3 and also sends a forward

enable signal back to router 1. At this cycle, the corresponding output port of router 1 is marked as

not ready. At cycle 7, router 1 receives the forward enable signal, it sends the second body flit. The

transferring activity described above repeats until router 1 completes sending the tail flit and resets

all its states, so is ready for transferring another packet if any.

Pipeline traversal of each flits in a bufferless router is depicted in Fig. 4.6. Head flit takes

two cycles to travel through a router, while each body or tail flit only needs one cycle. However, due

to round-trip flow control between two nearest neighboring routers as described above, the first body

53

LRC

SA

ST +

LT
Head flit

ST +

LT
Body flit 1

Body flit 2
ST +

LT

Figure 4.6: Pipeline traversal of each data flits inside a bufferless router

flit stalls two cycles while other body or tail flit needs to stall one cycle before being sent. Therefore,

the minimum latency for a packet of L flits to arrive its destination processor at a distance of N is

2N +3+2(L−2) = 2N +2L−1 cycles. Of course, the packet latency would increase when network

incurs congestion at high load because the head flit must wait longer to get granted by the switch

arbiters at intermediate routers.

4.2.3 In-order Packet Delivery with Deterministic Routing

The first and simplest method for guaranteeing in-order packet delivery in our bufferless

router is utilizing deterministic routing policy. Deterministic XY routing ensures all packets to

traverse on the same route for each source-destination pair. In addition, no flits is allowed to drop,

therefore keep all packets to arrive at destinations in order.

As shown by Dally et al. and Glass et al., over non-uniform traffic patterns, adaptive

routing policies could achieve more network throughput than deterministic routing [46, 56]. This is

because adaptive routing allows a packet to choose other output ports toward its destination when

its current desired output port is congested. However, adaptive routing does not guarantee in-order

packet delivery because packets from a source can travel on different paths to the same destination;

hence a packet sent earlier may get congested on a path and arrives at the destination after other

packets sent later. Next two subsections, we presents two techniques which guarantee in-order

packet delivery for bufferless routers utilizing adaptive routing policies.

4.2.4 Adaptive Routing with ACK Controlling

Instead of letting processors arbitrarily send packets to destinations, we force after sending

a packet the source processor must wait until receiving an acknowledge signal from the destination

before sending another packet. This procedure guarantees all packets to arrive their destinations in

54

S

D

0

0

1

2

3

1 2 3 4 5

X

Y

S Source Router

D Destination Router

Intermediate Router

Figure 4.7: An example of packet length aware adaptive routing with guaranteed in-order delivery in

bufferless routers. Packets with length of 5 flits sent from source node (0,3) to destination node (5,0)

are allowed to adaptively route starting from node (3,3).

the same order as they were sent. This fact is supported by the following proposition:

Proposition 1 - Given a deadlock-free adaptive routing algorithm, the network of buffer-

less routers with ACK controlling procedure is also deadlock-free and guarantees delivering packets

in-order.

Proof - ACK flits can be considered as data packets with 1-flit length. Because these

1-flit ACK packets use the same routing policy as data packets, so the network is deadlock free.

Because the ACK controlling technique does not allow a destination to send more than one packet

to the same destination without receiving an ACK flit, so packets are guaranteed to arrive at their

destinations in the same order as sent by the sources �

Although this technique ensures sending and receiving packets in-order, it unfortunately

reduces network performance. Even at low network load packets likely travel on the same path

for each pair of source and destination due to without congestion thus could arrive the destination

in-order; but we force the source to wait for ACK flit for each packet therefore reducing sending

rates and hence network throughput. Moreover, sending ACK signals also consumes extra energy

as will be shown in our experiments in Section 4.5.

4.2.5 Adaptive Routing with Packet Length Awareness (PLA)

We propose here another technique which achieves higher network performance than the

ACK controlling method for bufferless routers with adaptive routing. Observes that, because buffer-

less router has only one register at each input port, so it holds at most one flit at the time. Therefore,

a packet with length of L flits can spread over at least L routers. This observation leads to the

following conclusion:

55

Proposition 2 - A packet with length of L flits can be adaptively routed at a router if the

distance from this router to the packet’s destination is less than or equal to L.

Proof - A packet with length of L flits could spread over at least L routers; therefore, when

its tail flit has left the router, its head flit already reached the destination, hence ensuring its arrival

before all other packets sent after it by the same router �

From this proposition, our packet-length-aware (PLA) adaptive routing policy for guaran-

teeing in-order packet delivery in the network of bufferless routers is described as follows: for each

router, if its distance to the packet’s destination is greater than L, it uses dimension-ordered routing;

else, it uses adaptive routing.

An example of PLA adaptive routing is shown in Fig. 4.7. In this example, packets with

length of 5 flits are sent from node (0,3) to node (5,0). On routers at locations (0,3), (1,3) and

(2,3) packets are routed with XY dimension-ordered policy. Starting from node (3,3), packets are

adaptively routed. In the figure, for simplicity, we shows only 4 paths for packets to travel from (3,3)

to (3,5). Depending on the used adaptive routing algorithm, more paths are possible to route packets

from node (3,3) to the destination. With this routing policy, all packets sent from node (0,3) are be

ensured to arrive node (5,0) in-order because the XY routing from (0,3) to (2,3) forces packets to

travel in-order to node (3,3), and the adaptive routing from (3,3) to (5,0) guarantees packets arrives

their destination in-order as claimed by Proposition 2.

4.3 Bufferless Circuit-Switched Routers

4.3.1 Architecture

As shown in Fig. 4.6, due to the round-trip flow-control mechanism for avoiding overwrite

at input registers, bufferless packet-switched network can only transfer at most one flit per two

cycles even without network congestion. We propose applying the circuit-switched concept to the

bufferless router so that it can transfer one flit per cycle after the connection from the source and

destination has been setup. Fig. 4.8 shows our proposed bufferless circuit-switched router which

is modified from the bufferless packet-switched router shown in Section 4.2. As shown, there is

a small difference between two routers is that the bufferless circuit-switched router removes flow-

control signal forward en between two nearest neighboring routers and replaces it by setup done

56

in_flit

in port

state

Routing

Comp.

P x P

Crossbar

Switch

Allocator

. . .

in_valid

out port

state

out_valid

out_flit

.
.

.

.
.

.

. . .

. . .

E

out_setup_done

in_setup_done

0

. . .

. . .

Figure 4.8: The proposed bufferless circuit-switched router architecture. P: the number of router

ports.

signal for end-to-end flow controlling between the source and the destination.

In this architecture, instead of sending the whole packet as in packet-switched routers,

the source processor only sends the head flit of packet first and waits until the in setup done signal

is asserted before sending the remaining flits of the packet. When a router receives a head flit, it

performs both look-ahead routing (LRC) and switch arbitration (SA) for this head flit in parallel.

Assuming this head flit wins SA, the crossbar is setup and the head flit will traverse the crossbar and

output link toward next router in the next cycle. At the same, the states of corresponding input port

and output port are set to reserve the path for the packet associated with this head flit.3 The router

also setups the multiplexer for connecting setup done signals between the input port and output port

which was reserved by the head flit. All setup done signals are initialized at low.

When the head flit reaches its destination, the destination processor turns on it setup done

signal and this signal propagates back to the source processor. When the source processor notices

this setup assertion it sends all flits of the packet, one per cycle, to the destination on the path was

setup by the head flit. Each time the tail flit leaves a router, it also releases the resources reserved

by the head flit (crossbar, input and output states, and setup done mux) hence the router is ready for

other packets.

Our proposed design achieves low cost by reusing the same router crossbar and links

3Head flits from other input ports (if any) which want to go to the same output port must stall until the reservation is

reset, so preventing the flits from different packets interleaving together.

57

LRC

SA

ST +

LT
Head flit

.
.

.

ST +

LT

ST +

LT

Body flit 1

Body flit 2

Wait until the setup_done signal is asserted

.
.
.

Figure 4.9: Pipeline traversal of flits inside a circuit-switched router

for both head flit and data flits. This is the main difference compared to previous circuit-switched

network designs which use two separate networks, one for path connection setup and one for data

transfers [38, 39]. Our bufferless circuit-switched router uses only one bit setup done at each input

port for transferring the setup signal between a source and destination pair thus the additional cost

is trivial compared to multi-bit datapath signals.

4.3.2 Performance Analysis and In-Order Packet Delivery

Fig. 4.9 depicts the pipeline traversal of each flit in a bufferless circuit-switched router.

The head flit of each packet will travel each router in 2 cycles for setting up the path. After the head

reaches its destination, the setup done propagates back to the source processor, one cycle per router.

After the source processor notices the setup done assertion, all body and tail flits of the packet are

sent one per cycle. Therefore, for a packet of L flits and a source-destination distance of N, the

minimum time for the packet to arrive its destination in 2N + N + N + L − 2 = 4N + L − 2 cycles.

Again, the overall packet latency depends on network load; if network incurs congestion, head flits

could take more time for setting up paths to destinations hence the packet latency increase.

Because circuit-switched routers set up the path before transferring each packet, they

ensure packets to arrive destinations in-order naturally. Therefore, either XY or any deadlock-free

adaptive routing algorithm can be used for circuit-switched routers without additional controlling

mechanisms.

58

Table 4.1: Router configuration used in experiments

Router Name Description

WH-XY-N XY-routing WH router with buffer depth of N flits

Bfless-XY XY-routing bufferless packet-switched router

Bfless-Adt-ACK ACK-based adaptive bufferless router

Bfless-Adt-PLA Packet length aware adaptive bufferless router

Bfless-CS-XY Bufferless XY-routing circuit-switched router

Bfless-CS-Adt Bufferless adaptive-routing circuit-switched router

N is the wormhole router’s buffer depth in 2, 4, 8 or 16 flits.

4.4 Experimental Results on Latency and Throughput

In this section, we evaluate and compare the network performance of our bufferless routers

and wormhole routers. Table 4.1 lists router configurations used in our experiments; all routers

guarantee delivering packets in-order. Wormhole (WH) routers are equipped with XY routing al-

gorithm in various buffer depths of 2, 4, 8 and 16 flits. Bufferless packet-switched routers with

three routing techniques for guaranteeing in-order packet delivery: XY, ACK-controlled adaptive

and PLA adaptive routing. Bufferless circuit-switched routers use either XY or adaptive routing;

both ensures naturally delivering packets in-order. For clear router naming, from now on, when we

mention a circuit-switched router it is associated with a ‘CS’ word; otherwise, it is understood as a

packet-switched router.

Cycle-accurate simulators of routers are developed for evaluating network latency and

throughput. The activities of routers in the network are also recorded for power and energy estima-

tion as will be presented in details in Section 4.5. The negative-first routing policy is equipped for

routers with adaptive routing [46]. In all routers, round-robin arbiters are used for the switch allo-

cator with inter-router wire length is 1000 µm and flit width is 32 bits. Experiments are conducted

on both synthetic and real-world embedded application traffic patterns.

4.4.1 Performance Over Synthetic Traffic Patterns

We first conducted the experiments over eight common synthetic traffic patterns which

cover a wide range of interconnect patterns on 2D mesh networks [25]. For uniform random traffic,

each source processor chooses its destination randomly with uniform distribution, packet-by-packet.

59

For other patterns, destination of each source node is decided based on the location of the source as

follows: 4

• uniform random: each processor randomly chooses its destination with equal probability.

• transpose: from [x, y] to [y, x]

• bit-complement: from [x, y] to [x̄, ȳ]

• bit-shuffle: from [x2x1x0, y2y1y0] to [x1x0y2, y1y0x2]

• bit-reversal: from [x2x1x0, y2y1y0] to [y0y1y2, x0x1x2]

• bit-rotate: from [x2x1x0, y2y1y0] to [x0x2x1, y0y2y1]

• neighbor: destination is randomly chosen among four nearest neighbors of the source on a

probability of 80%, and is randomly among other processors on a probability of 20%.

• regional: destination is randomly chosen among processors with distances to the source of at

most 3 on a probability of 70%, and is randomly among other processors on a probability of

30%.

Performance of each router is evaluated by running simulations of 100,000 cycles with

20,000 warmup cycles on a 8×8 mesh network where each network node consists of a processor

and a router. Processor injects and consumes packets into and out of the network with each packet

length is ten flits. Latency of a packet is measured from the time its head flit is generated by the

source to the time its tail flit is consumed by the destination. Average network latency is the mean

of all packet latencies in the network.

Fig. 4.10 shows the average packet latency versus injection rate curves of routers over

uniform random traffic. First, considering wormhole routers, as expected, increasing buffer depth

improves both network latency and throughput. WH-XY-2 has high zero load packet latency of

44.93 cycles and quickly reaches saturation because packets frequently stall due to buffer fullness.

WH-XY-4 zero-load latency is 32.84 cycles which is 26.9% lower than WH-XY-2, while WH-XY-8

is 12.2% lower latency than WH-XY-4. As shown, even having deeper buffer, WH-XY-16 has the

4Here x, y are values of horizontal and vertical coordination of a node in a 8×8 mesh; x2 x1 x0 and y2y1y0 are binary

representatives of x and y, respectively.

60

0 0.05 0.1 0.15 0.2 0.25 0.3
0

20

40

60

80

100

Injection Rate (flits/cycle/node)

A
v
e
ra

g
e
 P

a
c
k
e
t
L
a
te

n
c
y
 (

c
y
c
le

s
)

WH−XY−2

WH−XY−4

WH−XY−8

WH−XY−16

Bfless−XY

Bfless−Adt−ACK

Bfless−CS−XY

Bfless−CS−Adt

Bfless−Adt−PLA

Figure 4.10: Latency vs. injection rate curves of routers over uniform random traffic

same zero-load latency as WH-XY-8. This is because at low load, we only need enough buffer

space for covering round-trip flow control latency for avoiding flit stalls. With three pipeline stages,

a wormhole router only needs five flits per input buffer to achieve the minimum latency. Adding

more buffer depth does not help reducing lower zero-load latency.

All bufferless PS routers achieve the same zero-load latency of 31.62 cycles which is

even lower than WH-XY-4. Bufferless CS routers have zero-load latency of 33.21 cycles which is

5.0% and 1.1% higher bufferless PS and WH-XY-4 routers, respectively, while is 26.1% lower than

WH-XY-2 router.

Fig. 4.10 also gives some insights for evaluating saturation network throughput of routers.

Saturation throughput can be defined as the injection rate at which the network latency reaches

about 3 times of its zero-load latency because higher injection rates cause the packet latency to

exponentially increase [59]. For more accurate, in this work, we evaluate network throughput as the

rate at which the network can successfully accept and deliver transferred packets as described in the

Dally and Towles’s book [25].

Fig. 4.11 presents the average network throughput versus injection rate of routers over

uniform random traffic. When the network load is low, the network accepts all packets hence has

throughput to be the same as the injection rate. When the injection rate becomes high enough, the

network no longer accepts all packets, it gets saturated. WH-XY-4’s saturation throughput is 0.162

61

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Injection Rate (flits/cycle/node)

T
h
ro

u
g
h
p
u
t
(f

lit
s
/c

y
c
le

/n
o
d
e
)

WH−XY−2

WH−Xy−4

WH−XY−8

WH−XY−16

Bfless−XY

Bfless−Adt−ACK

Bfless−Adt−PLA

Bfless−CS−XY

Bfless−CS−Adt

Figure 4.11: Network throughput of routers over uniform random traffic

flits/cycle which is 107.7% higher than WH-XY-2 (0.078 flits/cycle). WH-XY-8 is 63.6% higher

throughput than WH-XY-4, while WH-XY-16 is only 20.4% higher throughput than WH-XY-8.

Clearly, the throughput gain becomes smaller even when we increase more the buffer depth. This

small throughput increase comes with the cost of much higher area, power and energy dissipated as

will be shown in Section 4.5.

Bfless-XY and Bfless-CS-XY are 23.1% and 15.4% higher throughput than WH-XY-

2, respectively; while adaptive-routing bufferless routers, both packet- and circuit-switched, have

lower throughput than WH-XY-2. This confirms the results reported by Glass at al. and Chiu [46,

47]. Over uniform random traffic, the global long-term information of traffic characteristics is

balance for all nodes hence is well incorporated by the XY routing. Adaptive routing algorithms, on

the other hand, select output directions based on short-term traffic information; therefore they could

achieve better throughput than XY algorithm over non-random traffic patterns.

Let us consider the throughput of routers over transpose traffic pattern as shown in Fig. 4.12.

Over this regular traffic, adaptive routing routers, Bfless-Adt-PLA and Bfless-CS-Adt, even have

12.3% and 14.2% higher throughput than WH-XY-4, respectively. All bufferless routers have higher

throughput than WH-XY-2. Bfless-Adt-ACK achieves lower throughput than Bfless-Adt-PLA be-

cause ACK controlling mechanism forces processors to wait for ACK flits before sending packets.

Furthermore, ACK flits also contribute extra workload to the network. For wormhole routers, WH-

62

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

Injection Rate (flits/cycle/node)

T
h
ro

u
g
h
p
u
t
(f

lit
s
/c

y
c
le

/n
o
d
e
)

WH−XY−2

WH−XY−4

WH−XY−8

WH−XY−16

Bfless−XY

Bfless−Adt−ACK

Bfless−Adt−PLA

Bfless−CS−XY

Bfless−CS−Adt

Figure 4.12: Network throughput of routers over transpose traffic

XY-16 has the same throughput as WH-XY-8 even though it has 2 times deeper input buffers.

Similarly, we run simulations on all eight synthetic traffic patterns; low-latency and sat-

uration throughput of routers over these patterns are listed in Table 4.2 and Table 4.3, respectively.

Averaged over all traffic patterns, WH-XY-4 is 27.8% lower latency than WH-XY-2 with 2.1 times

higher throughput. WH-XY-8 and WH-XY-16 have the same zero-load latency which is 12.8%

lower than WH-XY-4 router with 49.7% and 65.4% higher throughput, respectively, even though

they have 2 times and 4 times deeper buffers. All bufferless PS routers are 2.3% and 29.5% lower

latency than WH-XY-4 and WH-XY-2, respectively. Bufferless CS routers have almost the same

latency as WH-XY-4 which is 27.9% lower latency than WH-XY-2.

Although without input buffers, Bfless-XY is even 24.5% higher throughput than WH-

XY-2. Due to the ACK control overhead for guaranteeing in-order packet delivery, Bfless-Adt-ACK

is 22.3% lower throughput compared to Bfless-XY router. Bfless-Adt-PLA takes the advantage of

adaptive routing for effectively choosing channels over certain non-random patterns, so it is 6.8%

higher throughput than Bfless-XY router on average. Bufferless CS routers perform setting up the

interconnection path then sending each data flit per cycle avoiding flit stalls due to without buffers

as seen in bufferless PS routers; therefore, Bfless-CS-XY and Bfless-CS-Adt achieve 13.7% and

15.4% higher throughput than Bufferless-XY, respective, and 6.4% and 8.0% higher throughput

than Bfless-Adt-PLA, respectively.

63

T
ab

le
4
.2

:
Z

er
o
-l

o
ad

la
te

n
cy

(i
n

cy
cl

es
)

o
f

ro
u
te

rs
o
v
er

sy
n
th

et
ic

tr
af

fi
c

p
at

te
rn

s

R
o
u
te

r
D

es
ig

n
s

ra
n
d
o
m

tr
a
n
sp

o
se

b
it

-c
o
m

p
le

m
en

t
b
it

-s
h
u
ffl

e
b
it

-r
ev

er
sa

l
b
it

-r
o
ta

te
n
ei

g
h
b
o
r

re
g
io

n
a
l

A
v
er

ag
e

W
H

-X
Y

-2
4
4
.9

3
4
7
.8

3
5
3
.1

6
4
1
.5

5
4
7
.0

3
4
1
.2

4
3
5
.4

7
3
8
.4

4
4
3
.7

1

W
H

-X
Y

-4
3
2
.8

4
3
5
.6

6
4
0
.6

9
2
9
.3

8
3
4
.8

6
2
9
.1

2
2
3
.3

6
2
6
.3

7
3
1
.5

4

W
H

-X
Y

-8
2
8
.8

3
3
1
.6

5
3
6
.6

2
2
5
.3

6
3
0
.8

3
2
5
.1

1
1
9
.3

4
2
2
.3

6
2
7
.5

1

W
H

-X
Y

-1
6

2
8
.8

3
3
1
.6

5
3
6
.6

2
2
5
.3

6
3
0
.8

3
2
5
.1

1
1
9
.3

4
2
2
.3

6
2
7
.5

1

B
fl

es
s-

X
Y

3
1
.6

2
3
3
.5

8
3
7
.1

7
2
9
.3

5
3
3
.0

4
2
9
.0

9
2
5
.2

9
2
7
.2

8
3
0
.8

1

B
fl

es
s-

A
d
t-

A
C

K
3
1
.6

2
3
3
.5

8
3
7
.1

7
2
9
.3

5
3
3
.0

4
2
9
.0

9
2
5
.2

9
2
7
.2

8
3
0
.8

1

B
fl

es
s-

A
d
t-

P
L

A
3
1
.6

2
3
3
.5

8
3
7
.1

7
2
9
.3

5
3
3
.0

4
2
9
.0

9
2
5
.2

9
2
7
.2

8
3
0
.8

1

B
fl

es
s-

C
S

-X
Y

3
3
.2

1
3
7
.1

1
4
3
.9

8
2
8
.5

8
3
5
.9

7
2
8
.1

6
2
0
.5

1
2
4
.5

0
3
1
.5

0

B
fl

es
s-

C
S

-A
d
t

3
3
.2

1
3
7
.1

1
4
3
.9

8
2
8
.5

8
3
5
.9

7
2
8
.1

6
2
0
.5

1
2
4
.5

0
3
1
.5

0

64

T
ab

le
4
.3

:
S

at
u
ra

ti
o
n

th
ro

u
g
h
p
u
t

(i
n

fl
it

s/
cy

cl
e)

o
f

ro
u
te

rs
o
v
er

sy
n
th

et
ic

tr
af

fi
c

p
at

te
rn

s

R
o
u
te

r
D

es
ig

n
s

ra
n
d
o
m

tr
a
n
sp

o
se

b
it

-c
o
m

p
le

m
en

t
b
it

-s
h
u
ffl

e
b
it

-r
ev

er
sa

l
b
it

-r
o
ta

te
n
ei

g
h
b
o
r

re
g
io

n
a
l

A
v
er

ag
e

W
H

-X
Y

-2
0
.0

7
8

0
.0

8
2

0
.0

4
2

0
.1

0
8

0
.0

5
2

0
.1

1
6

0
.1

6
7

0
.1

1
7

0
.0

9
4

W
H

-X
Y

-4
0
.1

6
2

0
.1

5
5

0
.0

8
3

0
.2

0
0

0
.1

0
4

0
.2

2
3

0
.3

5
3

0
.2

3
9

0
.1

9
1

W
H

-X
Y

-8
0
.2

6
5

0
.2

1
6

0
.1

2
5

0
.2

8
1

0
.1

5
6

0
.3

1
3

0
.5

5
6

0
.3

7
4

0
.2

8
6

W
H

-X
Y

-1
6

0
.3

1
9

0
.2

1
6

0
.1

2
5

0
.2

8
2

0
.1

5
6

0
.3

1
9

0
.6

6
2

0
.4

5
2

0
.3

1
6

B
fl

es
s-

X
Y

0
.0

9
6

0
.1

0
1

0
.0

5
3

0
.1

4
0

0
.0

6
3

0
.1

2
2

0
.2

1
2

0
.1

5
0

0
.1

1
7

B
fl

es
s-

A
d
t-

A
C

K
0
.0

6
6

0
.1

3
2

0
.0

3
3

0
.0

8
9

0
.0

7
0

0
.0

9
7

0
.1

4
6

0
.0

9
7

0
.0

9
1

B
fl

es
s-

A
d
t-

P
L

A
0
.0

7
2

0
.1

7
4

0
.0

3
8

0
.1

5
3

0
.0

9
8

0
.1

7
0

0
.1

8
3

0
.1

0
8

0
.1

2
5

B
fl

es
s-

C
S

-X
Y

0
.0

9
0

0
.1

1
4

0
.0

5
6

0
.1

5
7

0
.0

6
5

0
.1

5
0

0
.2

6
2

0
.1

7
0

0
.1

3
3

B
fl

es
s-

C
S

-A
d
t

0
.0

6
1

0
.1

7
7

0
.0

4
3

0
.1

6
6

0
.0

9
3

0
.1

9
1

0
.2

1
7

0
.1

1
8

0
.1

3
5

65

T10

T0

T1

T2

T3

T4

T5

T6

T7

T8

T9

T11
T14

T12

T13

T15

70

16

362

362

362

49

357
353

300

313

313

50094

16

16

16

16

157

16

16

16

27

T10

T0

T1

T2

T3

T4

T5

T6

T7

T8

T9

T11
T14

T12

T13

T15

0.070

0.016

0.362

0.362

0.362

0.049

0.357
0.353

0.300

0.313

0.313

0.5000.094

0.016

0.016

0.016

0.016

0.157

0.016

0.016

0.016

0.027

(a) (b)

j

i

j

i

bw

bw

fir

fir
=

Figure 4.13: Communication graph of a video object plan decoder application (VOPD) and the

corresponding injection rate of each processor used in our simulations: (a) required inter-task band-

widths in Mbps; (b) the corresponding injection rates in flits/cycle of processors.

