Energy-efficient Fine-grained Many-core Architecture for
Video and DSP Applications

By
ZHIBIN XIAO
B.S. (Zhejiang University, Hangzhou, China), 2003
M.S. (Zhejiang University, Hangzhou, China), 2006
DISSERTATION
Submitted in partial satisfaction of the requirements for the degree of
DOCTOR OF PHILOSOPHY
in
Electrical and Computer Engineering
in the
OFFICE OF GRADUATE STUDIES
of the
UNIVERSITY OF CALIFORNIA

Davis

Approved:

Chair, Dr. Bevan M. Baas

Member, Dr. Venkatesh Akella

Member, Dr. Soheil Ghiasi

Committee in Charge
2012



(© Copyright by Zhibin Xiao 2012
All Rights Reserved



Abstract

Many-core processor architecture has become the most promising computer architec-
ture. However, how to utilize the extra system performance for real applications such as
video encoding is still challenging. This dissertation investigates architecture design, phys-
ical implementation and performance evaluation of a fine-grained many-core processor for
advanced video coding with a focus on interconnection, topology, memory system and
related parallel programming methodology.

A baseline residual encoder for H.264/AVC on a current generation fine-grained many-
core system is proposed that utilizes no application-specific hardware. The 25-processor
encoder encodes video sequences with variable frame sizes and can encode 1080p HDTV
at 30 frames per second with 293 mW average power consumption by adjusting each pro-
cessor to workload-based optimal clock frequencies and dual supply voltages—a 38.4%
power reduction compared to operation with only one clock frequency and supply voltage.
In comparison to published implementations on the TI C642 DSP platform, the design has
approximately 2.9-3.7 times higher scaled throughput, 11.2—-15.0 times higher throughput
per chip area, and 4.5-5.8 times lower energy per pixel. Compared to a heterogeneous
SIMD architecture customized for H.264, the presented design has 2.8-3.6 times greater
throughput, 4.5-5.9 times higher area efficiency, and similar energy efficiency.

Next, this dissertation proposes novel processor shapes and inter-connection topolo-
gies for many-core processor arrays which result in an overall application processor that
requires fewer cores and has a lower total communication length. The proposed topologies
compared to the commonly-used 2D mesh and include two 8-neighbor topologies, two 5-
nearest-neighbor and three 6-nearest-neighbor topologies—three of which utilize 5-sided
or hexagonal processor tiles. A 1080p H.264/AVC residual video encoder and a complete
54 Mbps 802.11a/11g wireless LAN baseband receiver are mapped onto all topologies and
compared. The methodology to implement an array of hexagonal-shaped processor tiles

with industry-standard CAD tools and automatic place and route flow is described. A 16-



bit DSP processor tile is tailored for all proposed topolsgaad implemented at 65 nm
CMOS technology without full-custom layout. Results show that the 6-neighbor hexago-
nal tile and the 6-neighbor rectangular tile incur a 2.9% area increase per tile compared to
the 4-neighbor 2D mesh, but their much more effective inter-processor interconnect yields
an average total application area reduction of 21% and a total application inter-processor
communication distance reduction of 19%.

Motivated by the fact that video encoding tasks normally read and write a block of
data at one time in one transaction, the third part of this dissertation proposes a novel
source synchronous bufferless shared memory to enable safe memory sharing among mul-
tiple processors with different clock domains. Compared with the previous FIFO buffered
memory design, the bufferless memory module achieves lower latency, higher throughput,
lower area overhead and lower power consumption. The bufferless memory module also
supports direct communication with far-away processors through the existing processor-
processor circuit switch interconnection network. The implementation results show that
a 16 KB bufferless memory module reduces 58% single memory access latency and has
higher burst-mode throughput (1%) compared to the 16 KB buffered memory module. The
bufferless memory module also reduces the area overhead from 63% to 17% compared

with buffered memory module, which yields a power reduction by 43%.



Acknowledgments

Completing the PhD study is probably one of the most challenging tasks in my life.
When | look back, | would never forget the days and nights | have spent with my fellow
colleagues in the VCL lab at the Department of Electrical and Computer Engineering. The
PhD study is a long journey and finally it comes to an end. Now | would like to thank all
of the individuals who made this mission possible.