4.4.2 Performance Over Embedded Application Traffic Patterns

Many DSP and embedded applications can be represented by a communication task graph

where each task can be mapped onto one or multiple processing units (processors, accelerators or

memory modules) [95]. Fig. 4.13(a) depicts the task graph of a Video Object Plan Decoder (VOPD)

application [102] which also shows the inter-task communication bandwidth requirements.

For generating the experimental traffic of this application, we adopted the method pro-

posed by Hu et al. [103] and Lan et al. [60]. In this method, we transform the required bandwidth

on each inter-task connection into the injection rate of the corresponding sending task. A task which

requires large sending bandwidth also has large injection rate, and vice versa. Let bwi and bw j be

the required bandwidth of tasks Ti and T j to other tasks in the communication graph, then injection

rates of tasks Ti and T j on the corresponding links follow the equation
f iri

f ir j

=
bwi

bw j

. Therefore, if

given an injection rate of any task, we can easily calculate injection rates for all other tasks on all

links in the graph.

Fig. 4.13(b) shows an example for setting the injection rates of tasks which are corre-

sponding to the communication graph of VOPD application given in figure (a). In this example, if

we choose injection rate for task T0 to task T1 is 0.07 flits/cycle, then injection rate for task T1 to

task T2 is 0.07 × 362 / 70 = 0.362 flits/cycle. Similarly, we can drive injection rates for all tasks in

the application graph as shown in the figure.

66

Table 4.4: Seven embedded applications and three E3S benchmarks used in our experiments

Applications No. Tasks Net. Size

Video object plan decoder (vopd) [102] 16 4×4

Multimedia system (mms) [104] 25 5×5

Multi-window display (mwd) [105] 12 4×3

WiFi baseband receiver (wifirx) [94] 25 5×5

H.264 CAVLC encoder (cavlc) [106] 16 4×4

MPEG4 (mpeg4 [107] 12 4×3

Video conference encoder (vce) [108] 25 5×5

E3S auto-indust (autoindust) [109] 24 6×4

E3S consumer (consumer) [109] 12 4×3

E3S telecom (telecom) [109] 30 6×5

In this work, we use communication graphs of seven real-world applications and three

E3S embedded benchmarks [109] which have large numbers of tasks for our experiments. Ap-

plication names and their number of tasks are shown in Table 4.4. Depending on the number of

application tasks, we decide the network size correspondingly. For example, an application with 16

tasks is mapped on a 4×4 network, an application with 24 tasks is mapped on a 6×4 network, and

so on which are also shown in Table 4.4. After network size for each application has been decided,

each task is randomly mapped to one processor in the network.

For evaluation of these embedded applications, we fix the injection rates of all tasks,

then application running latency is measured after a total of one million packets are successfully

transferred. For each application, we assume that the most busy task spends 50% times for execution

and 50% times for communication which means it aggressively executes one cycle and then sends

one output to the downstream task in the next cycle, repeatably. With this assumption, the most busy

task in each application has an injection rate of 0.5; the injection rates of other tasks are computed

according to the their required bandwidth given in the graph using the method described above.

Application running latency for transferring one million packets corresponding to differ-

ent router configurations are shown in Fig. 4.14. As shown, increasing buffer depth of wormhole

routers improves application latency; however, the improvement becomes quite small when buffer

depth is larger 8 flits. The latency of WH-XY-8 and WH-XY-16 are almost the same for all ten ap-

plications. Applications running on bufferless PS routers achieve lower latency than on WH-XY-2,

except Bfless-Adt-ACK. ACK controlling mechanism shows the worst performance on both syn-

thetic and embedded applications. Over these embedded applications, the interconnect distances

67

0

1

2

3

4

5

6

7

8

9

vopd
mwd

mms
vce

wifir
x

cavlc

mpeg4

autoindust

consumer

telecom

Average

WH-XY-2

WH-XY-4

WH-XY-8

WH-XY-16

Bfless-XY

Bfless-Adt-ACK

Bfless-Adt-PLA

Bfless-CS-XY

Bfless-CS-AdtA
p

p
li

c
a

ti
o

n
 L

a
te

n
c

y
 (

m
s

)

Figure 4.14: Transferring latency of 1 million packets over embedded application traces

among processors are small, so bufferless CS routers setup the paths faster hence achieve less ap-

plication running time than bufferless PS routers.

Averaged over all ten applications, WH-XY-4, WH-XY-8 are 33.5% and 40.1% lower la-

tency than WH-XY-2, respectively. WH-XY-16 is only 0.9% lower latency than WH-XY-8. Bfless-

XY and Bfless-Adt-PLA are 16.2% and 17.3% less latency, while Bfless-Adt-ACK is 10.0% higher

latency compared to WH-XY-2, respectively. Bfless-CS-XY and Bfless-CS-Adt are 27.6% and

27.8% less latency WH-XY-2 and only 8.7% and 8.5% higher latency than WH-XY-4, respectively.

Compared to Bfless-XY, Bfless-CS-XY is 13.8% lower latency.

4.5 Area, Power and Energy

4.5.1 Evaluation Methodology

Each circuit component of routers was developed in Verilog, synthesized targeting a 65nm

CMOS standard cell library with Synopsys Design Compiler, then placed and routed using Cadence

Encounter with cell utilization of 80%. Post-layout simulation with SDF timing annotation was

conducted, and switching activities of gates and wires were recorded into a VCD file. This switch-

ing information file along with the gate netlist and the extracted parasitic SPEF file exported by

Encounter were fed to a PrimePower script for post-layout power estimation of each router com-

ponent. Environmental parameters for the tools are set at 1V and 25oC with power numbers are

reported at the clock frequency of 1GHz for all routers.

68

Table 4.5: Area (in µm2) of routers

Router Designs Buffers Crossbar Links Pipeline Control Total

WH-XY-2 5370 1772 4640 2575 2765 17122

WH-XY-4 11820 1772 4640 2575 2935 23742

WH-XY-8 24725 1772 4640 2575 3105 36817

WH-XY-16 44075 1772 4640 2575 3270 56332

Bfless-XY - 1772 4640 2575 2594 11582

Bfless-Adt-ACK - 1772 4640 2575 2820 11807

Bfless-Adt-PLA - 1772 4640 2575 2970 11957

Bfless-CS-XY - 1772 4640 2575 2700 11687

Bfless-CS-Adt - 1772 4640 2575 2925 11912

Table 4.5 lists the total area of router along with their basic circuit components. In this

table, control circuits consist of routing computation logic and switch arbitrator as well as credit

counters for wormhole routers, forward enable signal logic for bufferless PS routers, setup logic for

bufferless CS routers. As shown, all router have the same area for crossbar, link driver/repeater gates

and pipeline registers. For wormhole routers, doubling buffer depth costs more than two times buffer

area and also needs larger credit computing circuits. In total, consequently, WH-XY-4, WH-XY-8

and WH-XY-16 are 1.39 times, 2.15 times and 3.29 times bigger WH-XY-2 router, respectively.

Bufferless routers, as the names mean, fully remove buffers out of the router datapath,

so significantly reduce their router area. As a result, Bfless-XY and Bfless-CS-XY are 32.4% and

31.7% less area than WH-XY-2, respectively. Because adaptive routing has more area overhead than

XY routing, Bfless-Adt-ACK and Bfless-Adt-PLA are 2.0% and 3.2% larger area than Bfless-XY

router, respectively, while Bfless-CS-Adt is 1.9% larger area than Bfless-CS-XY router.

4.5.2 Power and Energy over Synthetic Traffic Patterns

The post-layout power numbers of all router’s components were incorporated with their

activities, which were reported by our cycle-accurate network simulators while running the bench-

mark traffic patterns, for evaluating the overall dissipated power and energy of routers in the net-

work. Fine-grained clock gating is applied to all registers in router components for reducing power

when registers do not meet the conditions to sample new values [73]. Let Ns be the number of

simulation cycles over a traffic pattern, let ni be the number of active cycles of component i of a

router, then total energy component i consumes in the whole simulation time is:

69

Ei = (niPact,i + (Ns − ni)Pinact,i)Tclk (4.1)

where Tclk is the clock period; and Pact,i, Pinact,i are active and inactive power of component i,

respectively.

Hence, the total energy consumed by all routers is:

Etotal =

∑

∀router

∑

∀i

Ei =

∑

∀router

∑

∀i

(niPact,i + (Ns − ni)Pinact,i)Tclk (4.2)

Therefore, the average energy per packet of each router is given by:

Ep =
Etotal

NrNp

=
Tclk

NrNp

∑

∀router

∑

∀i

(niPact,i + (Ns − ni)Pinact,i) (4.3)

where Nr is the number of routers in the network, and Np is total number of packets transferred by

the network.

Total power of all routers in the network is:

Ptotal =
Etotal

NsTclk

=

∑

∀router

∑

∀i

(
ni

Ns

Pact,i +
Ns − ni

Ns

Pinact,i) (4.4)

Hence, the average power dissipated by each router is:5

Pavg =
Ptotal

Nr

=
1

Nr

∑

∀router

∑

∀i

(
ni

Ns

Pact,i +
Ns − ni

Ns

Pinact,i) (4.5)

Fig. 4.15 shows the average power of routers corresponding to various injection rates over

uniform random traffic. For each router configuration, at an extreme case when no packet is sent

into the network, all routers are idle so only dissipate small standby power. When network load

increases, routers become more active, hence dissipate more power. However, when the network

reaches saturation, routers’ activities become stable. As a result, router power starts keeping con-

stant when the injection is high enough; this is saturation power of the router.

Saturation power of routers over eight synthetic traffic patterns are given in Table 4.6.

As shown, averaged from all patterns, WH-XY-4, WH-XY-8, WH-XY-16 are 2.1 times, 3.7 times

and 6.1 times higher power than WH-XY-2, respectively. Bufferless routers consume lower power

5Eqn. (4.5) can be easily verified by observing that
ni

Ns

and
Ns − ni

Ns

are active and inactive percentages of component

i in a router in the whole simulation time.

70

T
ab

le
4
.6

:
S

at
u
ra

ti
o
n

p
o
w

er
(i

n
m

W
)

o
f

ro
u
te

rs
o
v
er

sy
n
th

et
ic

tr
af

fi
c

p
at

te
rn

s

R
o
u
te

r
D

es
ig

n
s

ra
n
d
o
m

tr
a
n
sp

o
se

b
it

-c
o
m

p
le

m
en

t
b
it

-s
h
u
ffl

e
b
it

-r
ev

er
sa

l
b
it

-r
o
ta

te
n
ei

g
h
b
o
r

re
g
io

n
a
l

A
v
er

ag
e

W
H

-X
Y

-2
2
.1

9
5

1
.5

7
7

1
.3

6
5

2
.2

4
9

1
.4

8
0

2
.3

2
0

2
.2

4
0

2
.1

7
3

1
.9

5
0

W
H

-X
Y

-4
4
.7

2
9

3
.1

1
9

2
.7

2
1

4
.4

3
5

2
.9

7
2

4
.7

3
2

4
.9

1
6

4
.6

5
7

4
.0

3
5

W
H

-X
Y

-8
9
.0

8
5

5
.2

8
0

4
.7

3
2

7
.7

3
5

5
.1

4
3

7
.9

1
1

9
.0

8
5

8
.5

3
5

7
.1

8
8

W
H

-X
Y

-1
6

1
6
.5

2
4

7
.9

9
2

7
.1

3
8

1
1
.8

9
3

7
.7

8
5

1
2
.2

7
7

1
6
.3

5
5

1
5
.5

5
4

1
1
.9

3
9

B
fl

es
s-

X
Y

1
.9

9
8

1
.4

5
6

1
.3

6
3

2
.0

3
7

1
.3

2
6

1
.6

9
8

2
.0

9
0

2
.0

7
1

1
.7

5
5

B
fl

es
s-

A
d
t-

A
C

K
1
.7

1
6

2
.3

9
5

1
.2

5
5

1
.6

6
2

1
.8

7
5

1
.7

9
5

1
.7

4
0

1
.6

5
6

1
.7

6
2

B
fl

es
s-

A
d
t-

P
L

A
1
.7

7
2

2
.8

4
1

1
.1

7
1

2
.3

4
7

2
.3

3
2

2
.5

5
6

1
.9

4
8

1
.6

8
9

2
.0

8
2

B
fl

es
s-

C
S

-X
Y

1
.7

1
7

1
.4

7
2

1
.3

1
4

2
.0

1
4

1
.2

2
4

1
.8

4
6

2
.2

9
3

2
.0

9
4

1
.7

4
7

B
fl

es
s-

C
S

-A
d
t

1
.3

6
9

2
.6

0
4

1
.0

3
6

2
.2

3
0

1
.9

9
2

2
.5

0
3

2
.0

5
0

1
.6

6
3

1
.9

3
1

71

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
10

−1

10
0

10
1

Injection Rate (flits/cycle/node)

R
o
u
te

r
P

o
w

e
r

(m
W

/r
o
u
te

r)

WH−XY−2

WH−XY−4

WH−XY−8

WH−XY−16

Bfless−XY

Bfless−Adt−ACK

Bfless−Adt−PLA

Bfless−CS−XY

Bfless−CS−Adt

Figure 4.15: Average power of routers over uniform random traffic

than wormhole routers in which Bfless-XY and Bfless-CS-XY are 10.0% and 10.4% lower satu-

ration power than WH-XY-2. Among bufferless routers, adaptive routing routers consume higher

power than the XY-routing router with Bfless-Adt-ACK and Bfless-Adt-PLA are 0.4% and 18.6%

higher power than Bfless-XY, respectively. Bfless-CS-Adt router consumes 10.5% higher power

than Bfless-CS-XY router.

Fig. 4.16 shows energy dissipated per packet of routers corresponding to various injection

rates over uniform random traffic. At an extreme case when no packet is sent into the network,

router still dissipates standby power. Even the standby energy is quite small, in theory, energy per

packet is infinite (because no packet is transferred). However, this number is meaningless; so we

only consider energy per packet when injection rate is larger than zero. As shown in the figure,

energy per packet decreases when injection rate increases until the router gets saturated.

Saturation energy per packet of routers over eight synthetic traffic patterns are given in

Table 4.7. Although WH-XY-4 is 2.1 times higher power than WH-XY-2, due to its much higher

throughput WH-XY-4 is only 2.9% higher energy averaged over all eight traffic patterns. Continuing

increasing buffer depth for wormhole routers consumes much more power while achieving only a

limited throughput improvement as shown in Section 4.4, hence consuming more energy per packet.

As shown, WH-XY-8 and WH-XY-16 are 17.8% and 78.5% higher energy than WH-XY-4.

All bufferless routers dissipate lower energy per packet than WH-XY-2 router, in which

72

T
ab

le
4
.7

:
S

at
u
ra

ti
o
n

en
er

g
y

p
er

p
ac

k
et

(i
n

p
J/

p
ac

k
et

)
o
f

ro
u
te

rs
o
v
er

sy
n
th

et
ic

tr
af

fi
c

p
at

te
rn

s

R
o
u
te

r
D

es
ig

n
s

ra
n
d
o
m

tr
a
n
sp

o
se

b
it

-c
o
m

p
le

m
en

t
b
it

-s
h
u
ffl

e
b
it

-r
ev

er
sa

l
b
it

-r
o
ta

te
n
ei

g
h
b
o
r

re
g
io

n
a
l

A
v
er

ag
e

W
H

-X
Y

-2
4
.4

1
9

3
.3

8
0

5
.1

2
0

3
.2

4
3

4
.4

4
1

3
.1

1
8

2
.0

9
8

2
.9

3
0

3
.5

9
4

W
H

-X
Y

-4
4
.5

7
2

3
.4

5
4

5
.1

0
3

3
.4

6
3

4
.4

5
8

3
.3

1
3

2
.1

7
3

3
.0

3
9

3
.6

9
7

W
H

-X
Y

-8
5
.3

6
1

4
.0

5
6

5
.9

0
9

4
.3

0
3

5
.1

4
3

3
.9

5
5

2
.5

5
4

3
.5

6
2

4
.3

5
5

W
H

-X
Y

-1
6

8
.0

9
9

6
.1

3
9

8
.9

1
1

6
.5

9
4

7
.7

8
5

6
.0

2
3

3
.8

6
3

5
.3

7
9

6
.5

9
9

B
fl

es
s-

X
Y

3
.2

5
7

2
.4

6
7

4
.0

0
5

2
.2

7
0

3
.2

6
6

2
.1

7
9

1
.5

3
9

2
.1

5
0

2
.6

4
2

B
fl

es
s-

A
d
t-

A
C

K
4
.0

6
7

3
.2

5
7

5
.9

6
7

2
.9

3
5

4
.2

1
0

2
.8

9
3

1
.8

6
2

2
.6

5
5

3
.4

8
1

B
fl

es
s-

A
d
t-

P
L

A
3
.7

8
8

2
.8

2
0

5
.2

5
5

2
.3

9
8

3
.7

1
6

2
.3

5
0

1
.6

5
9

2
.4

4
2

3
.0

5
4

B
fl

es
s-

C
S

-X
Y

2
.9

7
9

2
.1

9
6

3
.6

4
8

2
.0

0
6

2
.9

5
4

1
.9

1
8

1
.3

6
6

1
.9

2
7

2
.3

7
4

B
fl

es
s-

C
S

-A
d
t

3
.5

5
2

2
.4

2
2

4
.9

1
7

2
.0

9
9

3
.3

4
0

2
.0

4
8

1
.4

7
8

2
.2

0
1

2
.7

5
7

73

0 0.05 0.1 0.15 0.2
10

0

10
1

Injection Rate (flits/cycle/node)

E
n
e
rg

y
 P

e
r

P
a
c
k
e
t
(p

J
/r

o
u
te

r)

WH−XY−2

WH−XY−4

WH−XY−8

WH−XY−16

Bfless−XY

Bfless−Adt−ACK

Bfless−Adt−PLA

Bfless−CS−XY

Bfless−CS−Adt

Figure 4.16: Average energy per packet of routers over uniform random traffic

0

2

4

6

8

10

12

vopd
mwd

mms
vce

wifir
x

cavlc

mpeg4

autoindust

consumer

telecom

Average

WH-XY-2

WH-XY-4

WH-XY-8

WH-XY-16

Bfless-XY

Bfless-Adt-ACK

Bfless-Adt-PLA

Bfless-CS-XY

Bfless-CS-AdtR
o

u
te

r
P

o
w

e
r

(m
W

/r
o

u
te

r)

Figure 4.17: Average router power over embedded application traces

Bfless-XY and Bfless-CS-XY are 26.5% and 33.9% lower energy than WH-XY-2, respectively.

Adaptive routers, again, consume more energy than XY-routing router in which Bfless-Adt-ACK

is 31.8% higher energy than Bfless-XY, and Bfless-CS-Adt is 16.1% higher energy than Bfless-

CS-XY. Even though Bfless-Adt-PLA has higher power than Bfless-Adt-ACK, due to its higher

throughput which allows it to transfer more packets in a certain time window, it consumes 12.3%

lower energy.

74

0

5

10

15

20

25

30

vopd
mwd

mms
vce

wifir
x

cavlc

mpeg4

autoindust

consumer

telecom

Average

WH-XY-2

WH-XY-4

WH-XY-8

WH-XY-16

Bfless-XY

Bfless-Adt-ACK

Bfless-Adt-PLA

Bfless-CS-XY

Bfless-CS-Adt

E
n

e
rg

y
 p

e
r

P
a

c
k

e
t

(p
J

/p
a

c
k

e
t/

ro
u

te
r)

Figure 4.18: Average router energy per packet over embedded application traces

4.5.3 Power and Energy over Embedded Application Traces

The average power and energy per packet of routers while running embedded applications

are shown in Fig. 4.17 and Fig. 4.18, respectively. As shown, WH-XY-4, WH-XY-8 and WH-XY-

16 are 57.9%, 109.9% and 320.4% higher power than WH-XY-2. Although having much greater

power, due to their higher performance they are 4.9%, 24.3% and 87.5% higher energy per packet,

respectively, compared to WH-XY-2 router.

Our bufferless routers consume lower both power and energy per packet than all wormhole

routers. Bfless-XY, Bfless-Adt-ACK and Bfless-Adt-PLA are 13.3%, 21.8% and 9.8% lower power

and 26.7%, 13.6% and 25.6% lower energy per packet than WH-XY-2, respectively. While Bfless-

CS-XY and Bfless-CS-Adt are 2.5% and 4.6% greater power than Bfless-XY, they consume 11.4%

and 10.3% lower energy per packet.

4.5.4 Comparative Analysis and Discussion

As presented so far, wormhole routers with deep buffers achieve higher performance than

bufferless routers, but are costly in terms of area, power and dissipated energy. For fair comparison

among designs, performance per cost is normally used as a general metric [37]. In this work, we

consider this metric in both terms: throughput per area and the number of bits transferred per unit

energy.

Fig. 4.19 shows the achieved performance per unit cost of routers averaged over all syn-

75

0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

Throughput Per Area (Gbps per mm
2
)

b
it
s
 p

e
r

p
J
o

u
le

WH−XY−2

WH−XY−4

WH−XY−8

WH−XY−16

Bfless−XY

Bfless−Adt−ACK

Bfless−Adt−PLA

Bfless−CS−XY

Bfless−CS−Adt

higher p
erfo

rm
ance

per c
ost

Figure 4.19: Performance per area and transferred data bits per unit energy of routers averaged over

all synthetic and embedded traffic patterns

thetic and embedded application traffic patterns considered in this work. Increasing wormhole buffer

depth from 2 to 4 achieves a 24.6% gain in throughput per area with only 3.3% reduction in bits per

joule. Increasing more buffer depth would cost more silicon area, power and energy with a small

gain in throughput hence the performance per cost decreases. As shown, WH-XY-8 is 14.9% lower

throughput per area and 15.2% less bits per joule than WH-XY-4. WH-XY-16 is even worse than

WH-XY-2. As a result, a router with 4 flits per input buffer achieves the best performance per cost

among wormhole routers.

All our bufferless routers, both circuit- and packet- switched, achieve better performance

per cost (in both throughput per area and bits per joule) than wormhole routers. Among these,

Bfless-Adt-ACK is the worst. This is because the ACK controlling mechanism forces source pro-

cessors to wait for the ACK signal per each transferred packet, hence reduces the overall throughput.

Moreover, ACK flits also consumes extra energy. Bfless-ACK-PLA achieves 3.5% higher through-

put per area than Bfless-XY while is 10.2% less bits per joule. Bfless-CS-XY shows the best among

all designs, it is 0.6% greater throughput per area than Bfless-CS-Adt and is 11.5% higher bits

transferred per joule. It is also 13.9% greater throughput per area and 11.7% higher bits per joule

compared to Bfless-XY.

Although adaptive routing would achieve higher throughput than XY routing for some

traffic patterns, but the gain is small (as compared between Bfless-Adt-PLA and Bfless-XY) or on

76

average is even worse (as compared between Bfless-CS-Adt and Bfless-XY). Moreover, adaptive

routing adds more design complexity which takes more design time and suffers from testing and

verification issues. Therefore, in the overall design trade-offs, we prefer to use simple XY routing

for our bufferless routers so that achieving both low cost, high performance per cost and naturally

guaranteed in-order packet delivery.

4.6 Related Work

High performance router designs attract a large number of approaches such as express

virtual-channel [59], speculative pipelining [57, 58], shared-buffers [88, 99, 113]. In addition, adap-

tive routing algorithms were proposed for gaining more throughput for certain regular traffic pat-

terns [46,47,51,52]. Unfortunately, these designs show two main drawbacks restricting themselves

to be used in practical chips. First, they are highly complex so costly in both silicon area and power.

Second, they do not guarantee delivering packets in-order that add more costs to processors for

reordering these packets before they are able to be consumed. In this work, reversely, we target

minimizing router costs while keeping the achieved performance per unit cost better than traditional

routers.

There are a few contributions addressing the out-of-order delivery problem we found in

the literature. In the work reported by Murali et al. [114], packets are allowed to route on non-

overlap paths between a source-destination pair, but they are forced to wait at input ports of the

destination router. The destination router then picks these packets and delivers them to its processor

in-order. This method, unfortunately, is prone to deadlock due to the limited buffer space at input

ports of routers [115].

In the work by Martinez et al., destination processors drop the out-of order packets and

request the sources to resend them [116]. In the worst case when network congestion is high, the

resent packets could be dropped again, repeatably, which reduce more the overall network perfor-

mance. Dropping and resending packets, obliviously, also consume extra energy.

Palesi et al. proposed to group multiple consecutive packets into a message and force all

packets in a message to travel on the same path to the destination. The source processor is allowed

to send one message and wait until receiving an acknowledge packet from the destination before

77

sending another message. This mechanism ensures packets to arrive the destination in-order [115].

We adopt this idea into our Bfless-Adt-ACK router, however, as shown in our experiments, the

ACK controlling mechanism has low performance while consumes high area, power and energy

compared to a simple XY routing.

Bufferless router design, recently, becomes increasingly attractive as a solution for achiev-

ing low-cost on-chip networks. Due to without buffer for storing incoming data flits, these bufferless

routers utilize a “hot-spot” routing principle which either drops the flit or deflects it to another out-

put port if its desired output port is busy [55, 70, 71]. Dropping flits requires the router to support a

mechanism for noticing the sources to retransmit the dropped packets. Deflecting flits cause flit to

go to non-minimal paths which are potential for deadlock and livelock. Therefore, the routers must

add more complex control logic and prioritized scheduling circuits to avoid these problems. As a re-

sult, these bufferless routers were shown to consume even higher energy than buffered routers [72].