My first debt of gratitude must go to my advisor, Dr. Bevan M. Baas. He patiently
provided the vision, encouragement and advice necessary for me to proceed through the
doctorial program and complete my dissertation. | have benefited so much from his guid-
ance on critical thinking, clear writing and effective presentation. The full financial support
is also invaluable in the past economic environment. His devotion and enthusiasm on com-
puter engineering research will continue to influence me in a positive way in my future
career.

| also want to thank my qualification committee and dissertation reading committee
members including professor Venkatesh Akella, professor Soheil Ghiasi, professor Zhaojun
Bai, professor Rajeevan Amirtharajah for their useful comments and valuable feedbacks on
my research.

My special thanks go to Dean Truong and Anh Tran, my fellow colleagues and good
friends. We have spent most of the time in the lab together. | really appreciate their selfless
help on my work and | will miss our discussions on all aspects of research. Being together
with them in both study and leisure time is a great pleasure to me.

| would also like to thank previous VCL video group members, Stephen Le and Henna
Huang. Their help and contribution on the video encoding project are essential to make
this research presentable.

| want to thank previous VCL group members including Zhiyi Yu, Tinoosh Mohsenin,
Toney Jacobson, Eric Work, Wayne Cheng and Paul Vincent Mejia. It was with them that

| had a happy time when | first came to Davis. It is my pleasure to work with them.

—iv -



| also would like to thank previous and current VCL lab memb@&isi, Brent, Aaron,

Jon, Jeremy, Emmanuel, Michael, Samir, Houshmand, Nima, Trevin, Lucas. | have enjoyed
many discussions with them on various topics and found that there is always something |
can learn from them.

Specially, | want to express my deep appreciation to my wife Shuting. Her constant
support has allowed me to spend days and nights on this dissertation. She also brought us
the most wonderful gift, our lovely daughter Amelia.

| want to thank my parents, my sister, my relatives and all of my friends. You might not
know the details of my research area, but the support and help | get from you all might be
more important than the pure academic help. It is because of you that | am a happy person
and can keep pursuing my dreams.

Finally, | want to gratefully acknowledge supports from ST Microelectronics, Intel Cor-
poration, UC Micro, NSF Grant 0430090 and CAREER Award 0546907, SRC GRC Grant
1598, CSR Grant 1659, Intellasys Corporation, S Machines and the support of the C2S2
Focus Center, one of six research centers funded under the Focus Center Research Program

(FCRP), a Semiconductor Research Corporation entity.



Contents

Abstract ii
Acknowledgments \Y
List of Figures IX
List of Tables Xii
1 Introduction 1
1.1 Challenges. . . . . . . . 2
1.2 Contributions . . . . . . . .. 4
1.3 Organization. . . . . . . . . . e e 6
2 Background and Research Goals 7
2.1 ResearchGoals . . ... .. ... . . .. .. . . e 7
2.1.1 Multimedia Application Characteristics and Approaches . . . . .. 8
2.1.2 Parallel ProgrammingModel . . . . . .. ... ... ... ..... 9
2.1.3 Next-generation Fine-grained Many-core System . . . . . ... .. 9
2.2 RelatedWork . . . . . . . e 10
2.2.1 Traditional DSPs and Microprocessors.. . . . . . . . .. ... ... 11
2.2.2 Reconfigurable Computing Fabrics . . . ... ... ........ 11
2.2.3 Streaming Processors and Many-core Processors . . . . . .. ... 12
2.3 SumMmMary ... e e e e e 14
3 H.264/AVC Video Encoding Algorithms 15
3.1 Overview of H.264/AVC VideoEncoding . . . . .. .. ... ....... 15
3.1.1 Introduction of Video Encoding . . .. ... ... ... ...... 15
3.1.2 H.264 Video Encoding/decoding Architecture . . . . . . . ... .. 17
3.2 H.264/AVC Video Encoding Algorithms . . . . . . ... ... ... ..., 19
3.2.1 InterPrediction . . .. ... ... ... ... . 20
3.2.2 IntraPrediction . . . ... .. ... .. ... 27
3.2.3 Transform and Quantization . . . ... ... ... ......... 30
3.2.4 De-blockFilter . . . . ... ... .. 32
3.25 EntropyCoding. . ... ... ... .. ... 36

—Vi—



3.3 Related Work . . . . . . . s 36

A Parallel 1080p H.264 Baseline Residual Encoder 38

4.1 Introduction . . . . . . . .. e 39

4.2 The AsAP Architecture and Programming Methodology . . . . . ... ..
4.2.1 Many-core Array Architecture . . . . . . ... ... ... 40
4.2.2 Parallel Programming Methodology . . . . . ... ... ......