Furthermore, flit dropping and deflecting cause the out-of-order delivery of not only packets but

also the flits of each packet. This adds much more cost and complexity to the reordering buffers at

receiving processors.

Our bufferless routers differ from previous work are that we do not drop or deflect flits.

For bufferless PS routers, we use simple 1-bit fine-grained flow control for input registers so that no

flit overwriting is allowed. Even though this method reduces network throughput, it consumes low

area, power and energy. For bufferless CS routers, only the head flit of each packet is sent for setting

up the path to its destination before the remaining flits of the packet are sent, hence achieving higher

throughput than bufferless PS routers. Only non-minimal routing algorithms (both XY or adaptive)

and simple round-robin arbiters are used hence ensure the network to be livelock free. Furthermore,

all our bufferless routers guarantee delivering packets in-order.

Previous circuit-switched router designs utilize two separate networks, one for path setup

and one for data transfers [37–39]. Routers on the setup network are buffered for storing multiple

setup packets from different flows for speeding up the average setup time. Obviously, two networks

plus buffers are costly in both silicon area, wiring and power. Our circuit-switched routers are

bufferless with setup flits and data flits share the same network. Only one setup done bit is used to

notice the source whether the path is ready. Sharing only one network for both setup and data flits

in our bufferless circuit-switched routers allows achieving lower design cost and energy with small

78

effect on performance which translates to higher performance per unit cost compared to buffered

routers.

4.7 Summary

High fabrication cost at modern CMOS technologies along with limited chip power bud-

gets favor designs with low area and power costs for systems on chip and also for the networks

connecting processing elements in these systems. Besides that, to achieve the best designs we must

take into account not only the costs but also their offering performance and the trade-offs among

them. Therefore, the achieved performance per unit cost is one of key metrics for comparison among

routers of on-chip networks.

We have presented a set of five low-cost bufferless router designs with guaranteed in-order

packet delivery so that they allow eliminating the need of costly and complex reordering buffers in

processors. The designs cover both circuit-switching and packet-switching techniques. Compared

to traditional buffered wormhole routers, bufferless routers have much lower area and power with

higher throughput per area and lower energy dissipated per bit. Among bufferless routers, circuit-

switched routers achieve higher performance per cost than packet-switched routers. Throughout

our experiments, XY-routing routers show better in the trade-off between performance and cost

than adaptive routing routers averaged over several traffic patterns.

79

Chapter 5

A Reconfigurable Source-Synchronous

On-Chip Network for GALS Many-Core

Platforms

For practical digital designs, clock distribution becomes a critical part of the design pro-

cess for any high performance chip [74]. Designing a global clock tree for a large chip becomes

very complicated and it can consume a significant portion of the power budget, which can be up to

40% of the whole chip’s power [4]. One effective method to address this issue is through the use

of globally-asynchronous locally-synchronous (GALS) architectures where the chip is partitioned

into multiple independent frequency domains. Each domain is clocked synchronously while inter-

domain communication is achieved through specific interconnect techniques and circuits [75]. Due

to its flexible portability and “transparent” features regardless of the differences among computa-

tional cores, GALS interconnect architecture becomes a top candidate for multi- and many-core

chips that wish to do away with complex global clock distribution networks [117]. In addition,

GALS allows the possibility of fine-grained power reduction through frequency and voltage scal-

ing [10].

The outline of this chapter is organized as follows. Section 5.1 explains our motivation

for designing a GALS many-core platform for DSP applications. Design of a reconfigurable source-

synchronous interconnection network is described in Section 5.2. In this section, we also derive a

80

theoretical model for analyzing the throughput and latency of interconnect paths established from

the network. The design of an example many-core DSP platform fabricated in 65 nm CMOS utiliz-

ing this network architecture is shown in Section 5.3. This section also shows the implementation

and measurement results of the chip. Section 5.4 reviews related work and, finally, Section 5.5

concludes the chapter.

5.1 Motivation For A GALS Many-Core Platform

5.1.1 High Performance with Many-Core Design

Pollack’s Rule states that performance increase of an architecture is roughly proportional

to the square root of its complexity [10]. This rule implies that if we apply sophisticated techniques

to a single processor and double its logic area, we speedup its performance by only around 40%. On

the other hand, with the same area increase, a dual-core design using two identical cores could

achieve a 2× improvement assuming that applications are 100% parallelizable. With the same

argument, a design with many small cores should have more performance than one with few large

cores for the same die area. However, performance increase is heavily hindered by Amdahl’s Law,

which implies that this speedup is strictly dependent on the application’s inherent parallelism:

Speedup ≈
1

(1 − Parallel%) + 1
N
· Parallel%

(5.1)

where N is the number of cores.

Fortunately, for most applications in the DSP and embedded domain, a high degree of

task-level parallelism can be easily exposed [118] through their task-graph representatives such

as a complete 802.11a baseband receiver shown in Fig. 5.1. By partitioning the natural task-graph

description of a DSP application, where each task can easily fit into one or few small processors, the

complete application will run much more efficiently. This is due to the elimination of unnecessary

memory fetching and complex pipeline overheads [119]. In addition, the tasks themselves run in

tandem like coarse pipeline stages.

81

Frame

Detection
Timing

Synch.

CFO

Estimation

CFO

Compen.

Guard

Removal
64-pt FFT

Subcarrier

Reordering

Channel

Estimation

Channel

Equalizer

Constell.

De-

mapping

De-

interleav.

Step 1

De-

interleav.

Step 2

De-

puncturing

SIGNAL

decoding

De-

scrambl.

Pad

Removal

from ADC

to MAC layer

Auto-

correlation

Signal

Energy

Comput.

Data

Dist.

Viterbi

Decoder

Acc. CFO

Vector

Post

Timing

Synch.

Figure 5.1: Task-interconnect graph of an 802.11a WLAN baseband receiver. The dark lines repre-

sent critical data interconnects.

5.1.2 Advantages of the GALS Clocking Style

Since each core operates in its own frequency domain, we are able to reduce the power

dissipation, increase energy efficiency and compensate for some circuit variations on a fine-grained

level as illustrated in Fig. 5.2:

• GALS clocking design with a simple local ring oscillator for each core eliminates the need

for complex and power hungry global clock trees.

• Unused cores can be effectively disconnected by power gating, and thus reducing leakage.

• When workloads distributed for cores are not identical, we can allocate different clock fre-

quencies and supply voltages for these cores either statically or dynamically. This allows the

total system to consume a lower power than if all active cores had been operating at a single

frequency and supply voltage [120].

• We can reduce more power by architecture-driven methods such as parallelizing or pipelining

a serial algorithm over multiple cores [121].

• We can also spread computationally intensive workloads around the chip to eliminate hot

82

Accelerator

1

Shared Memory
Accelerator

3

Accelerator 2

Figure 5.2: Illustration of a GALS many-core heterogeneous system consisting of many small iden-

tical processors, dedicated-purpose accelerators and shared memory modules running at different

frequencies and voltages or fully turned off.

spots and balance temperature.

• GALS design flexibility supports remapping or adjusting frequencies of processors in an ap-

plication that allows it to continue working well even under the impact of variations.

From these advantages in both performance and power consumption, many-core GALS

style is highly desirable for designing programmable/reconfigurable DSP computational platforms [122].

However, the challenge now is how to design a low area and power cost interconnect network that is

able to offer low latency and high communication bandwidth for these GALS many-core platforms.

Next section describes our proposed reconfigurable network utilizing a novel source-synchronous

clocking scheme for tackling this challenge.

5.2 Design and Evaluation of a Reconfigurable GALS-Compatible Source-

Synchronous On-Chip Network

The static characteristic of interconnects in the task-graphs of DSP and embedded appli-

cations motivates us to build a reconfigurable circuit-switched network for our many-core platform.

The network is configured before run-time to establish static interconnects between any two proces-

83

Processor

Core

Osc

Switch

FIFO

W
e

s
t

South

E
a
s
t

North

Figure 5.3: The many-core platform from Fig. 5.2 with switches inside each processor that can

establish interconnects among processors in a reconfigurable circuit-switched scheme.

. . .

Switch A Switch B

driver wire

C
or

e

W
e

s
t

South

E
a

s
t

North

(b)(a)

Figure 5.4: (a) A unidirectional link between two nearest-neighbor switches includes wires con-

nected in parallel. Each wire is driven by a driver consisting of cascaded inverters. (b) A simple

switch architecture consisting of only five 4-input multiplexers.

sors described by the graph. Due to its advantages compared to clockless handshaking techniques

as explained in Chapter 2, the source-synchronous communication technique is utilized in our in-

terconnect networks for transferring data across clock domains in our GALS array of processors.

This section presents the design of our reconfigurable interconnection network; and also describes

how inter-processor interconnects are configured. Evaluation of throughput and latency of these in-

terconnects are given through formulations developed from timing constraints combined with delay

values obtained from SPICE models.

5.2.1 Architecture of Reconfigurable Interconnection Network

Figure 5.3 shows the targeted GALS many-core platform from Fig. 5.2 but focuses on its

interconnect architecture. Processors are interconnected by a static 2-D mesh network of reconfig-

84

Proc. B

Core

Osc

FIFO

Proc. A

Core

Osc

FIFO

Proc. C

Core

Osc

FIFO

Link

PathSwitch

Proc. D

Core

Osc

FIFO

clock

data

valid

full

Figure 5.5: Illustration of a long-distance interconnect path between two processors directly through

intermediate switches. On this interconnect, data are sent with the clock from the source processor

to the destination processor.

urable switches. Each switch connects with its nearest neighboring switch by two unidirectional

links where each link is composed of metal wires in parallel as depicted in Fig. 5.4(a); one wire per

data bit. Each wire is driven by a cascade of inverters that are appropriately sized. An intercon-

nect path between any two processors is formed from one or many links connecting intermediate

switches.

We will investigate the throughput and latency of interconnects that are configured from

switches with the architecture consisting of only 4-input multiplexers as shown in Fig. 5.4(b). The

switch has five ports: the Core port which is connected to its local core, and the North, South, West,

and East ports which are connected to its four nearest neighbor switches. As shown in the figure,

an input from the West port can be configured to go out to any port among the Core, North, South,

East ports and vice versa. For simplicity, we only shows its full connections to and from the West

port; all the other ports are connected in a similar fashion.

Figure 5.5 illustrates an example of a long-distance interconnection from Proc. A to Proc.

D passing through two intermediate processors B and C. This interconnection is established by

configuring the multiplexers in the switches of these four processors. The configuration is done

pre-runtime which fixes this communication path; thus, this static circuit-switched interconnect

85

source clock

FIFO
source data dest. data

dest. clock

output register

Proc. DProc. BProc. A

input dual-clock FIFO

Proc. C

N bits N wires

switch

clock buffer

Figure 5.6: A simplified view of the interconnect path shown in Fig. 5.5

is guaranteed to be independent and never shared. So long as the destination processor’s FIFO

is not full, a very high throughput of one data word per cycle can be sustained. This compares

favorably to a packet-switched network whose runtime network congestion can significantly degrade

communication performance [59, 87].

On this interconnect path, the source processor (Proc. A) sends its data along with its

clock to the destination. The destination processor (Proc. D) uses a dual-clock FIFO to buffer the re-

ceived data before processing. Its FIFO’s write port is clocked by the source clock of Proc. A, while

its read port is clocked by its own oscillator, and thus supports GALS communication. Storage ele-

ments inside the FIFO can be an SRAM array [41,123] or a set of flip-flop registers [87,124]. Data

sent on this interconnect path will pass through four multiplexers (of four corresponding switches)

and three switch-to-switch links as shown in Fig. 5.6. These switches are not only responsible for

routing data on the links but also act as repeaters along the long path when combined with wire

drivers.

5.2.2 Approach Methodology

Evaluation of the characteristics of these reconfigurable interconnects are based on the

delay values simulated by HSPICE. Simulation setups were performed through the use of CMOS

technology cards given by the Predictable Technology Model (PTM) [125]. For analyzing the effect

of technology scaling on interconnect performance, we ran simulations on five technology nodes:

90 nm, 65 nm, 45 nm, 32 nm and 22 nm. The wire dimensions used for simulations were derived

from the reports of the International Technology Roadmap for Semiconductors (ITRS) [126].

86

Upper Layer

Lower Layer

.

Cg

Cg

Cc Cc

ws

t

h

Figure 5.7: A side view of three metal layers where the interconnect wires are routed on the middle

layer. Each wire has ground capacitances with upper and lower metal layers and coupling capaci-

tances from adjacent intra-layer wires.

5.2.3 Link and Device Delays

In order to characterize performance of interconnects we firstly consider wires that are

connected between two adjacent switches. These wires are routed on intermediate layers where

the lower layers (metal 1 or 2) are used for intra-cell or inter-cell layouts and the upper layers are

reserved for power distribution and other global signals. In this work, we assume all interconnect

wires are on the same layer and have the same length when connecting two adjacent switches.

An interconnect wire in the intermediate layer incurs both ground and coupling capaci-

tances as depicted in Fig. 5.7. These capacitance values depend on the metal wire dimensions (space

s, width w, thickness t, height h, length l) and the inter-layer dielectric κILD that can be calculated

from formulations proposed by Wong et al. [127]. These formulations are also used by PTM on

their online interconnect tool [128].

Table 5.1 shows the wire dimensions and intra-layer dielectric based on ITRS, that was

used in the work by Im et al. [129], and its calculated resistances and capacitances over many

technology nodes from 90 nm down to 22 nm. The wire length is 2 mm at 90 nm technology

and is scaled correspondingly to each technology node. Notice that the wire length connecting

two adjacent switches approximates the length (or width) of a processor in the platform as seen

in Fig. 5.5. With these simple processors, a 20 mm x 20 mm die (400 mm2) would contain 100

processors at 90 nm and up to 1672 processors at 22 nm.

87

Table 5.1: Dimensions of interconnect wires at the intermediate layer based on ITRS [126] and with

resistance and capacitance calculated by using PTM online tool [128]

Technology (nm) 90 65 45 32 22

width w (nm) 207 147 102 72 50

space s (nm) 222 158 116 81 60

thickness t (nm) 351 264 183 135 98

height h (nm) 309 234 162 121 89

κILD 2.7 2.4 2.1 1.9 1.7

length l (µm) 2000 1444 1000 711 489

Rw (Ω) 556.9 753.8 1084.7 1481.1 2018.4

Cg (fF) 57.7 35.0 21.3 12.9 7.6

Cc (fF) 96.6 65.9 39.8 27.2 17.7

5x 25x
Rw/3

2Cg/6

Rw/3 Rw/3

2Cg/3 2Cg/3 2Cg/6 CL

5x 25x Cc/6 Cc/3 Cc/3 Cc/6
Rw/3

2Cg/6

Rw/3 Rw/3

2Cg/3 2Cg/3 2Cg/6 CL

Cc/6 Cc/3 Cc/3 Cc/65x 25x Rw/3

2Cg/6

Rw/3 Rw/3

2Cg/3 2Cg/3 2Cg/6 CL

. . .
. . .

A

B

C

. . .
. . .

. . .
. . .

. . .
. . .

Figure 5.8: Circuit model used to simulate the worst case and best case inter-switch link delay

considering the crosstalk effect between adjacent wires. Wires are simulated using a Π3 lumped RC

model.

For estimates of the switch-to-switch link delay while considering the effect of crosstalk

noise due to coupling capacitances, we used the Π3 lumped RC model for setting up wires in

HSPICE. Higher degree models such as Π5 or so on can make the simulation results more accurate

but also slows down the simulation time. The Π3 model was proven to have an error of less than 3%

compared with the accurate value of a distributed RC model [3]. Fig. 5.8 shows our circuit setup for

simulation of wires in an inter-switch link including the coupled capacitances among them1. In this

setup, load capacitance CL is equivalent to the input gate capacitance of a 4-input multiplexer. The

1For more accuracy, we can consider the multi-coupled case that takes into account capacitances coupled with far wires

rather than only adjacent wires [130]. However, the coupled capacitances from far wires are very small in compared with

those from adjacent wires, so their impacts are negligible [131].

88

Dlnsert

Dclkbuff,flip-flop + tclk-q + Dpath,max

Dpath,min + Dclkbuff,FIFO

Dpath,max + Dclkbuff,FIFO

clock @ source processor

data bit @ source processor

clock @ destination input FIFO

data bit @ destination input FIFO

clock @ destination input FIFO
after inserted a delay

Timing uncertainty

Dclkbuff,flip-flop + tclk-q + Dpath,min

safe rising edges

Figure 5.9: Timing waveforms of clock and data signals from the source processor to the destination

FIFO

Table 5.2: Delay values simulated using PTM technology cards

Technology (nm) 90 65 45 32 22

Supply Voltage Vdd (V) 1.20 1.10 1.00 0.90 0.80

Threshold Voltage Vth (V) 0.30 0.28 0.25 0.23 0.20

Dlink,max (ps) 271.8 223.8 142.9 123.1 104.7

Dlink,min (ps) 131.4 102.3 60.5 47.6 38.5

Dclkbu f f , f lip f lop (ps) 37.0 27.9 13.4 9.4 7.2

Dclkbu f f ,FIFO (ps) 93.2 69.8 25.9 18.2 14.2

Dmux (ps) 48.1 37.7 16.8 13.2 11.3

tsetup (ps) 25.2 20.1 11.0 9.9 7.0

thold (ps) -18.9 -15.1 -5.2 -3.9 -3.1

tclk−q (ps) 104.5 83.8 38.6 23.2 22.1

delay of a circuit is measured from when its input point reaches 0.5Vdd until the output point also

reaches 0.5Vdd.

Due to crosstalk, depending on the data patterns sent on the wires, three cases of delay

are experienced. The nominal delay happens when the signal on a wire goes high while both its

neighboring wires do not change. The best case delay Dlink,min occurs when the signal on a wire

moves in the same direction with its two neighbors; and the worst case delay Dlink,max occurs when

the signal on that wire switches in the opposite direction with its neighbors.

The simulated delay values with respect to each CMOS technology node are given in

Table. 5.2. This table also lists the values of Vdd and threshold voltage Vth used in the simulations.

89

Values of Vdd at each technology node are predicted by Zhao and Cao [125], and those of Vth are

assumed to be 1
4
Vdd [132]. In this table, we also include the delays of clock buffers when driving

a flip-flop stage (Dclkbu f f , f lip f lop), a FIFO (Dclkbu f f ,FIFO) and the delay of a 4-input multiplexer

(Dmux). We simulated a static positive D flip-flop using minimum-size transistors and its setup time

tsetup, hold time thold and propagation delay tclk−q are also shown in the table. A minor note is that

the flip-flop has negative hold time, which means that it can correctly latch the current data value

even when the rising clock edge arrives just after a new transition of data bits.

5.2.4 Interconnect Throughput Evaluation

For an interconnect path between two processors in a distance of n link segments, this

path will travel through n + 1 switches including those of the source and destination processors (as

depicted in Fig. 5.6) that passes through n + 1 multiplexers and n inter-switch links. Therefore, its

minimum (best case) and maximum (worst case) delays are:

Dpath,min = n · Dlink,min + (n + 1)Dmux (5.2)

and

Dpath,max = n · Dlink,max + (n + 1)Dmux (5.3)

Figure 5.9 shows timing waveforms of the clock and corresponding data sent from a

source to its destination. Data bits are sent at the rising edge of the source clock and each bit

is only valid in one cycle. Both clock and data bits travel in the same manner on the configured

interconnect path and therefore have the same timing uncertainty with a small delay difference: the

clock signal has to pass through a clock buffer before driving the destination FIFO while the data

signal has a clock buffer delay at the output register of the source processor and a tclk−q delay before

traveling on the interconnect path.

As seen in the figure, due to the timing uncertainty of both clock and data signals, metasta-

bility can occur at the input of destination FIFO when they transit at almost same time. For safety,

we have purposely inserted a delay line on the clock signal before it drives the destination FIFO (as

shown in Fig. 5.10), effectively moving the rising clock edge into the stable window between two

edges of the data bits as depicted in the last waveform of Fig. 5.9. The value of the inserted delay

90

source clock

FIFO
source data dest. data

dest. clock

inserted delay

Figure 5.10: Interconnect circuit path with a delay line inserted in the clock signal path before the

destination FIFO to shift the rising clock edge to a stable data window

Dinsert must satisfy the setup time constraint:

Dinsert + nDlink,min + (n + 1)Dmux + Dclkbu f f ,FIFO

> Dclkbu f f , f lip f lop + tclk−q + nDlink,max + (n + 1)Dmux + tsetup

or

Dinsert > n(Dlink,max − Dlink,min) + Dclkbu f f , f lip f lop − Dclkbu f f ,FIFO

+ tsetup + tclk−q

(5.4)

Given a delay value Dinsert satisfying the above condition, the period of source clock used

on the interconnect also has to meet the hold time constraint:

Dinsert + Dclkbu f f ,FIFO + nDlink,max + (n + 1)Dmux + thold

< Dclkbu f f , f lip f lop + tclk−q + nDlink,min + (n + 1)Dmux + Tclk

and therefore,

Tclk > n(Dlink,max − Dlink,min) + Dinsert

+ Dclkbu f f ,FIFO − Dclkbu f f , f lip f lop + thold − tclk−q

(5.5)

The minimum clock period strongly depends on the timing uncertainty (Dlink,max−Dlink,min)

and linearly increases with the interconnect distance n. The maximum frequency (corresponding to

the minimum period) of source clock used for transferring data on an interconnect path correspond-

ing to a distance is given in Fig. 5.11. When connecting two nearest neighboring processors, the

interconnect can run at up to 3.5 GHz at 90 nm and up to 7.3 GHz at 22 nm. The maximum

frequency is inversely proportional to n that reduces when interconnect distance increases.

5.2.5 Interconnect Latency

Latency of an interconnect path is defined as the time at which a data word is sent by the

source processor until it is written to the input FIFO of the destination processor. The data travels

91

0 1 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

Interconnect Distance (number of inter−switch links)

M
a

x
 F

re
q

u
e

n
c
y
 (

G
H

z
)

@ 90 nm

@ 65 nm

@ 45 nm

@ 32 nm

@ 22 nm

Figure 5.11: Maximum frequency of the source clock over various interconnection distances and

CMOS technology nodes

along the path, and then registered at the destination FIFO. This path includes both delays by the

inserted delay line and clock buffer on the clock signal and also a flip-flop propagation delay tclk−q.

Therefore, the maximum latency of an interconnect path with distance of n inter-switch links is

given by:

Dconnect,max = nDlink,max + (n + 1)Dmux + Dinsert + Dclkbu f f ,FIFO + tclk−q (5.6)

The maximum absolute latency (in ns) corresponding to distance is plotted in Fig. 5.12.

Consider a nearest neighboring interconnect, which has less than 1 ns latency regardless of the

technology used. This means that at 1 GHz the interconnect latency is less than 1 cycle, and at

500 MHz latency is less than a half of cycle.

The maximum number of clock cycles that the data will travel on an interconnect distance

is given in Fig. 5.13. This maximum clock cycle latency is equal to the maximum latency (in ns)

multiplied by the maximum clock frequency (in GHz) at that distance. Interestingly, the latency

cycles even decreases when distance increases. This happens because the clock period is larger for

longer distances. In all cases, the latency is less than 2.5 cycles at 90 nm and less than 1.7 cycles at

22 nm regardless of distance. These latencies are very low when compared with dynamic packet-

switched networks whose latency (in cycles) is proportional to the distance, which can be very high

if routers are pipelined into many stages.

92

0 1 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

Interconnect Distance (number of inter−switch links)

M
a

x
 A

b
s
o

lu
te

 L
a

te
n

c
y
 (

n
s
)

@ 90 nm

@ 65 nm

@ 45 nm

@ 32 nm

@ 22 nm

Figure 5.12: Maximum interconnect latency (in ns) over various distances

5.2.6 Discussion

Our interconnects can guarantee an ideal throughput of one data word per cycle because

no network contention occurs, while also achieving very low latency of only a few cycles. Further-

more, our interconnect architecture well supports GALS scheme while does not require complicated

control circuits and buffers at switches along the interconnect path; therefore, it is also highly effi-

cient in terms of area and power consumption. The network circuit occupies only 7% of each pro-

grammable processor’s area2 and only consumes 10% of the total power while mapping a complex

application as shown in Section 6.2. These advantages along with the deterministic characteristic

of interconnects in DSP applications we are targeting support the idea of building a reconfigurable

circuit-switched network for our platform.

However, these advantages come with a cost of sacrificing the flexibility and interconnect

capacity. Programmer (under the help of automatic tools) must setup all interconnects before an

application can run. In addition, the number of interconnect links are limited and interconnects

after configured are not shared; therefore, for some complex applications, it is difficult for setting

up all connects or even there are not enough links required [133]. For increasing the interconnect

capacity, the platform is equipped with two static configurable networks as will be described in

Section 5.3.2.

2Note that this area is sum of two static networks, so each network occupies only 3.5% of the processor’s area.

93

0 1 2 4 6 8 10 12 14 16 18 20
1

1.5

2

2.5

3

Interconnect Distance (number of inter−switch links)

M
a

x
 L

a
te

n
c
y
 (

c
y
c
le

s
)

a
t

th
e

 M
a

x
 F

re
q

.

@ 90 nm

@ 65 nm

@ 45 nm

@ 32 nm

@ 22 nm

Figure 5.13: Maximum communication latency in term of cycles at the maximum clock frequency

over interconnect distances

5.3 An Example GALS Many-core Platform: AsAP2

The top level block diagram of our 167-processor computational platform (AsAP2) is

shown in Fig. 5.14. The platform consists of 164 small programmable processors, three accelerators

(FFT, Viterbi decoder and Motion Estimation), and three 16 KB shared memory modules [13].