4.3 Residual Encoding in H.264/AVC . . . . . . . . . .. 43
43.1 CAVLCENncoding . . ... ... ... .. ... 44

4.4 The Proposed Parallel Residual Encoder . . . . . ... ... ... .....
4.4.1 Integer Transform and Quantization . . . . . ... ... ... ...
442 TheCAVLCENncoder. . . ... ... .. .. . ... ... ..... 49

4.5 Simulation Results and Comparison . . . . . . .. ... ... ...
45.1 ImplementationResults . . .. ... ... ... ..........
45.2 Performance Evaluation . . ... ... ... .. ..........
4.5.3 Power Consumption Optimization . . . . . . ... ... ......
45.4 Performance Comparison. . . . . . .. . . ... . ...

4.6 Conclusion . . . . . . . e e e 67
Application-Driven Processor Shape and Topology Design 68

5.1 Introduction . . . . . . . . . 68
5.2 RelatedWork . . . . . . . . . e 70

5.3 Processor Shapesand Topologies . . . . . . . .. .. .. ... .. .....
5.3.1 ProcessorTileShapes ... ... ... .. ... .. ........
5.3.2 The Proposed Topologies . . . . . . .. .. ... ... .......
5.3.3 Performance Evaluation . . . .. .. ... ... ... .. .....
5.3.4 InterconnectWireDelay . . .. ... .. ... ... ...,

5.4 Applicationmapping . . . . . . ... 85
5.4.1 Target Interconnect Architecture . . . . . .. ... ... ... ...
5.4.2 Two Benchmark Applications . . . . .. .. ... .........
5.4.3 Application MappingResults . . . .. ... ... .. ... ...,

5.5 Non-rectangular Processor Tile PhysicalDesign . . . . . . ... ... ...
5.5.1 Physical Design Methodology . . . . . .. ... ... ... ....
5.5.2 Non-rectangular Processor Tile and CMP Design . . . . . .. . ..

5.6 ChipImplementationResults . . . . .. .. ... .. ... .. .......
5.6.1 Processor Tile ImplementationResults. . . . . . ... ... ....

5.6.2 ApplicationArea . . . . . ... ... ... e 98
5.6.3 ApplicationPower . . . . .. .. .. ... 100
5.7 Conclusion . . .. ... e 102
Efficient Distributed On-Chip Shared Memory 103
6.1 Background . . . . . .. ... 104
6.1.1 Video Application Memory Requirements . . . . . ... ... ... 104
6.1.2 Current ASAP Memory System . . . . . . ... ... ... .... 105

6.2 Shared Memory Primary Architecture . . . . . . .. ... ... ... ...

— Vil —



6.2.1 Single ProcessorsView . . . ... .. ... . .. ... ... 107

6.2.2 Sharing Among Multiple Processors . . . . . ... ... ... ... 109
6.2.3 Related and Proposed Memory Architecture . . . . . .. ... ... 109
6.3 Shared Memory Physical Parameters . . . . . .. ... ... ........ 111
6.3.1 Capacity . .. .. .. . . .. 111
6.3.2 Density . . . ... . 112
6.3.3 Distribution . . . . . ... 112
6.4 Shared Memory Clocking Architecture . . . . . . . ... ... ... .... 113
6.5 Challenges and Solutions to Switch Live Clocks . . . . . .. .. ... ... 115
6.5.1 Approach 1: Simple Multiplexers . . . . .. ... ... ...... 115
6.5.2 Approach 2: Simple Multiplexers with Cross-coupled Synchronizers 116
6.5.3 Approach 3: Simple Multiplexers with Clock Gating Circuits . . . 119
6.6 Processor-Memory Interconnection Network . . . . . .. ... ... . ... 121
6.7 Bufferless Shared Memory Module . . . . . . . ... ... ... ...... 124
6.7.1 Primary Architecture . . . . . . . .. ... .. ... .. 125
6.7.2 Micro-architecture . . . . . . . ... ... 126
6.7.3 Performance Evaluation . . . ... ... ... ... ........ 127
6.7.4 ImplementationResults . . .. .. ... ... ... ... ..... 135
6.8 Relatedwork . . . .. .. .. . ... 137
7 Conclusion and Future Work 139
7.1 Conclusion . . .. . ... 139
7.2 Future Work . . . . . . .. 141
Glossary 143
Bibliography 148