Placement of the three accelerators and the three shared memories at the bottom of the array was

chosen only to simplify the routing of global configuration signal wires and to simplify mapping

of applications onto the large central homogeneous array (as opposed to breaking up the array by

placing accelerators or memories in the middle) [134].

Because of the array nature of the platform, the local oscillator, voltage switching, config-

uration and communication circuits are reused throughout the platform. These common components

are designed as a generic “wrapper” which could then be reused to make any computational core

compatible with the GALS array, and thus facilitates easy design enhancements. The difference be-

tween the programmable processors and the accelerators is mainly in their computational datapaths

as illustrated in Fig. 5.15. The programmable processors have an in-order single-issue 16-bit fixed

point datapath, with a 128×16-bit DMEM, a 128×35-bit IMEM, two 64×16-bit dual-clock FIFOs,

and they can execute 60 basic ALU, MAC, and branch type instructions.

94

input data,
valid and

clock

output data,
valid and

clock

output request

Configuration and Test Logic
input
mux

select

output mux

select

serial configuration bit-stream test out

input request

to analog
padsMotion

Estimation

Viterbi

Decoder FFT

16 KB Shared Memories

Figure 5.14: Block diagram of the 167-processor computational platform (AsAP2) [13]

5.3.1 Per-Processor Clock Frequency and Supply Voltage Configuration

All processors, accelerators and memory modules operate at their own fully-independent

clock frequency that is generated by a local clock oscillator and is able to arbitrarily halt, restart, and

change frequency. During run-time, processors fully halt their clock oscillator six cycles after there

is no work to do (for finishing all instructions already in the pipeline), and they restart immediately

once work becomes available. Each ring oscillator supports frequencies between 4.55 MHz and

1.71 GHz with a resolution of less than 1 MHz [13]. Off-chip testing is used to determine the valid

operational frequency settings for the ring oscillator of each processor, which takes into account

process variations.

The platform is powered by two independent power grids which will in general, have

different supply voltages. Processors may also be completely disconnected from either power grid

when they are unused. The benefits of having more than two supply voltages are small when com-

pared to the increased area and complexity of the controller needed to effectively handle voltage

switching [135]. Using two supply voltages for power management was also employed in the

95

CORE
Datapath

Osc.

Switch

Supply
Voltages

Controller

Figure 5.15: Simplified block diagram of processors or accelerators in the proposed heterogeneous

system. Processor tiles are virtually identical, differing only in their computational core.

ALPIN test chip [136].

Although the processors have hardware to support dynamic voltage and frequency scaling

(DVFS) through software or a local DVFS controller [13, 137], dynamic analyses are much more

complex and do not demonstrate the pure frequency and voltage gains as clearly as with static

assignments. In addition, due to its control overhead, an application running in a DVFS mode may

actually dissipate more power if the workload is predictable pre-runtime and is relatively static.

Data and analysis throughout this work utilizes clock frequencies and supply voltages that

are kept constant throughout workload processing. Static configuration is intentionally set by the

programmer for a specific application to optimize its performance and power consumption. This

method is especially useful for applications that have a relatively static load behavior at run-time.

The frequency and supply voltage of each processor are controlled by its VFC that is depicted in

Fig. 5.16.

The VFC and communication circuits operate on their own supply voltage that is shared

among all processors in the platform to guarantee the same voltage level for all interconnect links,

thus avoiding the use of level shifters between switches.

96

Volt. &

Freq.

Controller

VddHigh

VddCore

VddAlwaysOn

control_freq

VddOsc

control_high

control_low

VddLow

GndCom

GndOsc

Switch

Oscconfig signals

from core

Figure 5.16: The Voltage and Frequency Controller (VFC) architecture

5.3.2 Source-Synchronous Interconnection Network

All processors in the platform are interconnected using a reconfigurable source-synchronous

interconnect network as described in Section 5.2. To increase the interconnect capacity, each pro-

cessor has two switches as depicted in Fig. 5.17 and, correspondingly, has two dual-clock FIFOs –

each per switch (on the output of its Core port). These switches connect to their nearest neighboring

switches to form two separate 2-D mesh networks; simplifying the mapping job for programmers.

Processor

Core

Osc

FIFO

Switch

Processor

Core

Osc

Switch

FIFO

Figure 5.17: Each processor tile contains two switches for the two parallel but separate networks

97

Furthermore, two networks naturally support tasks that need two input channels3.

A reconfigurable delay line is inserted on the clock signal before each FIFO to adjust its

delay value for matching with its corresponding data. The reconfigurable delay line is a simple

circuit including many delay elements and configured by multiplexers for setting a delay value. The

delay value is chosen corresponding to the interconnect distance for satisfying constraint (4). For

interconnects of a mapped application, their distances are known; therefore the corresponding delay

values are statically set. Thanks to these static settings, the delay circuits do not cause any glitch on

the clock signals at run-time.

5.3.3 Platform Configuration, Programming and Testability

For array configuration (e.g. circuit-switch link configurations, VFC settings, etc.), the

compiler, assembler and mapping tools place programs and configurations into a bit-stream that

is sent over a Serial Peripheral Interface (SPI) into the array as depicted at top of Fig. 5.14. This

technique needs only a few I/O pins for chip configuration. The configuration information and

instructions as well as address of each processor are sent into the chip in a serial manner bit by bit

along with an off-chip clock. Based on the configuration code, each processor will set its frequency

and voltage; and the multiplexers and delay lines of its switches are also configured for establishing

communication paths.

Our current test chip employs a simple test architecture for functional testing only that

determines whether a processor operates correctly. Test outputs of all processors share the same

the ”test out” pins as shown at the top of Fig. 5.14. Therefore, there is only one processor that

can be tested at a time, but this can be easily reconfigured by an off-chip test environment with

test equipment (e.g. logic analyzer). Test signals include all key internal control and data values.

Our current test architecture works well at the processor level that is acceptable for a research chip.

High-volume manufacturing would require the addition of special circuits (e.g. scan path) for rapid

high-fault-coverage testing [138, 139].

98

• 65 nm STMicroelectronics

1.19 GHz, 1.3 V

66 MHz, 0.675 V

1.095 GHz, 1.3V

@

5
.9

3
9

 m
m

410 m

4
1
0

m

FFT
Vit

Mot.

Est. MemMem

5.516 mm

Mem

Figure 5.18: Die micrograph of the 167-processor AsAP2 chip

5.3.4 Chip Implementation

The platform was fabricated in ST Microelectronics 65 nm low-leakage CMOS process

using a standard-cell design flow. Its die micrograph is shown in Fig. 5.18. It has a total of 55

million transistors with an area of 39.4 mm2. Each programmable processor occupies 0.17 mm2,

with its communication circuit occupying 7%, including the two switches, wires and buffers. The

area of the FFT, motion estimation and Viterbi decoder accelerators is six times, four times and one

time, respectively, that of one processor; the memory module is two times the size of one processor.

5.3.5 Measurement Results

We tested all processors in the platform to measure their maximum operating frequencies.

The maximum frequency is obtained once a higher frequency makes outputs of the corresponding

processor incorrect. The maximum frequency and power consumption of the programmable proces-

sors versus supply voltage is shown in Fig. 5.19. As shown in the figure, they have a nearly linear

and quadratic dependence on the supply voltage, respectively. These important characteristics are

used to reduce power consumption of an application by appropriately choosing the clock frequency

3For tasks need more than two input channels, it is easy to use some intermediate processors for collecting and

converting these inputs into two channels.

99

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
0

200

400

600

800

1000

1200

Supply Voltage (V)

M
a

x
 F

re
q

u
e

n
c
y
 (

M
H

z
)

P
o

w
e

r
(m

W
)

0

10

20

30

40

50

60

Figure 5.19: Maximum clock frequency and 100%-active power dissipation of one programmable

processor over various supply voltages

Table 5.3: Average power consumption measured at 0.95 V and 594 MHz

Operation of 100% Active (mW) Stall (mW) Standby (mW)

Processor 17.6 8.7 0.031

FFT 12.7 7.3 0.329

Viterbi 6.2 4.1 0.153

FIFO Rd/Wr 1.9 0.7 ∼0

Switch + Link 1.1 0.5 ∼0

and supply voltage for each processor as detailed in Section 6.2. At 1.3 V, the programmable pro-

cessors can operate up to 1.2 GHz. The configurable FFT and Viterbi processors can run up to

866 MHz and 894 MHz respectively [140].

The maximum frequency of each processor should vary under the impact of process and

temperature variations. Unfortunately, these measurements have not yet been made. Currently, we

can guarantee the correct operation of the mapped application by allowing a frequency margin of

10%-15% of the maximum frequency measured under typical conditions, for each processor.

Table 5.3 shows the average power dissipation of processor, accelerators and communica-

tion circuit at 0.95 V and 594 MHz. This supply voltage and clock frequency is used to evaluate and

test the 802.11a baseband receiver application described in the next section. The FFT is configured

to perform 64-point transformations, and the Viterbi is configured to decode 1/2-rate convolution

codes. The table also shows that during stalls (i.e. non-operation while the clock is active) the

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

Interconnect Distance (number of inter−switch links)

M
a

x
 C

lo
c
k
 F

re
q

u
e

n
c
y
 (

M
H

z
)

Figure 5.20: Measured maximum clock frequencies for interconnect between processors over var-

ious interconnect distances at 1.3 V. An Interconnect Distance of one corresponds to adjacent

processors.

processors consume a significant portion, approximately 35-55%, of their normal operating power.

Leakage power are very small while processors are in the standby mode with the clock halted.

Figure 5.20 plots measured data for maximum allowable source clock frequencies when

sending data over a range of interconnect distances at 1.3 V. Interestingly, the measured data has

a similar trend as the theoretically developed model depicted in Fig. 5.11. The differences are

due to the assumptions used in the theoretical model versus the real test chip such as wire and

device parameters. For the model we assumed wires have the same length and are on the same

metal layer with devices modeled from the PTM SPICE cards; while the test chip is built from ST

Microelectronics standard cells with wires that are automatically routed along with buffers that are

added by Cadence Encounter place and route tool. Besides that, environment parameters, process

variation and power supply noise on the real chip add more to these differences. However, the

maximum clock frequency strongly depends on the timing uncertainty of clock and data signals

that linearly increases following the distance; so both measured and theoretical results come to the

same conclusions. Note that, as shown in the figure, because the maximum operating frequency of

processors is 1.2 GHz, source-synchronous interconnects with distances of one and two inter-switch

links also only run up to 1.2 GHz.

The clock frequency of the source processor reduces corresponding to the interconnect

101

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Interconnect Distance (number of inter−switch links)

In
te

rc
o

n
n

e
c
t

P
o

w
e

r
(m

W
)

Figure 5.21: Measured 100%-active interconnect power over varying inter-processor distances at

594 MHz and 0.95 V

distance that affects its computational performance. However, for a good mapping tool or carefully

manual mapping, we always want to assign critical processors in an application with high volumes

of data communication near together. This guarantees source processors of interconnects still run at

high frequency satisfying the application requirement.

Another inexpensive solution to maintain a high processor clock frequency while com-

municating over a long distance is to insert a dedicated “relay” processor into the long path by

the fact that the processor in our platform is cheap with very small area. Furthermore, as shown

in Fig. 5.20, for a communication distance of ten inter-switch links, source processor clocks can

operate up to 600 MHz which is sufficient for meeting computational requirements of many DSP

applications such as an 25-processor 802.11a WiFi baseband receiver presented in Chapter 6, where

the maximum interconnect length is six.

Interconnect power corresponding to distance at the same 594 MHz and 0.95 V is given

in Fig. 5.21. These measured power values are nearly linear to distance, which is reasonable due

to the fact that interconnect power is proportional to the number of switches and interconnect links

that form the interconnection path plus power consumed by a FIFO write. The power at distances

larger than ten is not shown because source clock frequency is less than 594 MHz at these distances.

102

5.4 Related Work

The methodology of inter-domain communication is a crucial design point for GALS ar-

chitectures. One approach is the purely asynchronous clockless handshaking, that uses multiple

phases (normally two or four phases) of exchanging control signals (request and ack) for trans-

ferring data words across clock domains [76, 77]. Unfortunately, these asynchronous handshaking

techniques are complex and use unconventional circuits (such as the Muller C-element [3]) typically

unavailable in generic standard cell libraries. Besides that, because the arrival times of events are

arbitrary without a reference timing signal, their activities are difficult to verify in traditional digital

CAD design flows.

The so-called delay-insensitive interconnection method extends clockless handshaking

techniques by using coding techniques such as dual-rail or 1-of-4 to avoid the requirement of delay

matching between data bits and control signals [78]. These circuits also require specific cells that

do not exist in common ASIC design libraries. Quinton et al. implemented a delay-insensitive

asynchronous interconnect network using only digital standard cells; however, the final circuit has

large area and energy costs [79].

Another asynchronous interconnect technique uses a pausible or stretchable clock where

the rising edge of the receiving clock is paused following the requirements of the control signals

from the sender. This makes the synchronizer at the receiver wait until the data signals stabilize

before sampling [80, 81]. The receiving clock is artificial meaning its period can vary cycle by

cycle; so it is not particularly suitable for processing elements with synchronous clocking that need

a stable signal clock in a long enough time. Besides that, this technique is difficult to manage when

applied to a multiport design due to the arbitrary and unpredictable arrival times of multiple input

signals.

An alternative for transferring data across clock domains is the source-synchronous com-

munication technique that was originally proposed for off-chip interconnects. In this approach, the

source clock signal is sent along with the data to the destination. At the destination, the source clock

is used to sample and write the input data into a FIFO queue while the destination clock is used to

read the data from the queue for processing. This method achieves high efficiency by obtaining an

ideal throughput of one data word per source clock cycle with a very simple design that is also sim-

103

ilar to the synchronous design methodology; hence it is easily compatible with common standard

cell design flows [84, 86, 87, 141]. Source-synchronous communication technique was used in our

statically reconfigurable networks presented in this chapter.

5.5 Summary

We have presented a GALS-compatible inter-processor communication network utilizing

a novel source-synchronous interconnection technique allowing efficient communication among

processors which are in different clock domains. The on-chip network is reconfigurable circuit-

switched and is configured before runtime such that interconnect paths can achieve their ideal

throughput at a very low power and area costs. We utilized this network in a high-performance

and energy-efficient programmable DSP platform named AsAP2 consisting of many simple cores

and dedicated-purpose accelerators targeting DSP applications which naturally has a high degree of

task-level parallelism and deterministic inter-task communication traffic.

104

Chapter 6

Application Mapping Case Study:

802.11a Baseband Receiver on AsAP2

In recent years, a wide variety of wireless communication systems has come into widespread

use. To quickly adapt with this variety the flexibility of software-defined radio (SDR) solutions have

become increasingly attractive. Some SDR platforms were proposed and the 802.11a system [142]

is one of the wireless protocols used as benchmarks to evaluate their efficiency.

Some real-time software implementations of the 802.11a baseband transmitter were re-

ported in the literature [96, 143, 144]. The implementations of its receiver, which is much more

complicated, however, either cannot obtain a 54 Mbps throughput [96, 145–147], or ignore some

necessary features such as frame detection/synchronization, carrier frequency offset (CFO) esti-

mation/compensation and channel equalization [148–150]. Speeding up the performance can be

obtained by using some built-in dedicated hardware such as Viterbi decoder and FFT for the core

computational components. However, other processing modules in the system which are imple-

mented in software become bottlenecks that limit the throughput. We eliminate these bottlenecks to

get a complete real-time receiver by exploiting the advantage of task-level parallelism on multiple

small cores of the AsAP2 platform [151] which was presented in Chapter 5.

The remainder of this chapter is organized as follows. Section 6.1 describes the design

of a complete 802.11a baseband receiver. The mapping of this receiver on the AsAP2 platform

is shown in Section 6.2. Section 6.3 describes the evaluation and improvement of the receiver’s

105

Frame Detection /
Synchronization

CFO Estimation /
Compensation

Guard
Removing

FFT

Subcarrier
Reordering

Channel Estimation /
Equalization

De-modulationDe-interleaving

De-puncturing
Viterbi

Decoding
Descrambing

input samples

output bit sequence

Figure 6.1: Block diagram of a complete 802.11a baseband receiver

S S S S S S S S S S GI2 L L GI SIGNAL . . .

10 short-training symbols 2 long-training symbols
with GI2

Many OFDM data
symbols

Data

SIGNAL
symbol

8 µs 8 µs 4 µs N x 4 µs

GI

Figure 6.2: Structure of a received frame. S: 16-sample short-training symbol; GI2: 32-sample

double guard interval; L: 64-sample long-training symbol; GI: 16-sample single guard interval;

SIGNAL and DATA fields: 64 samples each.

throughput and power. Section 6.4 reviews and compares related work on software implementation

of the 802.11a receiver on other platforms; and, finally, Section 6.5 summarizes this chapter.

6.1 Architecture of a Complete 802.11a Baseband Receiver

Fig. 6.1 shows the top-level architecture of a complete 802.11a baseband receiver. The

baseband receiver gets signal samples from an analog-to-digital converter (ADC) with a sampling

frequency of 20 MHz. These signal samples form a frame including training symbols and many

OFDM symbols as described in Fig. 6.2.

Ten periodic short-training symbols in the beginning of frame are used for frame detection

and timing synchronization. A common timing metric, which is used for both frame detection and

timing synchronization, was proposed by Schmidl and Cox [152]:

M(n) =
|P(n)|2

Q(n)2
(6.1)

Where P(n) is the auto-correlation between the received frame and a copy delayed 16

106

−50 0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4

index n

M
(n

) Th
det

Th
syn

Figure 6.3: Plot of the timing metric M(n) with S NR = 20dB. Thdet and Thsyn are thresholds used

for frame detection and timing synchronization, respectively.

samples from itself. Q(n) is the energy of 16 consecutive samples beginning from the nth sample:

P(n) =

15∑

k=0

r(n + k + 16) · r∗(n + k) (6.2)

Q(n) =

15∑

k=0

|r(n + k)|2 (6.3)

With r(n) is the received samples and (.)∗ denotes the complex conjugate operation.

Since the ten short-training (S) symbols are periodic, under the impact of noise, the timing

metric forms an amplitude plateau as described in Fig. 6.3. This metric begins to increase from the

first S symbol, which then fluctuates around a high amplitude level and then gradually decreases at

the ninth S symbol. This behavior of the timing metrics allows us to easily set constant threshold

values for frame detection and synchronization.

A frame should be detected if its timing metric is larger than a threshold Thdet at some

consecutive samples (we choose the number of these samples to be 48, which equals the number of

samples of 3 S symbols). After the frame is detected, the timing is synchronized by locate the first

sample of the timing metric M(n) which is less than the threshold Thsyn. This sample is the first

107

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

In−Phase
.

Q
u

a
d

ra
tu

re

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

In−Phase

Q
u

a
d

ra
tu

re

(a) (b)

Figure 6.4: The constellation of 16-QAM subcarriers in the frequency domain with ǫ = 10 ppm at

5 GHz: a) without CFO compensation; b) with CFO compensation.

sample of the tenth S symbol which allows us to determine all long-training, SIGNAL and OFDM

symbols in the frame from now on.

Because division is slow, we replace the frame detection’s condition M(n) =
|P(n)|2

Q(n)2 >

Thdet and the timing synchronization’s condition M(n) =
|P(n)|2

Q(n)2 < Thsyn with:

|P(n)|2 > Thdet · Q(n)2 (6.4)

and

|P(n)|2 < Thsyn · Q(n)2 (6.5)

respectively. In this project, we choose Thdet = 0.75 and Thsyn = 0.15 as results derived by Jiménez

et al. [153] and Tang et al. [154].

Once the timing has been synchronized, the frequency synchronization step begins. Due

to the difference in the frequency between the transmitter and the receiver, there exists a carrier

frequency offset (CFO) between them. This CFO creates a phase error which is accumulated on

every sample of the frame. Even when the CFO is small, the phase error still make subcarriers (in

the frequency domain) rotate far from the standard constellation points as illustrated in Fig. 6.4. This

CFO extremely degrades the accuracy of the receiver which is why the frequency synchronization

step is necessary in a practical receiver.

108

The CFO can be estimated and compensated using two long-training symbols as proposed

by Sourour [155]. The phase error caused by CFO is estimated as follows:

α =
1

64
· ∠{

63∑

k=0

L2(k) · L∗1(k)} (6.6)

where L1(k) and L2(k) are kth samples of the received long-training symbol 1 and 2, respectively.

The mth samples beginning from the first sample of symbol L1 is corrected by rotating

at an angle of {−(m + 192)α} because the first sample of symbol L1 is separated 192 samples from

the first sample of the frame. This rotation is implemented by using the well-known CORDIC

algorithm [156]. The CORDIC algorithm is very convenient to implement on hardware, however,

to get a high rotation accuracy, it requires a large number of iterations which has a large latency if

implemented in software. The large number of cycles needed by the CORDIC algorithm as well

as the high complexity of other algorithms for rotating samples explains why there are only few

of previous software-based works proposing the CFO correction step in their receiver [146, 147].

We overcome this challenge by exploiting the multiple cores of AsAP2 architecture to rotate many

samples in parallel. This increases overall throughput at the cost of using more processors.

After CFO compensation step, the 16-sample GI field of each OFDM symbol are re-

moved, then 64 data samples are transformed to the frequency domain by a 64-point FFT. Next,

subcarriers in the frequency domain must be equalized to eliminate the effects of the communi-

cation channel. The channel’s coefficients are estimated using information of two long-training

symbols. Let L̂ be the long-training symbol known by both the transmitter and receiver, and L̃1 and

L̃2 be two long-training symbols rotated by the CFO compensation. The channel coefficient of the

kth subcarrier is estimated as follows:

H(k) =
1

2
·

L̃1(k) + L̃2(k)

L̂(k)
(6.7)

This estimation of channel coefficients is used to equalize the corresponding subcarriers

of all SIGNAL and DATA symbols. For each kth subcarrier S m(k) of the mth symbol, it is equalized

by:

Ŝ m(k) =
S m(k)

H(k)
(6.8)

109

Above, we used two divisions to compute H(k) and Ŝ m(k). Since the division is slow, we

should eliminate one at the equalization step by computing:

Ŝ m(k) = S m(k) ·C(k) (6.9)

where C(k) is estimated as:

C(k) =
1

H(k)
=

2L̂(k)

L̃1(k) + L̃2(k)
(6.10)

to replace for estimation of H(k) in Eq. 6.7.

After equalization, the subcarriers of OFDM symbols are de-modulated into binary se-

quences and then these binary sequences are de-interleaved, de-punctured, decoded using Viterbi

algorithm and de-scrambled. In the end, the final obtained binary sequence is sent to the Medium

Access Control (MAC) layer. An important note is that the information from the SIGNAL symbol

after decoded will be used to decide the modulation scheme (BPSK, QPSK, 16-QAM or 64-QAM),

interleaving patterns and puncture pattern of the convolution code (1/2, 2/3 or 3/4) for DATA sym-

bols corresponding to the supported bit rates: 6, 9, 12, 18, 24, 36, 48 or 54 Mbps.

6.2 Mapping the 802.11a Baseband Receiver on AsAP2

6.2.1 Programming Methodology

Programming an application on AsAP2 follows three basis steps: 1) Each task of the

application described by its task-graph representative is mapped on one or a few processors or on an

accelerator. These processors are programmed using our simplified C language and are optimized

with assembly codes. 2) Task interconnects are then assigned by a GUI mapping tools or manually

in a configuration file. 3) AsAP’s C compiler combined with the assembler will produce a single bit

file for programming and configuring the array. The hardware platform configuration is then done

as introduced in Section 5.3.3.

110

DATA

DISTR.

AUTO-

CORR.

ACC. OFF.

VECTOR

COMP.

CFO

COMPEN.

ENERGY

COMP.

FRAME

DET.

CORDIC –

ANGLE

CHANNEL

EQUAL.

CHANNEL

EST.

SUBCARR

. REORD.

TIMING

SYN.
CFO EST.

DE-

MAPPING

BR & DL

COMP.

DE-

SCRAM.

PAD

REMOV.

DE-
INTERLEAV

1

DE-
INTERLEAV

2
DE-PUNC.

FFT

VITERBI

DEC.

POST

TIMING

SYN.

to MAC layer

PRE-

CHAN.

EST.

from ADC

GUARD

REMOV.

Figure 6.5: Mapping of a complete 802.11a baseband receiver using only nearest-neighbor inter-

connect. The gray blank processors are used for routing purposes only.

6.2.2 Application Mapping

For illustrating the convenience and efficiency that our reconfigurable interconnection

network architecture in AsAP2 offers, we mapped two versions of the 802.11a baseband receiver

given by a task-graph in Fig. 5.1. The first version using only nearest neighboring interconnects

which was the method offered by the first generation platform (AsAP1) [118]. The mapping diagram

of this method is shown in Fig. 6.5 using 33 processors plus Viterbi and FFT accelerators with 10

processors used solely for routing data. With our new reconfigurable network supporting long-

distance interconnects utilized in this platform, a much more efficient version is shown in Fig. 6.6.

This mapping version requires only 23 processors which results in a big savings of 30% on the

number of processors used compared to the first version. The following is a brief summary of each

processor’s task.