— Viii —



List of Figures

11
2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411

Power consumption of Intel microprocessors from 1970to 2008 . . . . . . 3
Multi-task application executingmodels . . . . .. .. ... ... ..... 9
General video encoder block diagram . . . . . ... ... ... .. ... 16
H.264/AVC encoder block diagram . . . . . . . . ... ... ... L. 17
H.264/AVC decoder blockdiagram . . . . . . . .. .. ... ... ..... 18
Full Search motion estimation . . . . .. .. ... ... ... ....... 20
Multiple inter-prediction modes defined in H.264/AVC . . . .. ... ... 21
Examples of integer and sub-sample prediction . . . .. ... ... .... 22
H.264/AVC motion vector prediction . . . . . . . . ... ... L. 23
H.264 encoder performance with different number of reference pictures . . 24
H.264 encoder performance with different ME searchrange . . . . . . . .. 25
Parallel motion estimation mapping to a fine-grained many-core system . . 27
Labeling of prediction samplesofa (4,4)block . . . .. ... ... .... 28
Nine 4x4 intra prediction modes . . . . . . . . . ... ... ... 28
Parallelism of H.264 intra prediction . . . . . . . ... .. ... ...... 29
Data-flow of H.264 transformation and quantization . . . . . . .. ... .. 31
lllustration of H.264 de-block filter . . . . . . . . .. .. ... ... .... 33
Determination of boundary strengthBs . . . . . . .. .. ... ... .... 33
Examples of macroblock level parallelism of the H.264 de-block filtering . 34
De-block filter concurrent processingorder . . . . . .. .. ... .. ... 35
Architecture of targeted many-core system. . . . .. .. ... ... .... 39
A 1.2 GHz fully-functional AsAP chipin65nmCMOS . . . . .. ... .. 40

A fine-grained parallel programming methodology . . . ... .. .. ... 41
Residual data encoding procedure in an H.264/AVC encoder. . . . . . . .. 43
Scanning order of residual blocks within a macroblock. . . . . . .. .. .. 44
Data flow diagram of the proposed H.264/AVC residual encoder. . . . . . . 45
Two mappings of integer transform and quantization. . . . . . .. .. ... 46
Macroblocks ina QCIFframe. . . . . .. . .. ... ... ... ...... 48
A 20-processor CAVLC mappingdonemanually . . .. ... ... .. .. 49
A 15-processor CAVLC mapping done automatically . . . . . ... .. .. 51
A 15-processor CAVLC mappingdonemanually . . .. ... ... .. .. 52

—iX -



4.12
4.13
4.14
4.15
4.16
4.17
4.18

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

The proposed 25-processor H.264/AVC residual encodepimg. . . . . . 53
Instruction memory usage of the proposed 25-processor encoder. . . . . . . 54
Data memory usage of the proposed 25-processor encoder. . . . . . .. .. 55
The average cycles to encode one macroblock for various test sequences . . 57
Processor activity of the residualencoder . . . .. .. ... .. ...... 58
The total encoder power consumption over various supply voltages . . . . . 62
Delay and energy per operation of an inverter based on PTM spice simulation 63
Example tiles of constant area with random wire endpoints . . . . . .. .. 72
The baseline 2D mesh and seven proposed/shape combinations . . . . . . . 72
A spectrum of 6-neighbor topologies with offset row house-shapedtiles . . 75
Fraction of area unavailable for processortiles . . . . .. ... ... .. .. 77
The worst-case communication distance across processor arrays . . . . . . 78
The worst-case communication distance for two-port processor arrays . . . 81
Thell5 lumped RC circuit model for wire delay simulation . . . . . . . .. 82

A 2D mesh processor array using five-portrouters . . . . . .. .. ... .. 84
A diagram of two processors in the 2D mesh array with two ports pertile . 84
Task graph of a 22-node H.264/AVC video residual encoder. . . . . . . .. 86
An H.264/AVC residual encoder mappeditd Rectmesh processor array . 86

An H.264/AVC residual encoder mapped t6-& Hexprocessor array . . . 87

Task graph of a 22-node 802.11a/g WLAN baseband receiver . . . . . . . . 88
An 802.11a/g baseband receiver mapped 4 é&kectmesh processor array 88

An 802.11a/g baseband receiver mapped &6 &lexprocessor array . . . 89

The number of processors for mapping two applications to seven topologies 90
The total communication link length based on non-Manhattan-style wires . 91

The estimated total communication length based on Manhattan-style wires . 91
DRC clean and LVS clean layout of a hex processor and a 6x6 CMP array . 93
The final DRC and LVS clean processor tile layouts . . . . . ... ... .. 94
Implementation results of seven optimized processortiles . . . . ... ... 96
The area and power of two applications on all proposed topologies . . . . . 99
A full H.264 baseline encoder mapped to AsAP platform . . . . .. . . .. 106
The four basic data memory organizations . . . . .. .. ... ... .... 107
Three basic shared on-chip memorysystems . . . . ... ... ....... 108
Three related on-chip memory systems . . . . . . ... .. ... ...... 109
The proposed shared on-chip memory system . . . .. ... ... ..... 110
Various topologies for distribution of memories inan AsAP array . . . . . . 112
Three shared memory clocking architectures . . . . . . . ... ....... 113
Three clocking source designs for the shared memory module on AsAP. . . 114
The circuit and timing diagram of a simple clock switch multiplexer . . . . 115
Two glitch-free clock switch circuits for unrelated clocks . . . . . . . . .. 116
Timing diagram of the AND-logic glitch-free clock switch circuit. . . . . . 117
Metastability problem of the AND-logic clock switch circuit. . . . . . . .. 118

A 3-stage glitch-free clock switch circuit. . . . . . . ... ... ... ... 119

The circuit and timing diagram of a simple clock switch with clock gating . 119



6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29

A block diagram of two processors sharing one memory eodu. . . . . 120

A timing diagram of two processors sharingone memory . . . . .. .. .. 122
Two types of processor-memory interconnection networks . . . . . . . .. 122
The physical links between processors and the bufferless memory module. . 123
Timing diagrams of the processor-memory interface . . . . . .. .. .. .. 124
A four-port FIFO buffered shared memory module. . . . ... ... .. .. 125
A four-port bufferless shared memory module. . . . . . ... ... ... .. 126
Micro-architecture of a two-port bufferless shared memory module. . . . . 127
A mutual exclusion primitive (mutex) circuit . . . . . . .. .. ... L. 128
Estimated shared memory latencies of reading a block of data. . . . . . . . 129
Memory bus transactions for buffered and bufferless memory modules . . . 130
Example codes of video application running at one AsAP processor . . . . 131
The relative application performance of memory modules without sharing . 133
The relative application performance of memory modules with sharing . . . 134
Memory module layouts at 65 nm CMOS technology . . . .. .. .. ... 135

—Xi —



List of Tables

4.1
4.2
4.3
4.4

5.1
5.2

6.1
6.2
6.3
6.4

Elements of CAVLC Encoding perBlock . . .. ... ... ........ 44
Power measuredat1.3Vand1.2GHz.. . . . . ... ... ... ...... 60
Power consumption of H.264/AVC residual encoder . . . . . . . ... ... 61
Comparison of H.264 residual encoder on software platforms and ASICs . . 65
Euclidean and Manhattan link lengths for all topologies . . . . . . .. ... 76
Interconnect link wire length and delay for processors with various shapes . 82
An estimate of memory requirements for DSP and video algorithms . . . . 104
Performance characteristics of SRAMs at 65 nm CMOS . . . . . ... .. 111
Memory requirement and computation workloads of video encoding tasks . 131

Layout results of the 16 KB buffered and bufferless shared memory modules 136

— Xii —



Chapter 1

| ntroduction

Due to advances in images and video algorithms as well as very large scale integra-
tion (VLSI) technology, diverse and interesting visual experiences have been brought to
our daily life. A number of international standards have contributed to the great success
of image and video coding applications such as 3D high-definition TV (3D HDTV), online
video streaming and portable video players (PVPs) [1]. The state-of-art image and video
coding applications present challenges from the perspective of both hardware and software
for embedded systems. These applications involve complex media processing tasks which
have predictable execution behaviors and high computational and memory bandwidth re-
qguirements. Traditionally, there are several design approaches for multimedia applications
such as application-specific integrated circuits (ASICs), programmable digital signal pro-
cessors (DSPs) and field programmable gate arrays (FPGAs). ASICs can offer the highest
performance and energy efficiency, but they have little programming flexibility. On the
other hand, programmable DSPs are easy to program but their performance and energy
efficiency is normally 10-100 times lower than ASICs. FPGAs fall in between the above
two approaches.