• Data Distribution: distributes input samples to other processors; each sample is represented

by two 16-bit words (real and imaginary) in the 3.13 format.

• Auto Correlation: computes the auto-correlation function P(n) given in Eq. 6.2.

• Energy Computation: computes the energy of each of 16 consecutive samples Q(n) given

111

DATA

DISTR.

AUTO-

CORR.

OFFSET

VECTOR

ACC.

CFO

COMPEN.

ENERGY

COMP.

FRAME

DET.

CORDIC –

ANGLE

CHANNEL

EQUAL.

CHANNEL

EST.

SUBCARR

. REORD.

TIMING

SYN.
CFO EST.

DE-

MAPPING

BR & DL

COMP.

DE-

SCRAM.

PAD

REMOV.

DE-
INTERLEAV

1

DE-
INTERLEAV

2
DE-PUNC.

FFT

VITERBI

DEC.

POST

TIMING

SYN.

to MAC layer

PRE-

CHAN.

EST.

: Other Connections (for Control, Detection, Estimation)

: Connections on the Critical Data Path

from ADC

GUARD

REMOV.

DATA

DISTR.

CONTROL

Figure 6.6: Mapping of a complete 802.11a baseband receiver using a reconfigurable network that

supports long-distance interconnects

in Eq. 6.3.

• Frame Detection: detects frame based on the condition of |P(n)|2 > 0.75Q(n)2 in 48 consec-

utive samples.

• Timing Synchronization: locates the first samples that satisfies |P(n)|2 < 0.15Q(n)2 after the

frame was detected.

• Post Timing Synchronization: removes input samples until frame is synchronized.

• Data Distribution Control: controls the distribution of the samples.

• CFO Estimation: computes part {
∑63

k=0 L2(k) · L∗
1
(k)} of the carrier frequency offset given in

Eq. 6.6.

• CORDIC Angle: computes angle α given in Eq. 6.6 using the CORDIC algorithm.

• Offset Vector Accumulation: computes the unit vector representing the angle {−(m+192)α}

which is needed to rotate the mth samples.

• CFO Compensation: rotates samples to compensate for the carrier frequency offset using a

complex multiplication.

• Guard Removal: removes 16 prefix samples of each 80-sample OFDM symbol.

112

• FFT: is FFT accelerator configured to perform a 64-point FFT on 64 samples of each OFDM

symbol.

• Subcarrier Reordering: removes 12 null subcarriers and 4 pilots of each symbol. The re-

maining 48 subcarriers are then reordered as specified in the standard [142].

• Pre-Channel Estimation: computes the average value 1
2
· [L̃1(k) + L̃2(k)] for each of 48

subcarriers of two long-training symbols.

• Channel Estimation: computes the channel’s coefficients C(k) given in Eq. 6.10 using the

division algorithm with a small lookup table introduced by Hung et al. [157].

• Channel Equalization: equalizes subcarriers Ŝ m(k) as given in Eq. 6.9.

• De-modulation: demaps each subcarrier back into a binary sequence. The number of bits

representing each subcarrier depends on its modulation schemes: 1 bits, 2 bits, 4 bits and 6

bits for BPSK, QPSK, 16-QAM and 64-QAM, respectively.

• Deinterleaving 1 and Deinterleaving 2: are two deinterleaving steps that reverse the inter-

leaving steps from the transmitter.

• Depuncturing: inserts dummy bits into the locations removed by the convolution encoder of

the transmitter for creating code rate 2/3 and 3/4 from the code rate 1/2.

• Viterbi Decoding: is a built-in accelerator used to decode the bit sequence using Viterbi

algorithm.

• Descrambling: de-scrambles the decoded bit sequence using the generator polynomial G(x) =

x7
+ x4
+ 1.

• Bit Rate & Data Length Computation: retrieves information about bit rate and data length

from the decoded SIGNAL symbol. The bit rate tells information about the modulation

scheme and code rate of the convolution code. This information is used to control the De-

modulation, Interleaving 1, Interleaving 2 and Depuncturing processors. The data length tells

the number of useful data bytes contained in the received frame.

113

• Pad Removal: removes garbage bits which include the Tail and Pad bits before sending the

final bit sequence to the MAC layer.

The receiver mapped is complete and includes all the necessary practical features such

as frame detection and timing synchronization, carrier frequency offset (CFO) estimation and com-

pensation, and channel estimation and equalization. In this implementation, the CFO compensation

uses a lookup table to compute the complex unit vector of the accumulated offset angle, and then

uses a complex multiplication for sample rotation instead of using the CORDIC algorithm as re-

ported in our previous work [94] (all other processors are unchanged).

The compiled code of the whole receiver is simulated on the Verilog RTL model of our

platform using Cadence NCVerilog and its results are compared with a Matlab model to guarantee

its accuracy. By using the activity profile of the processors reported by the simulator, we evalu-

ate its throughput and power consumption before testing it on the real chip. This implementation

methodology reduces debugging time and allows us to easily find the optimal operation point of

each task.

6.2.3 Critical Data Path and Reception of Multiple Frames

The dark solid lines in Fig. 6.6 show the connections between processors that are on the

critical data path of the receiver. These processors processes all OFDM symbols in the form of

a pipeline. The operation and execution time of these processors determine the throughput of the

receiver. Other processors in the receiver are only briefly active for detection, synchronization (of

frame) or estimation (of the carrier frequency offset and channel’s coefficients); then they are forced

to stop as soon as they finish their job. Consequently, these non-critical processors only add latency

to the system and do not affect the overall data throughput.

After completion of a whole frame, in order for the system is able to receive another frame

all stopped processors must be woken up. Therefore, the system is programmed to operate as a finite

state machine (FSM) that is shown in Fig. 6.7. In the beginning, the system operates in the “Frame

Detection” state. The Data Distribution processor sends samples to both the Auto Correlation and

Energy Computation processors for computing timing metrics P(n) and Q(n). These timing metrics

are used to detect frame by the Frame Detection processor based on Eq. 6.4. After the frame has

114

Frame

Detection

Timing
Synchronization

CFO

Estimation

Channel

Estimation

OFDM

Symbol

Processing

Begin

Figure 6.7: Finite State Machine model of the receiver

been detected, the system switches to the “Timing Synchronization” state, where timing metrics are

used to synchronize timing by the Timing Synchronization processor based on Eq. 6.5.

Once the timing has been synchronized, the Data Distribution Control processor is in-

formed and then it signals the Data Distribution processor to stop sending samples to the Auto

Correlation and Energy Computation processors. Consequently, these processors are stopped and

system is switched to the “CFO Estimation” state.

In the “CFO Estimation” state, the Post Timing Synchronization processor sends only 128

samples of two long training symbols to the CFO Estimation processor. Therefore, both CFO Esti-

mation and CORDIC Angle processors are stopped after the frequency offset is estimated. Similarly,

in the “Channel Estimation” state, the Subcarrier Reordering processor only sends 96 subcarriers of

two long symbols to the Pre-Channel Estimation processor. Eventually, both the Pre-Channel Esti-

mation and Channel Estimation processors also stop working after computing all 48 coefficients of

channel.

Once the channel has been estimated, the system is in the “OFDM Symbol Processing”

state where all OFDM symbols (including the SIGNAL and all DATA symbols) are processed by the

processors on the critical path. After the whole frame is received and processed, the Pad Removal

processor tells the Data Distribution Control processor to allow the Data Distribution processor

resending samples of the new frame (if any) to the Auto Correlation and Energy Computation pro-

cessors. Then it also resets the Subcarrier Reordering and Descrambling processors. Now, the

115

D
at

a
D
is
tri

bu
tio

n

Pos
t -

 T
im

in
g

S
yn

.

Acc
. O

ffs
et

 V
ec

to
r C

om
p.

C
FO

 C
om

pe
ns

at
io
n

G
ua

rd
 R

em
ov

al

64
-p

oi
nt

FFT

Sub
ca

rr
ie
r R

eo
rd

er
in

g

C
ha

nn
el
 E

qu
al
iz
at

io
n

D
e-

m
ap

pi
ng

D
e-

in
te

rle
av

er
in

g
1

D
e-

in
te

rle
av

er
in

g
2

D
e-

pu
nc

tu
rin

g

Vite
rb

i D
ec

od
in

g

D
e-

sc
ra

m
bl
in
g

Pad
 R

em
ov

al

T
im

e
 (

c
y
c
le

s
)

Execution Input Waiting Output Waiting

2376

0

2318

1901

1663

1426

1188

950

713

475

238

Figure 6.8: The overall activity of processors while processing a 4 µsec OFDM symbol in the

54 Mbps mode

system has returned to the “Frame Detection” state and is ready to receive another frame.

The architecture of AsAP2 is extremely flexible that allows programming the receiver

for complying a dynamically complicated finite state machine as described above. Each processor

has two input FIFOs; we can use one for data buffering and the another one for control words.

Moreover, a processor can be forced to sleep (stop executing) by stopping sending data to it. It then

will be woken up once there are any data sent to its FIFOs.

6.3 Performance, Power Evaluation and Optimization

6.3.1 Performance Evaluation

Figure 6.8 shows the overall activity of the critical path processors. In this figure, the

Viterbi accelerator is shown to be the system bottleneck. It is always executing and forces other

processors on the critical path to stall while waiting either on its output to send data or on its input

to receive data1. Therefore, the total execution time and waiting time of each processor equals to

the total execution time of the Viterbi accelerator (2376 cycles) during the processing of a 4-µs

1This assumes that the input is always available from the ADC and the MAC layer is always ready to accept outputs.

116

T
ab

le
6
.1

:
O

p
er

at
io

n
o
f

p
ro

ce
ss

o
rs

w
h
il

e
p
ro

ce
ss

in
g

o
n
e

O
F

D
M

sy
m

b
o
l

in
th

e
5
4

M
b
p
s

m
o
d
e,

an
d

th
ei

r
co

rr
es

p
o
n
d
in

g
p
o
w

er
co

n
su

m
p
ti

o
n

E
x
ec

u
ti

o
n

S
ta

ll
w

it
h

S
ta

n
d
b
y

w
it

h
O

u
tp

u
t

C
o
m

m
.

E
x
ec

u
ti

o
n

S
ta

ll
S

ta
n
d
b
y

C
o
m

m
.

T
o
ta

l

ti
m

e
ac

ti
v
e

cl
o
ck

h
al

te
d

cl
o
ck

ti
m

e
d
is

ta
n
ce

p
o
w

er
p
o
w

er
p
o
w

er
p
o
w

er
p
o
w

er

P
ro

ce
ss

o
r

(c
y
cl

es
)

(c
y
cl

es
)

(c
y
cl

es
)

(c
y
cl

es
)

(#
li

n
k
s)

(m
W

)
(m

W
)

(m
W

)
(m

W
)

(m
W

)

D
at

a
D

is
tr

ib
u
ti

o
n

3
2
0

9
6
0

1
0
9
6

8
0
×

2
5

2
.3

7
3
.5

6
0
.0

1
1
.1

4
7
.0

8

P
o
st

-T
im

in
g

S
y
n
c.

2
4
0

9
6
0

1
1
7
6

8
0
×

2
4

1
.7

8
3
.5

6
0
.0

1
1
.0

0
6
.3

4

A
cc

.
O

ff
.

V
ec

.
C

o
m

p
.

2
3
2
0

5
6

0
8
0
×

2
1

1
7
.1

9
0
.2

1
0

0
.5

3
1
7
.9

3

C
F

O
C

o
m

p
en

sa
ti

o
n

2
1
6
0

2
1
6

0
8
0
×

2
1

1
6
.0

0
0
.8

0
0

0
.5

3
1
7
.3

3

G
u
ar

d
R

em
o
v
al

1
7
6

7
6
8

1
4
3
2

6
4
×

2
5

1
.3

0
2
.8

4
0
.0

1
0
.9

2
5
.0

7

6
4
-p

o
in

t
F

F
T

2
0
5

7
6
8

1
4
0
3

6
4
×

2
2

1
.1

0
2
.3

6
0
.2

0
0
.5

5
4
.2

1

S
u
b
ca

rr
ie

r
R

eo
rd

er
.

1
0
1
8

5
7
6

7
8
2

4
8
×

2
3

7
.6

2
2
.1

3
0
.0

1
0
.5

1
1
0
.2

7

C
h
an

n
el

E
q
u
al

.
1
4
8
8

5
7
6

3
1
2

4
8
×

2
1

1
1
.0

2
2
.1

3
0
.0

1
0
.3

1
1
3
.4

7

D
e-

m
ap

p
in

g
2
3
5
2

2
4

0
2
8
8

1
1
7
.4

2
0
.0

9
0

0
.9

6
1
8
.4

7

D
e-

in
te

rl
ea

v.
1

8
6
4

1
5
1
2

0
2
8
8

1
6
.4

0
5
.6

0
0

0
.9

6
1
2
.9

6

D
e-

in
te

rl
ea

v.
2

1
1
3
0

1
2
4
6

0
2
8
8

1
8
.3

7
4
.6

2
0

0
.9

6
1
3
.9

5

D
e-

p
u
n
ct

u
ri

n
g

5
7
6

1
8
0
0

0
4
3
2

1
4
.2

7
6
.6

7
0

1
.4

4
1
2
.3

8

V
it

er
b
i

D
ec

o
d
in

g
2
3
7
6

0
0

2
1
6

2
6
.2

0
0

0
0
.9

3
7
.1

3

D
e-

sc
ra

m
b
li

n
g

2
1
6
0

2
1
6

0
2
1
6

1
1
6
.0

0
0
.8

0
0

0
.7

2
1
7
.5

2

P
ad

R
em

o
v
al

6
4
8

1
2
9
6

4
3
2

2
1
6

1
4
.8

0
4
.8

0
0
.0

1
0
.7

2
1
0
.3

3

T
en

n
o
n
-c

ri
ti

ca
l

p
ro

cs
-

-
-

-
-

-
-

0
.3

1
-

0
.3

1

T
o
ta

l
1
2
1
.8

4
4
0
.1

7
0
.5

7
1
2
.1

8
1
7
4
.7

6

T
h
e

te
xt

“×
2
”

si
g
n
ifi

es
th

a
t

th
e

co
rr

es
p
o
n
d
in

g
o
u
tp

u
t

is
co

m
p
o
se

d
o
f

tw
o

w
o
rd

s
(r

ea
l

a
n
d

im
a
g
in

a
ry

)
fo

r
ea

ch
sa

m
p
le

o
r

su
b
ca

rr
ie

r.

117

OFDM symbol. In essence, all OFDM symbols are processed by a sequence of processors on the

critical path in a way that is similar to a pipeline (with 4 µs per stage per 2376 cycles). Therefore,

the receiver can obtain a real-time 54 Mbps throughput when all processors operate at the same

clock frequency of 594 MHz. According to measured data, in order for all processors to operate

correctly they must be supplied at the lowest voltage level of 0.92 V. We choose to run at 0.95 V

(with maximum frequency of 708 MHz) for reserving a safe frequency margin for all processors

due to the impact of run-time unpredictable variations.

6.3.2 Power Consumption Estimation

Power estimation using simulation is done in a couple of ways. First, we can run the

application on our post-layout gate-level Verilog on Cadence NCVerilog and generate the VCD

(Value Change Dump) file for each processor. This is then sent to Cadence SoC Encounter and the

VCD is loaded and a power analysis is done using our processor layout. This method should have

good result near with measuring on the real chip, however it is also very slow that may be not an

efficient way if we want to change the configuration of the application many times for finding the

optimal operating points.

We use another method that is based on the activity of processors while running the appli-

cation on the cycle-accurate RTL model of the platform on NCVerilog. An script is used to extract

information from signals generated by the simulator. The information includes the number of cy-

cles each processor executing, stalling or being standby. These information along with the power

of processors in the corresponding states measured on the real chip (similar to those listed in Ta-

ble 5.3) will be used to estimate the total power of application. Based on the analysis results done

with simulation and estimation steps, we configure the processors accordingly when running on the

test chip. This method is highly time efficient and still has high accuracy with only few percents

differing from measuring on the real chip as shown in Section 6.4.

Power consumption of the receiver is primarily dissipated by processors on the critical

path because all non-critical processors have stopped when the receiver is processing data OFDM

symbols. In this time, the leakage power dissipated by these ten non-critical processors is 0.31 mW

118

(10 × 0.031). The total power dissipated by the critical path processors is estimated by:

PTotal =

∑
PExe,i +

∑
PS tall,i +

∑
PS tandby,i +

∑
PComm,i (6.11)

where PExe,i, PS tall,i, PS tandby,i and PComm,i are the power consumed by computational execution,

stalling, standby and communication activities of the ith processor, respectively, and are estimated

as follows:

PExe,i = αi· PExeAvg

PS tall,i = βi· PS tallAvg

PS tandby,i = (1 − αi − βi)· PS tandbyAvg

PComm,i = γi · PCommAvg,n

(6.12)

here PExeAvg, PS tallAvg and PS tandbyAvg are average power of processors while at 100% execution,

stalling or in standby (leakage only); PCommAvg,n is the average power of an interconnect at distance

of n; αi, βi, (1 − αi − βi) and γi are percentages of execution, stall, standby and communication

activities of processor i, respectively.

While measuring the chip with all processors running at 0.95 V and 594 MHz the values

of PExeAvg, PS tallAvg, PS tandbyAvg are shown in Table 5.3 and PCommAvg,n is given in Fig. 5.21. For the

ith processor, its αi, βi, (1 − αi − βi), γi and distance n are derived from Column 2, 3, 4, 5 and 6 of

Table 6.1 with a note that each processor computes one data OFDM symbol in 2376 cycles.

The power consumed by execution, stalling, standby and communication activities of

each processor are listed in Column 7, 8, 9 and 10; and their total is shown in Column 11. In total,

the receiver consumes 174.76 mW with a negligible standby power due to leakage (only 0.57 mW

including ten non-critical processors). The power dissipated by communication of all processors is

12.18 mW, which is only 7% of the total power.

6.3.3 Power Optimization

The power dissipated by the stalling activity is 40.17 mW, which is 23% of the total power.

This wasted power is caused by the fact that the clocks of processors are almost active while waiting

for input or output as shown in Column 3 of Table 6.1. Clearly, we expect to reduce this stall time

by making the processors busy executing as much as possible.

119

Table 6.2: Power consumption while processors are running at optimal frequencies when: a) Both

VddLow and VddHigh are set to 0.95 V; b) VddLow is set to 0.75 V and VddHigh is set to 0.95 V

(A) (B)

Optimal Optimal

frequency Power voltage Power

Processor (MHz) (mW) (V) (mW)

Data Distribution 80 3.52 0.75 2.63

Post-Timing Sync. 60 2.78 0.75 2.11

Acc. Off. Vec. Comp. 580 17.72 0.95 17.72

CFO Compensation 540 16.53 0.95 16.53

Guard Removal 44 2.23 0.75 1.73

64-point FFT 51 1.64 0.75 1.23

Subcarrier Reorder. 257 8.12 0.75 5.22

Channel Equal. 372 11.34 0.95 11.34

De-mapping 588 18.38 0.95 18.38

De-interleav. 1 216 7.36 0.75 4.95

De-interleav. 2 283 9.34 0.95 9.34

De-puncturing 144 5.70 0.75 4.10

Viterbi Decoding 594 7.13 0.95 7.13

De-scrambling 540 16.72 0.95 16.72

Pad Removal 162 5.52 0.75 3.71

Ten non-critical procs - 0.31 0.95 0.31

Total (mW) 134.32 123.18

To do this, we need to reduce the clock frequency of processors which have low work-

loads. Recall that in order to keep the 54 Mbps throughput requirement, each processor has to

finish its computation for one OFDM symbol in 4 µs, and therefore, the optimal frequency of each

processor is computed as follows:

fOpt,i =
NExe,i cycles

4 µs
(MHz) (6.13)

where, NExe,i is number of execution cycles of processor i for processing one OFDM symbol, which

is listed in Column 2 of Table 6.1. From this, the optimal frequencies of processors are shown in

Column 2 of Table 6.2.

By running at these optimal frequencies, the power wasted by stalling and standby ac-

tivities of the critical processors is eliminated while their execution and communication activity

percentages increase proportionally to the decrease of their frequencies. Therefore, total power is

now 134.32 mW as listed in Column 3 of Table 6.2, a reduction of 23% when compared with the

120

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
100

110

120

130

140

Vdd
Low

 (V)

T
o

ta
l
P

o
w

e
r

C
o

n
s
u

m
p

ti
o

n
 (

m
W

)

122.859 mW

134.019 mW

Figure 6.9: The total power consumption over various values of VddLow (with VddHigh fixed at 0.95 V)

while processors run at their optimal frequencies. Each processor is set at one of these two voltages

depending on its frequency.

previous case2.

Now that processors run at different frequencies, they can be supplied at different voltages

as shown in Fig. 5.19. Since power consumption at a fixed frequency is quadratically dependent on

supply voltage, more power can be reduced due to voltage scaling [158]. Because our platform

supports two global supply voltage grids, VddHigh and VddLow, we can choose one of these voltages

to power each processor depending on its frequency3.

Since the slowest processor (Viterbi) is always running at 594 MHz to meet the real-time

54 Mbps throughput, VddHigh must be set at 0.95 V. To find the optimal VddLow we changed its

value from 0.95 V (i.e VddHigh) down to 0.6 V where its maximum frequency begins to be smaller

than the lowest optimal frequency among processors. The total power consumption corresponding

to these VddLow values (while processors are set appropriately) is shown in Fig. 6.9. When VddLow

reduces, some processors running at this Vddlow will consume lower power, so total power is reduced.

However, once Vddlow becomes low under 0.75 V, more processors must be changed to run at VddHigh

for satisfying their operating frequencies; therefore, the total power goes up. As a result, the optimal

VddLow is 0.75 V with total power of 123.18 mW as detailed in Column 5 of Table 6.2. Notice that

the maximum frequency of processors in operating at 0.75 V is 266 MHz that still guarantees an

2Ten non-critical processors still dissipate the same leakage power of 0.31 mW.
3Non-critical processors are always set to run at VddHigh and 594 MHz for minimizing the detection and synchroniza-

tion time.

121

Table 6.3: Estimation and measurement results of the receiver over different configuration modes

Configuration Estimated Measured Diff.

Mode Power (mW) Power (mW)

At 594 MHz and 0.95 V 174.76 177.96 1.8%

At optimal frequencies only 134.32 139.64 3.9%

At both optimal freq. & volt. 123.18 129.82 5.1%

margin of greater than 10% allowing all the corresponding processors still correctly running at this

voltage under the impact of variations.

The communication circuits use their own supply voltage which is always set at 0.95 V,

so they still consume the same 12.18 mW, which now is approximately 10% of the total power.

6.4 Measurement Results

We tested and measured this receiver on a real test chip with the same configuration modes

of clock frequency and supply voltage as used in the previous estimation steps. In all configuration

modes, the receiver operates correctly and shows the same computational results as with simula-

tion. The power measurement results are shown in Table 6.3. When all processors run at 0.95 V

and 594 MHz, they consume a total of 177.96 mW that is a 1.8% difference from the estimated

result. When all processors run at their optimal frequencies with the same 0.95 V supply voltage,

they consume 139.64 mW; and when they are appropriately set at 0.75 V or 0.95 V as listed in

Column 4 of Table 6.2, they consumes 129.82 mW. In these configurations, the differences between

the measured and estimated results are only 3.9% and 5.1%, respectively.

These differences are small and show that our design methodology is highly robust. Our

simulation platform allows programmers to map, simulate and debug applications correctly before

running on the real chip reducing a large portion of application development time. For instance,

we mapped and tested this complex 802.11a receiver in just two months plus one week for finding

the optimal configuration compared to tens of months if implemented on ASIC which includes

fabrication, test and measurement.

122

6.5 Summary

We have presented the design of a complete baseband receiver compliant with the IEEE

802.11a standard and its software implementation on the AsAP2 platform. The processors are pro-

grammed to realize a dynamic FSM model that maximizes the throughput and minimizes the latency

while ensuring the continuous reception of multiple frames. The receiver supports all necessary fea-

tures such as frame detection and timing synchronization, carrier frequency offset (CFO) estimation

and compensation, and channel estimation and equalization while obtaining a real-time throughput

of 54 Mbps. The receiver after optimized consumes 130 mW with its interconnect links only dis-

sipate around 10% of the total power. We simulated this receiver at the RTL level with NCVerilog

and also tested it on the real chip; the small difference between power estimation and measurement

results shows the consistency of our design.

123

Chapter 7

Conclusion and Future Directions

7.1 Dissertation Summary

This dissertation proposes the designs of on-chip interconnection networks for many-core

computational platforms in three application domains:

First, it presents RoShaQ, an on-chip router architecture that maximizes buffer utilization

by allowing sharing multiple buffer queues among input ports. Sharing queues, in fact, makes using

buffers more efficient hence is able to achieve higher throughput when the network load becomes

heavy. On the other side, at light traffic load, our router achieves low latency by allowing packets

to effectively bypass these shared queues. Experimental results on a 65-nm CMOS standard-cell

process show that over synthetic traffic patterns RoShaQ is 17% lower latency and 18% higher

saturation throughput than a typical virtual-channel (VC) router. Due to its higher performance,

RoShaQ consumes 9% lower energy per a transferred packet than VC router given the same buffer

space capacity. Over real multi-task applications and E3S embedded benchmarks, RoShaQ is 26%

lower latency than VC router with 23% lower energy per packet while targeting the same inter-task

communication bandwidths.