An ideal platform for embedded multimedia applications should offer high computa-

tional performance, high energy efficiency and a high degree of flexibility. The flexibility



is a necessity to achieve high system integration in the poesef multiple standards and

to support the diverse and rapidly evolving multimedia applications. The emergiitg

core or many-coresystems provide us an opportunity to achieve this goal. Normally tiled
architectures that integrate two or more independent processor cores are called multi-core
processors. Manufacturers typically integrate multi-core processors into a single integrated
circuit die (known as chip multiprocessors or CMP). CMPs that integrate tens, hundreds,

or thousands of cores per die are calfedny-corechips.

1.1 Challenges

In the past 40 years, multimedia systems evolve with the rapid development of VLSI
technology. More and more complicated image and video algorithms become feasible by
upgrading the underlying hardware using newer process technology. The realtime software
approach of advanced video encoding are possible with the performance boost of micro-
processors and introduction of multimedia extension instructions. However, two major
challenges are driving the current change towards multi-core and many-core in processor
design.

The first challenge is the so-called “power wall” problem imposed by increasing circuit
frequency and transistor density. Before the year of 2000, extensive research has been con-
ducted to increase the performance of single processors by deepening the pipeline, increas-
ing clock rate and decreasing transistor size which raises the power density to an unaccept-
able level. Figure 1.1 shows the power consumption of main Intel microprocessors from
1970 to 2008. Borkar has found that the power consumption of Intel processors follows
Moore’s law increasing from 0.3 W to 100 W from 1970 to 2000 [2]. The power density
also increased from a couple of watts per fimabout 100 Watts per mimAlthough Intel
tried to solve the power wall problem, the recent high-end Intel processors (from 2009 to

2012) still consume 100 to 130 Watts which is the maximum without incurring large costs



1000: [ L ERR L : S i LA T
100 gt b bbbl /-/'\--‘ -
s 1
= 104 b / B e
[0) R : : : : : : : ; : : : : : : : : : :
2 e e T
g 2 AN S N N S U U S O SO B |
] o™ -
: ./ :
Al
0.1 ——

T T T T T T T 7 — T
1970 1975 1980 1985 1990 1995 2000 2005 2010

Year

Figure 1.1: Power consumption of Intel microprocessor frd®7QLto 2008; data from
1970 to 2000 are from [2]; data in the year of from 2003 to 2008 are from [6], [7], [8], [9]
respectively.

for cooling [3-5].

In order to resolve the power wall problem and keep increasing the performance, the
current trend of microprocessor design is to simplify each individual processor core while
increasing the number of cores on the same chip. By putting multi-cores in the same chip,
computer architects can keep improving transistor size and throughput of the processor
without increasing power densities. Individual processor performance decreases while the
number of processors increases means that more parallelism from applications should be
exploited to distribute more tasks to more cores while reducing the amount of work on each
core.

The second major challenge is the so-called “memory wall” problem imposed by multi-
core systems. According to Hennessy and Patterson, processor performance has increased
55% each year since 1980, while memory performance increase by only 7% each year [10].
For multi-core systems, this performance gap between processors and memories has widened

significantly, because more processors are integrated into the chip while the number of chip



pins for memory is limited. Algorithms now need to be more avafrthe memory band-
width and latency. Efficient communication mechanisms are more important than before.
It is critical to optimize the memory subsystem to minimize off-chip memory bandwidth
subject to the constraint of available on-chip memory for high throughput and data inten-
sive multimedia applications. Generally, this can be accomplished by transforming and
optimizing the algorithm memory access pattern.

In summary, multi-core and many-core processors have become the most promising
computer architecture for next-generation computation. The design and implementation
of an efficient multi-core or many-core processor is challenging. Furthermore, although
parallel systems guarantee continuing increase of system performance, how to utilize the
extra system performance for real applications like advanced video coding is also challeng-
ing. Parallelizing algorithms is not an easy task. Serious challenges must be resolved in
order to implement advanced video encoding on a many-core system. This dissertation fo-
cuses on designing and applying a massively-parallel fine-grained many-core architecture

for advanced video encoding.