Second, it presents five low-cost bufferless routers in both packet-switching (PS) and

circuit-switching (CS) designs, and compare them against buffered wormhole routers. All routers

guarantee in-order packet delivery so that re-ordering buffers are not required. Experimental results

show that increasing buffer depth for wormhole routers improves performance but suffers from area,

power and energy costs leading to the result that the wormhole router with 4 flits per buffer achieves

124

the best performance per cost among buffered wormhole routers. The proposed bufferless routers

have lower costs than all wormhole routers, in which our smallest bufferless PS router is 32.4% less

area, 24.5% higher throughput, 29.5% lower latency, 10.0% lower power and 26.5% lower energy

per bit than the smallest wormhole router averaged over a wide range of different traffic patterns.

Our smallest CS router is 31.7% less area, 41.5% higher throughput, 27.9% lower latency, 10.4%

lower power and 33.9% lower energy per bit compared to the smallest wormhole router.

Third, it presents a GALS-compatible circuit-switched on-chip network that is well suited

for use in many-core platforms targeting streaming DSP and embedded applications which show

the deterministic inter-task communication behavior. Inter-processor communication is achieved

through a simple yet effective reconfigurable source-synchronous network. Interconnect paths be-

tween processors can sustain a peak throughput of one word per cycle. A theoretical model is

developed for analyzing the performance of the network. This network was utilized in a GALS

many-core chip fabricated in 65 nm CMOS. For evaluating the efficiency of this platform, a com-

plete 802.11a WLAN baseband receiver was implemented. It has a real-time throughput of 54 Mbps

with all processors running at 594 MHz and 0.95 V, and consumes an average of 174.8 mW with

12.2 mW (or 7.0%) dissipated by its interconnects. With the chip’s dual supply voltages set at

0.95 V and 0.75 V, and individual processors’ oscillators operating at workload-based optimal fre-

quencies, the receiver consumes 123.2 mW, which is a 29.5% reduction in power. Measured power

consumption values from the chip are within 5% of the estimated values.

Finally, it presents NoCTweak, a highly parameterizable open-source NoC simulator for

early exploration of performance and energy efficiency of on-chip networks. This simulator is open-

source tool based on SystemC, a C++ plugin, which is more flexible and provides higher simulation

speed than RTL simulators. The tool is highly parameterizable allowing users to setup and simulate

a broad range of network configurations such as router type, network size, buffer size, routing

algorithm, arbitration policy, pipeline stages, voltage, clock frequency, traffic pattern, packet length,

injection rate, simulation and warmup times. The statistic output results provided by the simulator

are the average network latency, throughput, router power and energy per transferred packet. Area,

timing and power of router components are post-layout data based on a 65 nm CMOS standard-cell

library.

125

7.2 Future Work

Hybrid Low-Cost On-Chip Networks. High-performance dynamic routers (both RoShaQ

and other state-of-the-art routers) are costly in terms of area, power and energy consumption. How-

ever, they never reach the ideal throughput due to unpredictable run-time traffic congestion. Besides

that, they also have high network latency because packets must travel on many multi-stage routers

before reaching their destinations. Moreover, these networks do not guarantee delivering packets

in-order hence requiring additional complex and costly reordering buffers at processors. On the

other side, bufferless dynamic routers have lower costs but only offer a limited network bandwidth

which maybe will not satisfy all requirements of future applications.

Statically reconfigurable circuit-switched networks presented in Chapter 5 have ultra low

costs and can achieve the ideal interconnect throughput of one data word per cycle with the la-

tency approaches the wire delay. However, because the interconnect links set up by these static

networks are not shared at run-time, hence the number of interconnect paths is limited which may

be not enough for mapping complex applications having high amount of inter-task interconnects.

Besides that, dynamic communication traffic such as global control signaling, run-time application

remapping, test and debug data exchanging are not suitable to map on static networks.

Therefore, a hybrid network, which includes both reconfigurable static networks and

bufferless dynamic networks, show highly promising. For an application, we can map all high

bandwidth inter-task interconnects to the reconfigurable networks and the rest to bufferless net-

works. Both these networks are low-cost without using buffers therefore can build multiple copies

of them on a single chip in order for satisfying the communication needs. As shown in Chapter 4,

because bufferless routers have higher performance per unit cost than buffered routers, replication

of bufferless networks would be simpler and offer higher network bandwidths given the same costs

as a complicated high-performance network.

Fully GALS Communication Architectures. Globally asynchronous locally synchronous

(GALS) method eliminates power-hungry global clock trees in large many-core chips by allow-

ing each processing element (PE) to operate on its own clock domain with the support of special

mechanisms for data communication among PEs. For mapping applications having determinis-

tic communication traffic flows, the GALS-compatible source-synchronous reconfigurable circuit-

126

switched networks presented in Chapter 5 are very efficient in terms of both performance and cost.

As mentioned above, for supporting a broader range of applications, hybrid networks show mostly

promising. Therefore, along with the static reconfigurable networks, we are investigating the de-

signs of GALS-compatible bufferless dynamic routers and will integrate them into next generations

of AsAP platforms.

Automatic Application Mapping Tools for Many-Core Platforms. As the number of pro-

cessors on a single chip approaches hundreds or even thousands, manual mapping tasks and setting

up their interconnects are no longer possible. Hence, automatic mapping tools are necessary to map

multi-task applications to these chips. The mapping tools should be aware of inter-task communica-

tion requirements so that they can map tasks with high communication bandwidths as near together

as possible. The mapping tool should also have the ability to assign which interconnects are mapped

to the static networks or to the dynamic networks.

If no interconnection mapping satisfies the requirements, the tools must notice the users

so that they can adjust the algorithms used in the application or can find other ways to partition

the application. If no algorithm or partition change is possible, the platform must be upgraded

to support the application. Because the proposed network designs are low cost, replicating them

may be the most simple and straightforward to upgrade the on-chip interconnection network for the

platform.

Integrating NoCTweak Into Full-System Simulators. NoCTweak has been developed for

exploration of a broad range of on-chip networks. Currently, the simulated traffic patterns are only

synthetic and embedded application traces. For accurate evaluation of real applications mapped

on a platform, the simulator should be integrated into the platform’s simulator which can take into

account all run-time application behaviors rather than only the open-loop network operations. In

short-term, we are working on incorporating NoCTweak with the AsAP simulator in C++. Our

preliminary simulations shows multiple times faster than the RTL-based simulator. This simulator

combined with the automatic mapping tool mentioned above would be helpful for design and opti-

mization of both many-core platforms and applications mapped on them. In long-term, NoCTweak

will be incorporated into general-purpose full-system many-core platforms for simulating a broader

range of parallel applications such as SPLASH-2 [159] or PARSEC [160].

127

Appendix A

NoCTweak: a Highly Parameterizable

Simulator for Early Exploration of

Performance and Energy of Networks

On-Chip

Due to high design and test costs for real many-core chips, simulators, which allow ex-

ploring the best design options for a system before actually building it, have been becoming highly

necessary in system design and optimization flows. Simulators are normally developed using high-

level languages such as C/C++ and Java which run much faster than RTL modeling languages

such as Verilog and VHDL. Besides that, high-level languages allow programmers to build highly

flexible simulators which are easy to change parameters for quickly design trade-off exploration.

In this appendix, we present NoCTweak, an open-source NoC simulator for early exploration of

performance and energy efficiency of on-chip networks. The simulator has been developed using

SystemC [161], a C++ plugin, which allows fast modeling of concurrent hardware modules at the

cycle-level accuracy.

This appendix is organized as follows: Section A.1 presents the network architecture and

configurable parameters for the routers supported by our NoCTweak simulator. Statistic output re-

sults reported by the simulators are described in Section A.2. A few common network configuration

128

Core

R
NI

buffer

buffer

buffer

b
u

ffe
r

b
u

ffe
r

South

North

E
a
s
t

W
e
s

t

Loca
l

Xbar

Control

Logic

Figure A.1: A simulated platform includes multiple cores interconnected by a 2-D mesh network of

routers

examples run by the simulator is shown in Section A.3. Section A.4 reviews related work and,

finally, Section A.5 concludes this appendix.

A.1 Configurable Simulation Parameters

Fig. A.1 depicts a platform including multiple cores interconnected by a 2-D mesh net-

work of routers which is simulated by NoCTweak version 1.0 (current version). Each node consists

of a processor (core + NI) and an associated router. Each router connects with four nearest neigh-

boring routers forming a 2-D mesh network. Each processor core generates data packets and injects

into the network through its router. Packets are routed on the network of routers by a selected

routing algorithm to their destinations at which the packets are immediately consumed.

The users can choose network parameters through changing their default values in the

source code before compiling or through a terminal (command line window) when running the sim-

ulator. Below are lists of network and router parameters which can be set for the simulator (these op-

tions are also displayed in the command line window with the command “./noctweak -help”):

Listing A.1: Platform Options

−p l a t f o r m [o p t i o n] a p p l i c a t i o n t r a f f i c s i m u l a t e d on t h i s p l a t f o r m .

o p t i o n = s y n t h e t i c : a s y n t h e t i c t r a f f i c p a t t e r n (d e f a u l t)

o p t i o n = embedded : an embedded a p p l i c a t i o n t r a c e

−seed [v a l u e] random seed f o r t h e s i m u l a t i o n .

(t h e same random seed w i l l d r i v e t h e same o u t p u t r e s u l t s

129

f o r t h e same ne twork c o n f i g u r a t i o n . I t ’ s used f o r e a s i e r

debugg ing .

D e f a u l t v a l u e = sys tem t ime .)

− l o g [f i l e n a m e] l o g f i l e f o r s i m u l a t i o n o u t p u t s

−vcd [f i l e n a m e] VCD f i l e f o r s i g n a l waveform t r a c e s

−simmode [o p t i o n] s i m u l a t i o n mode (p a c k e t o r c y c l e)

−s imt ime [v a l u e] s i m u l a t i o n r u n n i n g t ime

v a l u e = N. D e f a u l t = 1 0 0 , 0 0 0 .

. i f simmode o p t i o n = p a c k e t : s t o p s i m u l a t i o n a f t e r

t r a n s f e r r i n g N p a c k e t s

. i f simmode o p t i o n = c y c l e : s t o p s i m u l a t i o n a f t e r

r u n n i n g N c l o c k c y c l e s

−warmtime [v a l u e] warmup t ime f o r t h e ne twork t o become s t a b l e

v a l u e = M (M < N) . D e f a u l t = 1 0 , 0 0 0 .

. i f simmode o p t i o n = p a c k e t : do n o t c o n s i d e r t h e f i r s t

M r e c e i v e d p a c k e t s

. i f simmode o p t i o n = c y c l e : warmup t ime i s M c l o c k c y c l e s

Listing A.2: Synthetic Traffic Patterns

−dimx [v a l u e] X d imens ion l e n g t h o f t h e 2−D mesh ne twork . D e f a u l t v a l u e = 8 .

−dimy [v a l u e] Y d imens ion l e n g t h o f t h e 2−D mesh ne twork . D e f a u l t v a l u e = 8 .

− t r a f f i c [o p t i o n] s y n t h e t i c t r a f f i c p a t t e r n s used f o r t h e s i m u l a t i o n .

o p t i o n = random : un i fo rm random (d e f a u l t)

o p t i o n = t r a n s p o s e : t r a n s p o s e

o p t i o n = b i t c : b i t −complement

o p t i o n = b i t r : b i t − r e v e r s e

o p t i o n = t o r n a d o : t o r n a d o

o p t i o n = s h u f f l e : b i t − s h u f f l e

o p t i o n = r o t a t e : b i t − r o t a t e

o p t i o n = n e i g h b o r : n e a r e s t n e i g h b o r t r a f f i c

o p t i o n = r e g i o n a l : communica t ion d i s t a n c e <= 3

o p t i o n = h o t s p o t : c e n t r a l o r c o r n e r h o t s p o t s

−nhs [v a l u e] t h e number o f h o t s p o t s . D e f a u l t = 4 .

−h s t y p e [o p t i o n] hot − s p o t t y p e

o p t i o n = c e n t r a l : h o t s p o t s a t t h e c e n t r a l c o r e s

o p t i o n = c o r n e r : h o t s p o t s a t t h e c o r n e r s (d e f a u l t)

130

−p e r c e n t [v a l u e] p e r c e n t a g e o f t r a f f i c go ing t o n e i g h b o r i n g o r r e g i o n a l

o r h o t s p o t c o r e s

Listing A.3: Embedded Application Traces

− a p p f i l e [o p t i o n] a p p l i c a t i o n ’ s t a s k communica t ion graph used f o r t h e s i m u l a t i o n .

o p t i o n = vopd . app : v i d e o o b j e c t p l a n d e c o d e r wi th 16 t a s k s

o p t i o n = mms . app : m u l t i m e d i a sys tem wi th 25 t a s k s

o p t i o n = mwd . app : m u l t i −window d i s p l a y wi th 12 t a s k s

o p t i o n = w i f i r x . app : WiFi baseband r e c e i v e r wi th 25 t a s k s

o p t i o n = c a v l c . app : H. 2 4 CAVLC e n c o d e r wi th 16 t a s k s

o p t i o n = mpeg4 . app : MPEG4 d e c o d e r wi th 12 t a s k s

o p t i o n = vce . app : v i d e o c o n f e r e n c e e n c o d e r wi th 25 t a s k s

o p t i o n = a u t o i n d u s t . app : au to − i n d u s t benchmark wi th 24 t a s k s

o p t i o n = consumer . app : consumer benchmark wi th 12 t a s k s

o p t i o n = t e l e c o m . app : t e l e c o m benchmark wi th 30 t a s k s

−mapping [o p t i o n] a l g o r i t h m used t o map t h e t a s k graph t o t h e p r o c e s s o r a r r a y

o p t i o n = random : random mapping

o p t i o n = nmap : near −o p t i m a l mapping u s i n g t h e NMAP a l g o r i t h m

Listing A.4: Traffic Options

− f i r [v a l u e] f l i t i n j e c t i o n r a t e

(t h e number o f f l i t s i n j e c t e d by each c o r e p e r c y c l e)

0 < f i r <= 1 . D e f a u l t = 0 . 2

− d i s t [o p t i o n] p r o b a b i l i t y d i s t r i b u t i o n o f t h e p a c k e t i n j e c t i o n i n t e r v a l

o p t i o n = e x p o n e n t i a l : e x p o n e n t i a l d i s t r i b u t i o n (d e f a u l t)

o p t i o n = i d e n t i c a l : i d e n t i c a l d i s t r i b u t i o n

−p l e n g t h t y p e [o p t i o n] p a c k e t l e n g t h i s f i x e d o r v a r i a b l e

o p t i o n = f i x e d : f i x e d p a c k e t l e n g t h (d e f a u l t)

o p t i o n = v a r i a b l e : v a r i a b l e p a c k e t l e n g t h

−p l e n g t h [v a l u e] t h e number o f f l i t s p e r p a c k e t .

(on ly f o r t h e f i x e d p a c k e t l e n g t h o p t i o n . D e f a u l t = 5 .)

−p l e n g t h m i n [v a l u e] t h e minimum number o f f l i t s p e r p a c k e t

(on ly f o r t h e v a r i a b l e p a c k e t l e n g t h o p t . D e f a u l t = 2 .)

−pleng thmax [v a l u e] t h e maximum number o f f l i t s p e r p a c k e t

(on ly f o r t h e v a r i a b l e p a c k e t l e n g t h o p t . D e f a u l t = 1 0 .)

131

Listing A.5: Router Settings

− r o u t e r [o p t i o n] t h e s i m u l a t e d r o u t e r

o p t i o n = wh : wormhole r o u t e r (d e f a u l t)

o p t i o n = vc : v i r t u a l −c h a n n e l r o u t e r

o p t i o n = r o s h a q : RoShaQ s h a r e −queues r o u t e r

o p t i o n = b u f f e r l e s s : b u f f e r l e s s r o u t e r

o p t i o n = cs : c i r c u i t − s w i t c h e d r o u t e r

−p p t y p e [v a l u e] p i p e l i n e t y p e and t h e number o f p i p e l i n e s t a g e s .

D e f a u l t = 3 s t a g e s

−b s i z e [v a l u e] b u f f e r d e p t h (2 , 4 , 8 , 16 , 32 f l i t s) .

D e f a u l t = 4 f l i t s .

− s b s i z e [v a l u e] sha red −b u f f e r queue d e p t h (2 , 4 , 8 , 16 , 32 f l i t s) .

D e f a u l t = 4 f l i t s .

−nvc [v a l u e] t h e number o f v i r t u a l −c h a n n e l b u f f e r s p e r i n p u t p o r t .

D e f a u l t = 2 queues .

−nsb [v a l u e] t h e number o f sha red −b u f f e r queues i n RoShaQ r o u t e r s .

D e f a u l t = 5 queues .

− r o u t i n g [o p t i o n] r o u t i n g a l g o r i t h m

o p t i o n = xy : XY dimens ion −o r d e r e d r o u t i n g (d e f a u l t)

o p t i o n = nfmin ima l : Nega t ive − F i r s t minimal a d a p t i v e r o u t i n g

o p t i o n = wfminimal : West− F i r s t minimal a d a p t i v e r o u t i n g

o p t i o n = n l m i n i m a l : North−L a s t minimal a d a p t i v e r o u t i n g

o p t i o n = oeminimal : Odd−Even minimal a d a p t i v e r o u t i n g

o p t i o n = t a b l e : lookup t a b l e based r o u t i n g

− o u t s e l [o p t i o n] choose an o u t p u t p o r t among m u l t i p l e ones r e t u r n e d

by an a d a p t i v e r o u t i n g

o p t i o n = x y o r d e r e d : t h e X d imens ion f i r s t (d e f a u l t)

o p t i o n = n e a r e s t d i m : t h e d imens ion n e a r e s t

t o t h e d e s t i n a t i o n f i r s t

o p t i o n = f a r t h e s t d i m : t h e d imens ion f a r t h e s t

t o t h e d e s t i n a t i o n f i r s t

o p t i o n = r o u n d r o b i n : round− r o b i n among o u t p u t p o r t s

o p t i o n = c r e d i t : t h e o u t p u t p o r t h a v i n g

t h e h i g h e s t c r e d i t f i r s t

−sa [o p t i o n] s w i t c h a r b i t r a t i o n p o l i c y

o p t i o n = r r : round− r o b i n (d e f a u l t)

132

o p t i o n = o l d e s t : o l d e s t f i r s t

o p t i o n = t a k e a l l : winner t a k e s a l l

(on ly f o r v i r t u a l −c h a n n e l r o u t e r s)

o p t i o n = i s l i p : iSLIP based a l g o r i t h m

(on ly f o r v i r t u a l −c h a n n e l r o u t e r s)

−vca [o p t i o n] v i r t u a l −c h a n n e l a l l o c a t i o n p o l i c y

(on ly f o r v i r t u a l −c h a n n e l r o u t e r s)

o p t i o n = r r : round− r o b i n (d e f a u l t)

o p t i o n = o l d e s t : o l d e s t f i r s t

o p t i o n = i s l i p : iSLIP based a l g o r i t h m

− l l e n g t h [v a l u e] i n t e r − r o u t e r l i n k l e n g t h (i n um) . D e f a u l t = 1000 um .

Listing A.6: Environmental Settings

− t e c h n o d e [v a l u e] CMOS t e c h n o l o g y p r o c e s s (9 0 , 65 , 45 , 32 , 22 nm) .

D e f a u l t = 65 nm .

−f reqmode [o p t i o n] c l o c k f r e q u e n c y s e t t i n g

o p t i o n = f i x e d : f i x e d c l o c k f r e q u e n c y (i n MHz)

o p t i o n = max : t h e maximum c l o c k f r e q u e n c y of t h e r o u t e r

− f r e q [v a l u e] f o r f i x e d c l o c k f r e q u e n c y (i n MHz) . D e f a u l t = 1000 MHz.

− v o l t [v a l u e] s u p p l y v o l t a g e (i n V) . D e f a u l t = 1 . 0 V.

A.2 Statistic Outputs

Simulation’s statistic results are displayed in the command line window and also be writ-

ten into a log file for later use. Activities of circuit components of all routers in the network are

tracked for router power and energy evaluation. These activities are also recorded into another log

file for later check.

A.2.1 Network Latency

Latency of a packet is measured from the time its head flit is generated by the source to the

time its tail flit is consumed by the destination. Clearly, packet latency also includes the time when

packet waits at the source queue due to network congestion. When a processor receives a packet,

it subtracts the packet’s generating time (in the packet’s head flit) from the current simulation time

133

to get the packet latency. Network latency is the mean of latency of all packets transferred by the

network. For more accuracy, we only consider packets received after the warmup time.

Let Li j be the packet latency of packet j and Ni be the number of packets received by

processor i (after the warmup time), then the average network latency is given by:

Lavg =
1

N

∑

i=1..N

(
1

Ni

∑

∀ j

Li j) (A.1)

where N is the number of processors in the platform.

A.2.2 Network Throughput

Network throughput is defined as the rate at which the network can successfully accept

and deliver the injected packets. Let Tsim and Twarm be the simulation and warmup times, then the

average network throughput (in packets per unit time per node) is given by:

Tavg =
1

N(Tsim − Twarm)

∑

i=1..N

Ni (A.2)

Given a clock frequency and a packet length, we easily drive the network latency in terms

of cycles or seconds and the network throughput in terms of packets per cycle or packets per second

or flits per cycle or flits per second. All these terms are shown in the output results, hence the user

can choose any terms suitable for her needs.

A.2.3 Power Consumption

RTL designs in Verilog of all router components were synthesized with Synopsys Design

Compiler and placed & routed with Cadence SoC Encounter using a 65 nm CMOS standard cell

library. Post-layout power data of these components are fed to the simulator for power and energy

estimation based on the activities of components while running a certain traffic pattern. Let Pact, j

and Pinact, j be post-layout active power and inactive power of component j at 1.0 V and 1.0 GHz; let

αi j be active percentage of component j in router i (after the warmup time), then the average power

of router i is:

Pi =

∑

∀ j

[αi jPact, j + (1 − αi j)Pinact, j] (A.3)

134

Hence, the average router power at 1.0 V and 1.0 GHz is given by:

Pavg =
1

N

∑

i=1..N

Pi =
1

N

∑

i=1..N

∑

∀ j

[αi jPact, j + (1 − αi j)Pinact, j] (A.4)

Router power at a certain supply voltage and a given clock frequency is scaled from the

power calculated above.

A.2.4 Energy Consumption

Average energy dissipated by each router after warming up is:

Eavg = Pavg(Tsim − Twarm) (A.5)

Hence, the average energy dissipated per packet by each router is given by:

Ep =
Eavg

Np

=
(Tsim − Twarm)

NNp

∑

i=1..N

∑

∀ j

[αi jPact, j + (1 − αi j)Pinact, j] (A.6)

where Np is the total number of packets transferred on the network and is given by Np =
∑

i=1..N Ni.

Similar to router power, energy can be scaled correspondingly to the supply voltage and

clock frequency. Power and energy can also scaled to a given CMOS process node from the data

at 65 nm CMOS based on the scaling rule described in the book by Rabaey et al. [3]; however,

due to the differences in technology factors of standard cells made by different vendors even at

the same CMOS technology node, we recommend using post-layout data of router components

according to a certain CMOS cell library for getting accurate results rather than only naively scaling

to that technology node. If used for relative comparison among router designs, NoCTweak can be

incorporated with the ORION tool [162, 163] for quickly getting power data at different CMOS

nodes based on its computational power models although they may be far from accurate compared

to the post-layout and real chip data.

A.3 Simulation Examples

We show here the statistic results on network latency, throughput, router power and energy

per packet reported by NoCTweak for a few common network configurations. Wormhole routers

with 3-pipeline stages, round-robin arbiters and 1000-µm links are used in all examples. Assuming

135

the technology node is 65 nm CMOS and the network operates at 1.0 V and 1.0 GHz. Traffic pattern

is uniform random with packet inter-injection time has an exponential distribution and packet length

is ten flits. Each simulation runs in 100,000 cycles with 20,000 cycles for warming up.

A.3.1 Different Network Sizes

Listing A.7: Running NoCTweak Simulator In a Terminal

. / noctweak −seed 1234 − v o l t 1 . 0 −f reqmode f i x e d − f r e q 1000 −dimx 8 −dimy 8

−p p t y p e 3 1 −p l a t f o r m s y n t h e t i c − t r a f f i c random −simmode c y c l e −sim 100000

−warm 20000 − r o u t i n g xy − o u t s e l c r e d i t −b s i z e 8 −p l e n g t h f i x e d − l e n g t h 10

−sa r r − l l e n g t h 1000 − f i r 0 . 3 0 − l o g o u t p u t . l o g −vcd waveform . vcd

For running NoCTweak, we open a terminal and type a command similar to the one in

Listing A.7 above. This command runs a simulation for a 8×8 2-D mesh network of 3-stage worm-

hole routers with 8-flit buffers, XY routing and round-robin switch arbitration at a flit injection rate

of 0.30 flits/cycle/node over uniform random synthetic traffic. The results will be written into the

“output.log” file and signal waveform traces will be recorded in the “waveform.vcd” file.

In this example, we simulate the performance, power and energy consumption of the same

router in different network sizes. Four network sizes considered are 4×4, 6×6, 8×8 and 10×10. To

change network size, we adjust the values of “dimx” and “dimy” in Listing A.7. For each run, we

change the value of “fir” so that we can get the results of network latency, throughput, router power

and energy corresponding to various flit injection rates for quantitative comparisons.

Fig. A.2 shows the network latency and throughput of wormhole routers in different net-

work sizes. All routers have the same buffer size of 8 flits per input port. As shown, increasing

network size increases network latency and reduces network throughput. This is because, over ran-

dom traffic, a larger network size causes longer the average source-destination distance hence the

packets would take more cycles to travel to their destinations given the same router design. In the

same effect, because packets must travel on more immediate routers causing more network conges-

tion hence reducing the overall network throughput. Therefore, a network with larger size would

saturate sooner a smaller one. For reference, Column 2 and 3 in Table A.1 lists the absolute values

136

0 0.1 0.2 0.3 0.4 0.5
0

20

40

60

80

100

Injection Rate (flits/cycle/node)

A
v
e

ra
g

e
 P

a
c
k
e

t
L

a
te

n
c
y
 (

c
y
c
le

s
)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

Injection Rate (flits/cycle/node)

A
v
e

ra
g

e
 T

h
ro

u
g

h
p

u
t

(f
lit

s
/c

y
c
le

/n
o

d
e

)

4x4 network

6x6 network

8x8 network

10x10 network

(a) (b)

Figure A.2: Performance of the networks in different sizes: a) average packet latency vs. flit injec-

tion rate; b) average network throughput vs. flit injection rate.

Table A.1: Performance, saturation power and energy of routers in networks with different sizes

Zero-Load Saturation Saturation Saturation

Buffer Size Latency Throughput Power Energy

(cycles) (flit/cycle/node) (mW/router) (pJ/packet/router)

4×4 network 20.79 0.492 10.150 13.061

6×6 network 25.41 0.349 9.611 7.794

8×8 network 28.83 0.265 9.085 5.361

10×10 network 33.09 0.214 8.769 4.129

of zero-load latency and saturation throughput of networks with different sizes.1

Router power and energy per packet corresponding to various injection rates of networks

are shown in Fig. A.3. Router consumes more power when the injection rate increases because the

router is more active. When the network becomes saturated, router’s activities also become stable

hence router power no longer increases and is stable at a value called saturation power. At the first

glance, when the network load is low (e.g. less than 0.2 flits/cycle/node), at the same injection rate,

routers in a network with larger size consume more power than in a smaller one. This is because

although having the same injection rate, the larger network has larger number of processors hence

inject more packets into the network. Therefore, each router would have more packets to handle thus

is more active and consumes more power. However, routers in a larger network size consume lower

1Because the simulator cannot run with flit injection rate be equal to zero (which means there is no packet injected

into the network), hence the zero-load latency is taken at an very low injection rate of 0.001 flits/cycle/node.

137

0 0.1 0.2 0.3 0.4 0.5 0.6
0

2

4

6

8

10

12

Injection Rate (flits/cycle/node)

R
o

u
te

r
P

o
w

e
r

(m
W

/r
o

u
te

r)

0 0.05 0.1 0.15 0.2 0.25 0.3
0

5

10

15

20

25

30

Injection Rate (flits/cycle/node)

R
o

u
te

r
E

n
e

rg
y
 P

e
r

P
a

c
k
e

t
(p

J
/r

o
u

te
r)

4x4 network

6x6 network

8x8 network

10x10 network

4x4 network

6x6 network

8x8 network

10x10 network

(a) (b)

Figure A.3: Power and energy consumption of routers in different network sizes: a) average router

power vs. flit injection rate; b) average energy per packet vs. flit injection rate.

saturation power than in a smaller one because they saturate sooner as explained in the saturation

throughput of networks.

Lower saturation power consumption along with the larger number of packets transferred

in a larger network size make its routers consume lower average energy per packet than routers in

a network with smaller size as shown in Fig. A.3(b). Saturation power and energy per packet of

routers in different network sizes are listed in Column 4 and 5 of Table A.1.

A.3.2 Different Buffer Depths

In this example, we consider the effect of buffer depth on performance and energy of

routers in the same network size of 8×8. Four buffer depths considered are 2, 4, 8 and 16 flits

per buffer queue. To change buffer size of router, we adjust the value of “bsize” in Listing A.7.

Network latency and throughput of routers over the random traffic pattern is shown in Fig. A.4.

Clearly, increasing buffer depth improves network performance as shown in the figure. Because the

router has 3 pipeline stages, routers with at least 5 flits per buffer have the same zero-load network

latency. Due to not enough buffers to cover round-trip flow control signaling, the router with buffer

depth of 2 flits achieves the worst network performance.

Increasing buffer depth from 2 flits to 4 and 8 flits improves saturation network through-

put by 2.1 and 3.4 times, and reduces zero-load latency by 26.9% and 35.8%, respectively; while

138

0 0.1 0.2 0.3 0.4
0

20

40

60

80

100

Injection Rate (flits/cycle/node)

A
v
e

ra
g

e
 P

a
c
k
e

t
L

a
te

n
c
y
 (

c
y
c
le

s
)

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

Injection Rate (flits/cycle/node)

T
h

ro
u

g
h

p
u

t
(f

lit
s
/c

y
c
le

/n
o

d
e

)

2−flit buffer

4−flit buffer

8−flit buffer

16−flit buffer

2−flit buffer

4−flit buffer

8−flit buffer

16−flit buffer

(a) (b)

Figure A.4: Performance of the networks of routers with different buffer depths: a) average packet

latency vs. flit injection rate; b) average network throughput vs. flit injection rate.

Table A.2: Performance, saturation power and energy of routers with different buffer depths

Zero-Load Saturation Saturation Saturation

Buffer Size Latency Throughput Power Energy

(cycles) (flit/cycle/node) (mW/router) (pJ/packet/router)

2 flits/buffer 44.93 0.078 2.195 4.419

4 flits/buffer 32.84 0.162 4.729 4.572

8 flits/buffer 28.83 0.265 9.085 5.361

16 flits/buffer 28.83 0.319 16.524 8.099

increasing from 8 flits to 16 flits only improves 1.2 times in throughput and has the same zero-load

latency. Zero-load latency and saturation throughput of routers are listed in Column 2 and 3 of

Table A.2.

Due to high power buffer cost, increasing buffer depth dramatically increases the overall

router power (note that each router has five input buffers). As shown in Fig. A.5, increasing buffer

depth from 2 flits to 4, 8 and 16 flits increases the saturation power by 2.2, 4.1 and 7.5 times.

However, because larger buffer depth achieves higher network throughput which allows transferring

more packets in a certain time window, the router with 4 flits per buffer consumes almost the same

saturation energy per packet as the one with 2 flits per buffer. Router with 8 and 16 flits per buffer

are 17.3% and 77.1% higher energy per packet compared to the router with 4 flits per buffer. Router

saturation power and energy per packet are listed in Column 4 and 5 of Table A.2.

139

0 0.1 0.2 0.3 0.4
0

5

10

15

20

Injection Rate (flits/cycle/node)

R
o

u
te

r
P

o
w

e
r

(m
W

/r
o

u
te

r)

0 0.05 0.1 0.15 0.2 0.25 0.3
0

5

10

15

20

25

Injection Rate (flits/cycle/node)

E
n

e
rg

y
 P

e
r

P
a

c
k
e

t
(p

J
/r

o
u

te
r)

2−flit buffer

4−flit buffer

8−flit buffer

16−flit buffer

2−flit buffer

4−flit buffer

8−flit buffer

16−flit buffer

(a) (b)

Figure A.5: Power and energy consumption of routers with different buffer depths: a) average router

power vs. flit injection rate; b) average energy per packet vs. flit injection rate.

A.4 Related Work

A few on-chip network simulators have been developed recently. Booksim developed

in C++ by Jiang et al. allows simulating on-chip networks in a broad range of topology, buffer

size, routing algorithm, arbitration policy configurations [164]. Currently, Booksim only supports

virtual-channel (VC) routers with synthetic traffic patterns. The output results are only network

latency and throughput versus an injection rate. Our NoCTweak supports multiple router types

(wormhole, virtual-channel, shared-queues, bufferless, circuit-switched) over both synthetic traffic

and embedded application patterns. Moreover, it also reports power and energy consumption of

routers in the network at different CMOS technologies, operating voltages and clock frequencies.

NIRGAM developed by Jain et al. in SystemC is a NoC simulator for mesh and torus

topologies [165]. It can simulate different routing algorithms, buffer depths and configurable traffic

patterns. Currently, it supports VC routers and reports only network performance. Similarly, Noxim

was also developed in SystemC by Palesi et al. [166], it allows computing router power and energy

based on the ORION tool [163]. Noxim only supports wormhole routers over synthetic traffic

patterns. It allows changing simulation parameters via a command line which was adopted by our

NoCTweak. NoCTweak uses post-layout timing and power data from commercial CMOS standard-

cell libraries which show highly accurate within 5% compared to the measurement results on real

chips [92].

140

Al-Nayeem and Islam developed gpNoCsim in Java which supports butterfly, fat tree,

torus and mesh networks [167]. Simulators having similar features are NoCsim by Jones [168],

NoCSim by Grecu et al. [169] and Nostrum by Lu et al. [170]. These simulators only support

VC routers with synthetic traffic patterns and do not report router power and energy. Ocin tsim by

Prabhu [171], GARNET by Agarwal et al. [172], SICOSYS by Puente et al. [173] and Darsim by

Lis et al. [174] support computing router power but based on the ORION model [163] which may be

far from accurate compared to the post-layout power data. They, however, can incorporate with full-

system multicore simulators to run parallel benchmarks such as SPLASH-2 [159] or PARSEC [160].

Supporting these benchmarks in NoCTweak is left for our future work.

A.5 Summary

We have described NoCTweak, a simulator for early exploration of performance and en-

ergy efficiency of networks on-chip. The simulator is an open-source tool based on SystemC, a C++

plugin, which is more flexible and provides higher simulation speed than RTL simulators. The tool

is highly parameterizable allowing users to setup and simulate a broad range of network configu-

rations such as router type, network size, buffer size, routing algorithm, arbitration policy, pipeline

stages, supply voltage, clock frequency, traffic pattern, packet length, injection rate, simulation and

warmup times. The statistic output results provided by the simulator are the average network la-

tency, throughput, router power and energy per transferred packet. Area, timing and power of router

components are post-layout data based on a commercial 65 nm CMOS standard-cell library.

141

Appendix B

Related Publications

1. Dean Truong, Wayne Cheng, Tinoosh Mohsenin, Zhiyi Yu, Toney Jacobson, Gouri

Landge, Michael Meeuwsen, Christine Watnik, Paul Mejia, Anh Tran, Jeremy Webb, Eric Work,

Zhibin Xiao, Bevan Baas, ”A 65nm Multi-core Computational Platform with Per-Processor Dy-

namic Supply Voltage and Clock Frequency Scaling,” IEEE International Symposium on VLSI Cir-

cuits, June 2008, C3.1, pp. 22-23.

2. Anh Tran, Dean Truong and Bevan Baas, ”A Complete Real-Time 802.11a Baseband

Receiver Implemented on an Array of Programmable Processors,” IEEE Asilomar Conference on

Signals, Systems and Computers (ACSSC), October 2008, pp. 165-170.

3. Anh Tran, Dean Truong and Bevan Baas, ”A Low Cost High Speed Source-Synchronous

Interconnection Technique for GALS Chip Multiprocessors,” IEEE International Symposium on

Circuits and Systems (ISCAS), May 2009, pp. 996-999.

4. Dean Truong, Wayne Cheng, Tinoosh Mohsenin, Zhiyi Yu, Toney Jacobson, Gouri

Landge, Michael Meeuwsen, Christine Watnik, Paul Mejia, Anh Tran, Jeremy Webb, Eric Work,

Zhibin Xiao, Bevan Baas, ”A 167-Processor Computational Platform in 65 nm CMOS,” IEEE Jour-

nal of Solid-State Circuits (JSSC), vol. 44, no. 4, pp. 1130-1144, April 2009. (Invited for Special

Issue on VLSI Symposium’08)

5. Anh Tran, Dean Truong and Bevan Baas, ”A GALS Many-Core Heterogeneous DSP

Platform with Source-Synchronous On-Chip Interconnection Network,” ACM/IEEE International

Symposium on Networks on Chip (NOCS), May 2009, pp. 214-223.

142

6. Anh Tran, Dean Truong, and Bevan Baas, ”A Reconfigurable Source-Synchronous On-

Chip Network for GALS Many-Core Platforms,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems (TCAD), vol. 29, no. 6, pp. 897-910, June 2010. (Invited for

Special Session on NOCS’09)

7. Anh Tran and Bevan Baas, ”DLABS: a Dual-Lane Buffer-Sharing Router Architecture

for Networks on Chip,” IEEE Workshop on Signal Processing Systems (SiPS), Oct. 2010, pp.331-

336.

8. Anh Tran and Bevan Baas, ”Design of Bufferless On-Chip Routers Providing In-Order

Packet Delivery,” SRC Technology and Talent for the 21st Century (TECHCON), Sep. 2011, S14.3.

9. Anh Tran and Bevan Baas, ”RoShaQ: High-Performance On-Chip Router with Shared

Queues,” IEEE International Conference on Computer Design (ICCD), Oct. 2011, pp.232-238.

(Best Paper Award)

10. Anh Tran and Bevan Baas, ”NoCTweak: a Highly Configurable Simulator for Early

Exploration of Performance and Energy Efficiency of Networks On-Chip,” Technical Report, VLSI

Computation Lab, UC Davis, Jul. 2012.

11. Anh Tran and Bevan Baas, ”Achieving High-Performance Networks On-Chip with

Shared-Queues Routers,” Submitted to the IEEE Transactions on Very Large Scale Integration Sys-

tems (TVLSI).

12. Anh Tran and Bevan Baas, ”Low-Cost Router Designs for Networks On-Chip with

Guaranteed In-Order Packet Delivery,” Submitted to the IEEE Transactions on Computers (TC).

143

Appendix C

Glossary

802.11a An IEEE standard for data communication on wireless channels with a bit rate up to

54 Mbps. It is one of several wireless standards commercialized under a common name

“WiFi”.

ACK - NACK ACKnowledge and Non-ACKnowledge messages. These massages are used in a

flow-control mechanism for nodes or in an in-order packet delivering method for pairs of

source and destination nodes in the network.

Arbiter a circuit module which handles multiple access requests to a shared resource and grants

the access permission for one of these requests preventing them to simultaneously access the

shared resource.

AsAP Asynchronous Array of simple Processors. A parallel DSP processor consisting of a 2-

dimensional mesh array of simple processors operating in independent clock domains.

AsAP2 The second generation of AsAP chips which also includes a few specific accelerators (FFT,

Viterbi, Motion Estimation) and shared memory modules. It has a reconfigurable source-

synchronous network supporting long-distance interconnects for processors. Per-core DVFS

is also supported for dynamic power savings.

Buffer A FIFO queue for temporarily holding incoming packets at routers in case of happening

network congestion.

BR or QR Buffer Read or Queue Read. Reading a flit out of a router buffer queue.

144

BW or QW Buffer Write or Queue Write. Writing a flit into a router buffer queue.

Deadlock the situation when packets in the network indefinitely stop moving

FFT Fast Fourier Transform. An efficient algorithm to compute the discrete Fourier transform and

its inverse.

FIFO First-In First-Out. A buffer queue with in-order operations: the word which is written in to

the buffer first will be read out of the queue first.

FLIT or flit FLow control digIT. A flow control unit in a wormhole packet-switched router. A data

packet consists of multiple flits: a head flit, several body flits and one tail flit. Typically, the

flit size is equal to the router link width.

GALS Globally Asynchronous Locally Synchronous. A design methodology in which major design

blocks are synchronous, but interface to other blocks asynchronously.

H.264 A standard for video compression. It is also known as MPEG-4 part 10.

Livelock the situation when a packet moves indefinitely in the network without ever reaching its

destination even though there is no network deadlock.

LRC Lookahead Route Computation. Computing the output port of the next router for a packet at

the current router. This lookahead operation reduces the packet latency in each router.

LT Output Link Traversal. The link traversal of a data flit toward the next router.

NoC Network on Chip. An on-chip interconnection fabric of routers, switches and wires which

allows multiple modules or processing elements on the chip to communicate together.

RC Routing Computation Operation. Computing the output port for a packet at a router. Two

well-known routing policies are deterministic and adaptive routing.

RoShaQ Router with Shared-Queues. A router architecture which allows multiple packets from

input ports to share a set of buffer queues for improving network performance.

RTL Register-Transfer Level. RTL language is a hardware description language used to model and

simulate hardware modules at the gate and register level. A hardware module modeled in the

145

RTL level could be synthesized to a netlist of CMOS cell gates used for chip layout. Two

most-used RTL languages are Verilog and VHDL.

SA Switch Allocation. Granting access permission to the requesting packets, which want to traverse

through the same crossbar, for avoiding conflicts.

ST Switch Traversal. A data flit traverses from an input port to an output port through the crossbar

which was setup by the SA.

Speculation Doing an operation in advance even the condition allowing this operation to happen

is unknown at that time. If the condition is not satisfied, the result caused by this operation

is ignored. Otherwise, the system keeps moving on hence theoretically could achieve higher

overall performance if the probability of the condition to be satisfied is high enough.

SQA Shared-Queue Allocation. Granting the access permission to input packets so that they can

be written into the shared queues of a RoShaQ router.

WH router Wormhole Router. A router using the wormhole packet transferring technique with

only one buffer queue per input port.

VC router Virtual Channel Router. A router using the wormhole packet transferring technique

with multiple buffer queues per input port. Each queue is called a virtual channel on an input

port.

VCA Virtual Channel Allocation. Allocating an output VC channel to a packet in an input VC

channel of a VC router.

VFS Voltage and Frequency Scaling. A technique allowing a circuit module to change its operating

voltage and clock frequency corresponding to its activity hence reduces the overall power

consumption. VFS can be dynamically or statically implemented.

Viterbi decoder An algorithm to decode a bitstream that has been encoded using forward error

correction based on a convolutional code, developed by A. J. Viterbi in 1967.

146

Bibliography

[1] H. Sutter, “The free lunch is over: A fundamental turn toward concurrency in software,”

Online, Aug. 2009, http://www.gotw.ca/publications/concurrency-ddj.htm.

[2] G. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, no. 8,

Apr. 1965.

[3] J. M. Rabaey, A. Chandrakasan, and B. Nikolić, Digital Integrated Circuits: A Design Per-

spective, 2nd ed. New Jersey, U.S.A: Prentice-Hall, 2003.

[4] V. Tiwari et al., “Reducing power in high-performance microprocessors,” in Design Automa-

tion Conference (DAC), Jun. 1998, pp. 732–737.

[5] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach. San

Francisco, USA: Morgan Kaufmann, 2007.

[6] L. Gwennap, “Adapteva: More flops, less watts,” Microprocessor, pp. 1 –5, Jun. 2011.

[7] O. Azizi et al., “Energy-performance tradeoffs in processor architecture and circuit design: a

marginal cost analysis,” in International Symposium on Computer Architecture (ISCA), 2010,

pp. 26–36.

[8] C. Batten, “Designing chip-level nanophotonic interconnection networks,” Online, Oct. 2011,

http://www.cs.rochester.edu/meetings/ASPLOS-mini-symp-12/Christopher Batten.pdf.

[9] C. H. V. Berkel, “Multi-core for mobile phones.” in Design, Automation and Test in Europe

(DATE), 2009, pp. 1260–1265.

[10] S. Borkar, “Thousand core chips: a technology perspective,” in Design Automation Confer-

ence (DAC), Jun. 2007, pp. 746–749.

[11] M. Hill and M. Marty, “Amdahl’s law in the multicore era,” Computer, vol. 41, no. 7, pp. 33

–38, Jul. 2008.

[12] Z. Yu et al., “AsAP: An asynchronous array of simple processors,” IEEE Journal of Solid-

State Circuits (JSSC), vol. 43, no. 3, pp. 695–705, Mar. 2008.

[13] D. Truong et al., “A 167-processor computational platform in 65 nm CMOS,” IEEE JSSC,

vol. 44, pp. 1130–1144, Apr. 2009.

[14] K. Asanovic et al., “The landscape of parallel computing research: A view from berkeley,”

EECS Department, University of California, Berkeley, Tech. Rep., Dec 2006. [Online].

Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.html

147

[15] H. G. Lee et al., “On-chip communication architecture exploration: A quantitative evaluation

of point-to-point, bus, and network-on-chip approaches.” ACM Trans. Design Autom. Electr.

Syst. (TDAES), vol. 12, 2007.

[16] V. Yalala et al., “A 16-core RISC microprocessor with network extensions,” in Intl. Confer-

ence on Solid-State Circuits (ISSCC), Feb. 2006, pp. 78–79.

[17] ARM, “CoreLink system IP and design tools for AMBA,” Online,

http://www.arm.com/products/system-ip/amba/.

[18] OpenCores, “SoC interconnection: Wishbone,” Online,

http://opencores.org/opencores,wishbone.

[19] IBM, “CoreConnect bus architecture,” Online, https://www-

01.ibm.com/chips/techlib/techlib.nsf/products/CoreConnect Bus Architecture.

[20] J. Archibald and J. Baer, “Cache coherence protocols: evaluation using a multiprocessor

simulation model,” ACM Trans. Comput. Syst., vol. 4, no. 4, pp. 273–298, Sep. 1986.

[21] P. Stenstrom, “A survey of cache coherence schemes for multiprocessors,” Computer, vol. 23,

no. 6, pp. 12 –24, Jun. 1990.

[22] D. C. Pham et al., “Overview of the architecture, circuit design, and physical implementation

of a first-generation Cell processor,” IEEE JSSC, vol. 41, no. 1, pp. 179–196, Jan. 2006.

[23] R. Kumar et al., “Interconnections in multicore architectures: Understanding mechanisms,

overheads and scaling,” in Intl. Symposium on Computer Architecture (ICSA), Jun. 2005.

[24] U. G. Nawathe et al., “An 8-core 64-thread 64b power-efficient SPARC SoC,” in Intl. Con-

ference on Solid-State Circuits (ISSCC), Feb. 2007, pp. 108–109.

[25] W. J. Dally and B. Towles, Principles and Practices of Interconnection Networks. San

Francisco, USA: Morgan Kaufmann, 2004.

[26] C. Leiserson, “Fat-trees: Universal networks for hardware-efficient supercomputing,” IEEE

Transactions on Computers (TC), vol. 34, pp. 892–901, Oct. 1985.

[27] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks: An Engineering Approach.

San Francisco, USA: Morgan Kaufmann, 2003.

[28] W. J. Dally and B. Towles, “Route packets, not wires: on-chip interconnection networks,” in

Design Automation Conference (DAC), 2001, pp. 684–689.

[29] Z. Xiao and B. M. Baas, “A hexagonal-shaped processor and interconnect topology for

tightly-tiled many-core architecture,” in IFIP/IEEE Internation Conference on Very Large

Scale Integration (VLSI-SoC), Oct. 2012.

[30] M. Coppola et al., “Spidergon: a novel on-chip communication network,” in International

Symposium on System-on-Chip (SOC), nov. 2004, p. 15.

[31] J. Kim et al., “Flattened butterfly topology for on-chip networks,” in IEEE/ACM International

Symposium on Microarchitecture, 2007, pp. 172–182.

148

[32] J. Kim et al., “Technology-driven, highly-scalable dragonfly topology,” in International Sym-

posium on Computer Architecture (ISCA), 2008, pp. 77–88.

[33] P. P. Pande et al., “Performance evaluation and design trade-offs for network-on-chip inter-

connect architectures,” IEEE Transactions on Computers (TC), vol. 54, no. 8, pp. 1025 –

1040, Aug. 2005.

[34] J. Howard et al., “A 48-Core IA-32 processor in 45 nm CMOS using on-die message-passing

and DVFS for performance and power scaling,” IEEE Journal of Solid-State Circuits (JSSC),

vol. 46, no. 1, pp. 173–183, 2011.

[35] S. Vangal et al., “An 80-tile 1.28 TFLOPS networks-on-chip in 65nm CMOS,” in Intl. Con-

ference on Solid-State Circuits (ISSCC), Feb. 2007, pp. 98–99.

[36] S. Bell et al., “TILE64 processor: A 64-core SoC with mesh interconnect,” in Intl. Conference

on Solid-State Circuits (ISSCC), Feb. 2008, pp. 88–89.

[37] A. Banerjee et al., “An energy and performance exploration of network-on-chip architec-

tures,” IEEE Transactions on Very Large Scale Integration Systems (TVLSI), vol. 17, no. 3,

pp. 319–329, 2009.

[38] P. T. Wolkotte et al., “An energy-efficient reconfigurable circuit-switched network-on-chip,”

in IEEE International Parallel and Distributed Processing Symposium (IPDPS), Apr. 2005,

p. 155.

[39] N. Jerger et al., “Circuit-switched coherence,” in ACM/IEEE Intl. Symp. on Networks-on-

Chip (NOCS), 2008, pp. 193–202.

[40] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach. San Francisco,

USA: Addison-Wesley, 2012.

[41] C. E. Cummings, “Simulation and synthesis techniques for asynchronous fifo design,” in

Synopsys Users Group, 2002, pp. 1–23.

[42] R. Ginosar, “Fourteen ways to fool your synchronizer,” in IEEE Intl. Symposium on Asyn-

chronous Circuits and Systems (ASYNC), May 2003, p. 89.

[43] N. Enright-Jerger and L. Peh, On-Chip Networks. Morgan-Claypool, 2009.

[44] W. Dally and C. Seitz, “Deadlock-free message routing in multiprocessor interconnection

networks,” IEEE Transactions on Computers (TC), vol. C-36, no. 5, pp. 547 –553, May

1987.

[45] J. Duato, “A necessary and sufficient condition for deadlock-free adaptive routing in worm-

hole networks,” IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 6, pp.

1055–1067, 1995.

[46] C. J. Glass and L. M. Ni, “The turn model for adaptive routing,” in IEEE International Sym-

posium on Computer Architecture (ISCA), 1992, pp. 278–287.

[47] G.-M. Chiu, “The odd-even turn model for adaptive routing,” IEEE Transactions on Parallel

and Distributed Systems (TPDS), vol. 11, no. 7, pp. 729 –738, Jul. 2000.

149

[48] T. Nesson and S. L. Johnsson, “ROMM routing on mesh and torus networks,” in ACM sym-

posium on Parallel algorithms and architectures (SPAA), 1995, pp. 275–287.

[49] A. Singh et al., “GOAL: a load-balanced adaptive routing algorithm for torus networks,” in

International Symposium on Computer Architecture (ISCA), Jun. 2003, pp. 194 – 205.

[50] D. Seo et al., “Near-optimal worst-case throughput routing for two-dimensional mesh net-

works,” in International Symposium on Computer Architecture (ISCA), Jun. 2005, pp. 432 –

443.

[51] J. Hu and R. Marculescu, “DyAD: smart routing for networks-on-chip,” in Design Automa-

tion Conference (DAC), 2004, pp. 260–263.

[52] M. Li et al., “DyXY - a proximity congestion-aware deadlock-free dynamic routing method

for network on chip,” in ACM/IEEE Design Automation Conference (DAC), 2006, pp. 849

–852.

[53] A. T. Tran and B. M. Baas, “DLABS: A dual-lane buffer-sharing router architecture for net-

works on chip,” in IEEE Workshop on Signal Processing Systems (SiPS), Oct. 2010, pp.

327–332.

[54] A. Hansson et al., “Avoiding message-dependent deadlock in network-based systems on

chip,” VLSI Design, vol. 2007, pp. 10–, 2007.

[55] T. Moscibroda and O. Mutlu, “A case for bufferless routing in on-chip networks,” in Intl.

Symp. on Computer Architecture (ISCA), 2009, pp. 196–207.

[56] W. J. Dally, “Virtual-channel flow control,” IEEE Transactions on Parallel and Distributed

Systems (TPDS), vol. 3, pp. 194–205, Mar. 1992.

[57] L. Peh and W. J. Dally, “A delay model and speculative architecture for pipelined routers,” in

Intl. Symp. on High-Performance Computer Architecture (HPCA), Jan. 2001, pp. 255–266.

[58] R. Mullins et al., “Low-latency virtual-channel routers for on-chip networks,” in Intl. Sym-

posium on Computer Architecture (ISCA), Mar. 2004, p. 188.

[59] A. Kumar et al., “Towards ideal on-chip communication using express virtual channels,”

IEEE Micro, vol. 2, pp. 80–90, Feb. 2008.

[60] Y.-C. Lan et al., “A bidirectional noc (BiNoC) architecture with dynamic self-reconfigurable

channel,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

(TCAD), vol. 30, no. 3, pp. 427 –440, Mar. 2011.

[61] J. Kim, “Low-cost router microarchitecture for on-chip networks,” in IEEE/ACM Interna-

tional Symposium on Microarchitecture (MICRO), 2009, pp. 255–266.

[62] T. Krishna et al., “SWIFT: A swing-reduced interconnect for a token-based network-on-chip

in 90nm CMOS,” in IEEE International Conference on Computer Design (ICCD), Oct. 2010,

pp. 439 –446.

[63] C.-H. O. Chen et al., “A low-swing crossbar and link generator for low-power networks-on-

chip,” in International Conference on Computer-Aided Design (ICCAD), 2011, pp. 779–786.

150

[64] L. Shang et al., “Dynamic voltage scaling with links for power optimization of interconnec-

tion networks,” in International Symposium on High-Performance Computer Architecture

(HPCA), 2003, pp. 91–.

[65] H. Matsutani et al., “A multi-vdd dynamic variable-pipeline on-chip router for CMPs,” in

Asia and South Pacific Design Automation Conference (ASP-DAC), Feb. 2012, pp. 407 –412.

[66] A. K. Mishra et al., “A case for dynamic frequency tuning in on-chip networks,” in

IEEE/ACM International Symposium on Microarchitecture (MICRO), 2009, pp. 292–303.

[67] P. Gratz et al., “Implementation and evaluation of on-chip network architectures,” in Interna-

tional Conference on Computer Design (ICCD), Oct. 2006, pp. 477 –484.

[68] G. Michelogiannakis et al., “Elastic-buffer flow control for on-chip networks,” in Interna-

tional Symposium on High Performance Computer Architecture (HPCA), Feb. 2009, pp. 151

–162.

[69] C. Gómez et al., “Reducing packet dropping in a bufferless NoC,” in international Euro-Par

conference on Parallel Processing (EuroPar), 2008, pp. 899–909.

[70] M. Hayenga et al., “SCARAB: A single cycle adaptive routing and bufferless network,” in

IEEE/ACM Int. Symp. on Microarchitecture (MICRO), 2009, pp. 244–254.

[71] C. Fallin et al., “CHIPPER: A low-complexity bufferless deflection router,” in International

Symposium on High Performance Computer Architecture (HPCA), Feb. 2011, pp. 144 –155.

[72] G. Michelogiannakis et al., “Evaluating bufferless flow control for on-chip networks,” in

ACM/IEEE Int. Symp. on Networks-on-Chip (NOCS), 2010, pp. 9–16.

[73] R. Mullins, “Minimising dynamic power consumption in on-chip networks,” in Intl. Symp.

on System-on-Chip (SoC), Nov. 2006, pp. 1–4.

[74] N. A. Kurd et al., “A multigigahertz clocking scheme for the Pentium R© 4 microprocessor,”

in IEEE JSSC, Nov. 2001, pp. 1647–1653.

[75] M. Krstić et al., “Globally asynchronous, locally synchronous circuits: Overview and out-

look,” IEEE Design and Test of Computers, vol. 24, no. 5, pp. 430–441, Sep. 2007.

[76] C. J. Myers, Asynchronous Circuit Design. New York: Wiley, 2001.

[77] J. Sparso and S. Furber, Principles of Asynchronous Circuit Design: A Systems Perspective.

Boston, MA: Kluwer, 2001.

[78] G. Campobello et al., “GALS networks on chip: a new solution for asynchronous delay-

insensitive links,” in Conference on Design, Automation, and Test in Europe (DATE), Mar.

2006, pp. 160–165.

[79] B. R. Quinton et al., “Asynchronous ic interconnect network design and implementation

using a standard ASIC flow,” in IEEE Intl. Conference of Computer Design (ICCD), Oct.

2005, pp. 267–274.

[80] K. Y. Yun and R. P. Donohue, “Pausible clocking: a first step toward heterogeneous systems,”

in IEEE Intl. Conference on Computer Design (ICCD), Oct. 1996, pp. 118–123.

151

[81] R. Mullins and S. Moore, “Demystifying data-driven and pausible clocking schemes,” in Intl.

Symposium on Asynchronous Circuits and Systems (ASYNC), Mar. 2007, pp. 175–185.

[82] S. Moore et al., “Point to point GALS interconnect,” in Intl. Symposium on Asynchronus

Circuits and Systems (ASYNC), May 2002, p. 69.

[83] W. J. Bainbridge et al., “Delay-insensitive, point-to-point interconnect using m-of-n codes,”

in Intl. Symposium on Asynchronous Circuits and Systems (ASYNC), May 2003, p. 132.

[84] E. Beigné and P. Vivet, “Design of on-chip and off-chip interfaces for a GALS NoC architec-

ture,” in IEEE Intl. Symposium on Asynchronous Circuits and Systems (ASYNC), Mar. 2006.

[85] T. Bjerregaard and J. Sparso, “A scheduling discipline for latency and bandwidth guarantees

in asynchronous networks-on-chip,” in Intl. Symposium on Asynchronus Circuits and Systems

(ASYNC), May 2005.

[86] Z. Yu and B. M. Baas, “Implementing tile-based chip multiprocessors with GALS clocking

styles,” in IEEE Intl. Conference of Computer Design (ICCD), Oct. 2006, pp. 174–179.

[87] Y. Hoskote et al., “A 5-GHz mesh interconnect for a teraflops processor,” IEEE Micro,

vol. 27, no. 5, pp. 51–61, Sep. 2007.

[88] A. T. Tran and B. M. Baas, “RoShaQ: High-performance on-chip router with shared queues,”

in IEEE International Conference on Computer Design (ICCD), Oct. 2011, pp. 232–238.

[89] A. T. Tran and B. M. Baas, “Achieving high-performance networks on-chip with shared-

queues routers,” Submitted to the IEEE Transactions on Very Large Scale Integration Systems

(TVLSI).

[90] A. T. Tran and B. M. Baas, “Design of bufferless on-chip routers providing in-order packet

delivery,” in SRC Technology and Talent for the 21st Century (TECHCON), Sep. 2011, p.

S14.3.

[91] A. T. Tran and B. M. Baas, “Low-cost router designs for networks on-chip with guaranteed

in-order packet delivery,” Submitted to the IEEE Transactions on Computers (TC).

[92] A. T. Tran et al., “A reconfigurable source-synchronous on-chip network for GALS many-

core platforms,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems (TCAD), vol. 29, no. 6, pp. 897–910, Jun. 2010.

[93] A. T. Tran et al., “A low-cost high-speed source-synchronous interconnection technique for

GALS chip multiprocessors,” in IEEE International Symposium on Circuits and Systems

(ISCAS), May 2009, pp. 996–999.

[94] A. T. Tran et al., “A complete real-time 802.11a baseband receiver implemented on an array

of programmable processors,” in Asilomar Conference on Signals, Systems and Computers

(ACSSC), Oct. 2008, pp. 165–170.

[95] A. T. Tran et al., “A GALS many-core heterogeneous DSP platform with source-synchronous

on-chip interconnection network,” in ACM/IEEE International Symposium on Networks-on-

Chip (NOCS), May 2009, pp. 214–223.

[96] Y. Lin et al., “SODA: A high-performance DSP architecture for software-defined radio,”

IEEE Micro, vol. 27, no. 1, pp. 114–123, Feb. 2007.

152

[97] A. T. Tran and B. M. Baas, “NoCTweak: a highly parameterizable simulator for early explo-

ration of performance and energy efficiency of networks on-chip,” VLSI Computation Lab,

UC Davis, Tech. Rep., Jul. 2012, open-Source Software Tool.

[98] K. Latif et al., “Power and area efficient design of network-on-chip router through utiliza-

tion of idle buffers,” in IEEE Intl. Conf. and Workshops on Engineering of Computer Based

Systems (ECBS), 2010, pp. 131–138.

[99] R. S. Ramanujam et al., “Design of a high-throughput distributed shared-buffer NoC router,”

in ACM/IEEE Intl. Symp. on Networks-on-Chip (NOCS), 2010, pp. 69–78.

[100] M. Galles, “Spider: a high-speed network interconnect,” IEEE Micro, vol. 17, no. 1, pp.

34–39, 1997.

[101] M. Hluchyj and M. Karol, “Queueing in high-performance packet switching,” IEEE Journal

on Selected Areas in Communications (JSAC), vol. 6, no. 9, pp. 1587 –1597, Dec 1988.

[102] E. B. V. der Tol and E. G. Jaspers, “Mapping of MPEG-4 decoding on a flexible architecture

platform,” in Photo-Optical Instrumentation Engineers Conference (SPIE), Dec. 2001, pp.

1–13.

[103] J. Hu and R. Marculescu, “Energy- and performance-aware mapping for regular NoC archi-

tectures,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

(TCAD), vol. 24, no. 4, pp. 551–562, Apr. 2005.

[104] M. Palesi et al., “Application specific routing algorithms for low power network on chip

design,” a Book Chapter in Low Power Networks-on-Chip by Springer, pp. 113–150, 2011.

[105] D. Bertozzi et al., “NoC synthesis flow for customized domain specific multiprocessor

systems-on-chip,” IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 16,

no. 2, pp. 113–129, Feb. 2005.

[106] Z. Xiao and B. M. Baas, “A high-performance parallel CAVLC encoder on a fine-grained

many-core system,” in IEEE International Conference on Computer Design (ICCD), Oct.

2008, pp. 248–254.

[107] D. Gebhardt et al., “Design of an energy-efficient asynchronous NoC and its optimization

tools for heterogeneous SoCs,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems (TCAD), vol. 30, no. 9, pp. 1387–1399, Sep. 2011.

[108] K. Latif et al., “PVS-NoC: Partial virtual channel sharing NoC architecture,” in Euromicro

Intl. Conference on Parallel, Distributed and Network-Based Processing (PDP), Feb. 2011,

pp. 470–477.

[109] E3S, “Embedded system synthesis benchmarks suite,” Online,

http://ziyang.eecs.umich.edu/ dickrp/e3s/.

[110] G. D. Micheli et al., “Networks on chips: from research to products,” in ACM/IEEE Design

Automation Conference (DAC), 2010, pp. 300–305.

[111] G. Passas et al., “A 128x128 x 24gb/s crossbar interconnecting 128 tiles in a single hop and

occupying 6% of their area,” in ACM/IEEE Intl. Symp. on Networks-on-Chip (NOCS), 2010,

pp. 87–95.

153

[112] C. B. Stunkel et al., “A new switch chip for IBM RS/6000 SP systems,” in ACM/IEEE Con-

ference on Supercomputing (CS), 1999.

[113] C. A. Nicopoulos et al., “ViChaR: A dynamic virtual channel regulator for network-on-chip

routers,” in IEEE/ACM Intl. Symp. on Microarchitecture (MICRO), Dec. 2006, pp. 333–346.

[114] S. Murali et al., “A multi-path routing strategy with guaranteed in-order packet delivery

and fault-tolerance for networks on chip,” in Design Automation Conference, 2006 43rd

ACM/IEEE, 2006, pp. 845 –848.

[115] M. Palesi et al., “An efficient technique for in-order packet delivery with adaptive routing

algorithms in networks on chip,” in Digital System Design: Architectures, Methods and Tools

(DSD), 2010 13th Euromicro Conference on, Sep. 2010, pp. 37 –44.

[116] J. Martinez et al., “In-order packet delivery in interconnection networks using adaptive rout-

ing,” in Parallel and Distributed Processing Symposium, 2005. Proceedings. 19th IEEE In-

ternational, Apr. 2005, p. 101.

[117] Z. Yu and B. M. Baas, “High performance, energy efficiency, and scalability with gals

chip multiprocessors,” IEEE Transactions on Very Large Scale Integration Systems (TVLSI),

vol. 17, no. 1, pp. 66–79, Jan. 2009.

[118] B. M. Baas et al., “AsAP: A fine-grained many-core platform for DSP applications,” IEEE

Micro, vol. 27, no. 2, pp. 34–45, Mar. 2007.

[119] B. M. Baas, “A parallel programmable energy-efficient architecture for computationally-

intensive DSP systems,” in Signals, Systems and Computers, 2003. Conference Record of

the Thirty-Seventh Asilomar Conference on, Nov. 2003.

[120] S. Herbert and D. Marculescu, “Analysis of dynamic voltage/frequency scaling in chip-

multiprocessors,” in Intl. Symposium on Low Power Electronics and Design (ISLPED), Aug.

2007, pp. 38–43.

[121] A. P. Chandrakasan et al., “Low power CMOS digital design,” IEEE JSSC, vol. 27, pp. 473–

484, 1992.

[122] Z. Yu et al., “An asynchronous array of simple processors for dsp applications,” in IEEE

International Solid-State Circuits Conference, (ISSCC ’06), Feb. 2006, pp. 428–429.

[123] R. Apperson et al., “A scalable dual-clock FIFO for data transfers between arbitrary

and haltable clock domains,” IEEE Transactions on Very Large Scale Integration Systems

(TVLSI), vol. 15, no. 10, pp. 1125–1134, Oct. 2007.

[124] T. Chelcea and S. M. Nowick, “A low-latency FIFO for mixed-clock systems,” in IEEE Com-

puter Society Workshop on VLSI, Apr. 2000, pp. 119–126.

[125] W. Zhao and Y. Cao, “New generation of predictive technology model for sub-45nm early

design exploration,” IEEE TED, vol. 53, pp. 2816–2823, Nov. 2006.

[126] ITRS, “International technology roadmap for semiconductors, 2006 update, interconnect sec-

tion,” Online, http://www.itrs.net/reports.html.

[127] S. Wong et al., “Modeling of interconnect capacitance, delay, and crosstalk in VLSI,” IEEE

TSM, vol. 13, pp. 108–111, Feb. 2000.

154

[128] PTM, “Predictable technology model, interconnect section,” Online,

http://www.eas.asu.edu/ptm/.

[129] S. Im et al., “Scaling analysis of multilevel interconnect temperatures for high-performance

ICs,” IEEE TED, vol. 52, pp. 2710–2719, Dec. 2005.

[130] A. Naeemi et al., “Compact physical models for multilevel interconnect crosstalk in gigascale

integration,” IEEE TED, vol. 51, pp. 1902–1912, Nov. 2004.

[131] P. Teehan et al., “Estimating reliability and throughput of source-synchronous wave-pipelined

interconnect,” in ACM/IEEE Intl. Symposium on Networks-on-Chip (NOCS), May 2009.

[132] K. Banerjee and A. Mehrotra, “A power-optimal repeater insertion methodology for global

interconnects in nanometer designs,” IEEE TED, vol. 49, pp. 2001–2007, Nov. 2002.

[133] Z. Yu and B. M. Baas, “A low-area multi-link interconnect architecture for gals chip mul-

tiprocessors,” IEEE Transactions on Very Large Scale Integration Systems (VLSI), vol. 18,

no. 5, pp. 750–762, May. 2010.

[134] M. Meeuwsen et al., “A shared memory module for asynchronous arrays of processors,” vol.

2007, 2007, pp. Article ID 86 273, 13 pages.

[135] K. Agarwal and K. Nowka, “Dynamic power management by combination of dual static

supply voltages,” in Intl. Symposium on Quality Electronic Design (ISQED), Mar. 2007, pp.

85–92.

[136] E. Beigné et al., “An asynchronous power aware and adaptive NoC based circuit,” IEEE

JSSC, vol. 44, pp. 1167–1177, Apr. 2009.

[137] W. H. Cheng and B. M. Baas, “Dynamic voltage and frequency scaling circuits with two

supply voltages,” in IEEE Intl. Symposium on Circuits and Systems (ISCAS), May 2008, pp.

1236–1239.

[138] C. Aktouf, “A complete strategy for testing an on-chip multiprocessor architecture,” IEEE

DTC, vol. 19, no. 1, pp. 18–28, 2002.

[139] X. Tran et al., “Design-for-test approach of an asynchronous network-on-chip architecture

and its associated test pattern generation and application,” IET CDT, vol. 3, no. 5, pp. 487–

500, 2009.

[140] A. T. Jacobson et al., “The design of a reconfigurable continuous-flow mixed-radix FFT

processor,” in IEEE International Symposium on Circuits and Systems (ISCAS), May. 2009,

pp. 1133–1136.

[141] B. Stackhouse et al., “A 65 nm 2-billion transistor quad-core Itanium processor,” IEEE JSSC,

vol. 44, pp. 18–31, Jan. 2009.

[142] 802.11a Standard, “Wireless lan medium access control (MAC) and physical layer (PHY)

specifications: High-speed physical layer in the 5 ghz band,” IEEE Computer Society, Tech.

Rep., 1999.

[143] M. J. Meeuwsen et al., “A full-rate software implementation of an ieee 802.11a compliant

digital baseband transmitter,” in IEEE Workshop on Signal Processing Systems, SiPS, Oct

2004.

155

[144] Y. Tang et al., “Optimized software implementation of full-rate ieee 802.11 a compliant dig-

ital baseband transmitter on digital signal processing,” in Global Telecommunications Con-

ference, GLOBECOM, 2005.

[145] M. F. Tariq et al., “Development of an ofdm based high speed wireless lan platform usingthe

ti c6x dsp,” in Int. Conference on Communications, ICC, Apr 2002, pp. 522–526.

[146] J. D. Bakker and F. C. Schoute, “Lart: Design and implementation of a experimental wireless

platform,” Sep 2000, pp. 1460–1466.

[147] S. Eberli et al., “An ieee 802.11a baseband receiver implementation on an application specific

processor,” in Midwest Symposium on Circuits and Systems, MWSCAS, Aug 2007, pp. 1324–

1327.

[148] E. Tell et al., “A programmable dsp core for baseband processing,” in IEEE-NEWCAS Con-

ference, Jun 2005, pp. 403– 406.

[149] A. Niktash et al., “A case study of performing ofdm kernels on a novel reconfigurable dsp

architecture,” in Military Communications Conference, MILCOM, Oct 2005, pp. 1813–1818.

[150] K. Akabane et al., “Design and performance evaluation of ieee 802.11 a sdr software imple-

mented on a reconfigurable processor,” IEICE Transactions on Communications, pp. 4163–

4169, Nov 2005.

[151] D. Truong et al., “A 167-processor 65 nm computational platform with per-processor dy-

namic supply voltage and dynamic clock frequency scaling,” in Symposium on VLSI Circuits,

Jun. 2008.

[152] T. M. Schmidl and D. C. Cox, “Rubust frequency and timing synchronization for ofdm,”

IEEE Transactions on Communications, vol. 45, pp. 1613–1621, Dec. 1997.

[153] V. Jiménez et al., “Design and implementation of synchronization and agc for ofdm-based

wlan receivers,” IEEE Transactions on Consumer Electronics, vol. 50, pp. 1016–1025, Nov.

2004.

[154] H. Tang et al., “Synchronization schemes for packet ofdm system,” in Intl. Conference on

Communications, ICC, vol. 5, May 2003, pp. 3346–3350.

[155] E. Sourour et al., “Frequency offset estimation and correction in the ieee 802.11a wlan,”

IEEE Vehicular Technology Conference, vol. 7, pp. 4923–4927, Sep. 2004.

[156] R. Andraka, “A survey of cordic algorithms for fpga based computers,” in ACM/SIGDA Intl

Symposium on FPGA, no. 6, 1998, pp. 191–200.

[157] P. Hung et al., “Fast division algorithm with a small lookup table,” in IEEE Asilomar Con-

ference on Signals, Systems, and Computers, vol. 2, Oct. 1999, pp. 1465–1468.

[158] A. T. Tran and B. M. Baas, “Design of an energy-efficient 32-bit adder operating at sub-

threshold voltages in 45-nm CMOS,” in International Conference on Communications and

Electronics (ICCE), aug. 2010, pp. 87 –91.

[159] S. C. Woo et al., “The SPLASH-2 programs: characterization and methodological consider-

ations,” in intl. symp. on Computer architecture (ISCA), 1995, pp. 24–36.

156

[160] C. Bienia et al., “The PARSEC benchmark suite: characterization and architectural implica-

tions,” in Intl. Conf. on parallel architectures and compilation techniques (PACT), 2008, pp.

72–81.

[161] Accellera, “Download SystemC,” Online, http://www.accellera.org/downloads/standards/systemc/.

[162] H.-S. Wang et al., “Orion: a power-performance simulator for interconnection networks,” in

IEEE/ACM International Symposium on Microarchitecture (MICRO), 2002, pp. 294 – 305.

[163] A. Kahng et al., “ORION 2.0: A fast and accurate noc power and area model for early-

stage design space exploration,” in Design, Automation Test in Europe Conference Exhibition

(DATE), Apr. 2009, pp. 423 –428.

[164] N. Jiang et al., “BookSim interconnection network simulator,” Online,

https://nocs.stanford.edu/cgi-bin/trac.cgi/wiki/Resources/BookSim.

[165] L. Jain et al., “NIRGAM - a simulator for noc interconnect routing and application modeling,”

Online, http://nirgam.ecs.soton.ac.uk/.

[166] R. Palesi et al., “Noxim - the noc simulator,” Online, http://noxim.sourceforge.net/.

[167] A. Al-Nayeem and T. Z. Islam, “gpNoCsim: General purpose simulator for network-on-

chip,” Online, http://www.buet.ac.bd/cse/research/group/noc/index.html.

[168] M. Jones, “NoCsim : a versatile network on chip simulator,” Online,

https://circle.ubc.ca/handle/2429/16550.

[169] C. Grecu et al., “A flexible network-on-chip simulator for early design space exploration,” in

Microsystems and Nanoelectronics Research Conference (MNRC), Oct. 2008, pp. 33 –36.

[170] Z. Lu et al., “NNSE: Nostrum network-on-chip simulation environment,” Swedish System on

Chip, 2005.

[171] S. Prabhu et al., “Ocin tsim- DVFS aware simulator for NoCs,” Online, 2009.

[172] N. Agarwal et al., “GARNET: A detailed on-chip network model inside a full-system simu-

lator,” in IEEE Intl. Symp. on Performance Analysis of Systems and Software (ISPASS), Apr.

2009, pp. 33 –42.

[173] V. Puente et al., “SICOSYS: an integrated framework for studying interconnection network

performance in multiprocessor systems,” in Euromicro Workshop on Parallel, Distributed

and Network-based Processing, 2002, pp. 15 –22.

[174] M. Lis et al., “Darsim: A parallel cycle-level NoC simulator,” Online,

http://dspace.mit.edu/handle/1721.1/59832.