1.2 Contributions

This dissertation makes a couple of contributions.

e |t proposes a fine-grained parallel programming methodology and successfully demon-
strates that fine-grained many-core architecture can achieve high performance and
energy efficiency for both video encoding algorithms with high data-level paral-
lelism like integer transform and quantization and serial algorithms with fine-grained
task-level parallelism like CAVLC. The proposed programming methodology yields
an H.264/AVC residual encoder capable of realtime 1080p (1920x1080) HDTV en-
coding with both higher energy efficiency and area efficiency compared with other

software approaches in common DSPs and customized hybrid multi-core architec-



tures. In comparison to published implementations on the BRABSP platform, the
design has approximately 2.9-3.7 times higher scaled throughput, 11.2-15.0 times
higher throughput per chip area, and 4.5-5.8 times lower energy per pixel. Com-
pared to a heterogeneous SIMD architecture customized for H.264, the presented
design has 2.8-3.6 times greater throughput, 4.5-5.9 times higher area efficiency,

and similar energy efficiency.

It proposes novel processor shapes and inter-connection topologies for many-core
processor arrays which result in an overall application processor that requires fewer
cores and has a lower total communication length. The proposed topologies com-
pared to the commonly-used 2D mesh and include two 8-neighbor topologies, two
5-nearest-neighbor and three 6-nearest-neighbor topologies—three of which utilize
5-sided or hexagonal processor tiles. A 1080p H.264/AVC residual video encoder
and a 54 Mbps 802.11a/g OFDM wireless LAN baseband receiver are mapped onto
all topologies. The 6-neighbor hexagonal tile incurs a 2.9% area increase per tile
compared to the 4-neighbor 2D mesh, but its much more effective inter-processor in-
terconnect yields an average total application area reduction of 22% and an average

application power savings of 17%.

It demonstrates the feasibility of using commonly available commercial CAD tools
to implement tiled CMPs with all of the proposed topologies. All processor tiles were
designed using a standard cell flow up to the layout-level just before GDS extraction.
The implementation results justify the proposed topologies which have small area
overhead and little performance and energy penalties while providing much more
effective inter-processor interconnect to reduce application area and communication

link lengths.

It proposes a novel source synchronous bufferless shared memory to enable safe

memory sharing among multiple processors with different clock domains. Compared



with the previous FIFO buffered memory design, the bufferleemory achieves

lower latency, higher throughput, lower area overhead and lower power consumption.
The bufferless memory also supports direct communication with far-away processors
through the existing processor-processor circuit switch interconnection network. The
implementation results show that a 16 KB bufferless memory module reduces 58%
single memory access latency and has slightly higher throughput (1%) in a burst
mode compared to the 16 KB buffered memory module. The bufferless memory
module also reduces the area overhead from 63% to 17% compared with buffered

memory module, which yields a power reduction by 43%.

1.3 Organization

This dissertation is organized as follows. After the introduction, chapter 2 gives an
overview of fine-grained many-core architecture for video encoding. Chapter 3 analyzes
H.264/AVC encoding algorithms in terms of computation complexity and memory require-
ment and discusses the parallelization methods. Chapter 4 proposes a high-performance
H.264/AVC baseline residual encoder for current many-core system. A thorough per-
formance analysis and comparison is given. Chapter 5 proposes novel processor shapes
and topologies and demonstrates their effectiveness by real-word application mapping and
physical implementation. Chapter 6 investigates the distributed shared memory systems
for fine-grained many-core architecture with detailed physical implementation and perfor-

mance evaluation. Chapter 7 presents conclusions and future work.



Chapter 2

Background and Research Goals

Many-core systems provide both opportunity and challenges for advanced video cod-
ing. In this chapter, section 2.1 first introduces the research goals. The general features of
basic video encoding algorithms and parallel programming approach are described. The
current and proposed fine-grained many-core system architecture is introduced. All of the
proposed features help to address the challenges described in chapter 1. In section 2.2, a
survey of related parallel architectures for multimedia applications is given. The difference

between the proposed architecture and existing architectures is also highlighted.

2.1 Research Goals

The goal of this research is to explore the capability of advanced video coding on a
fine-grained many-core system like the asynchronous array of simple processors (AsAP)
architecture, which comprises a 2-D array of reduced complexity programmable processors
with small memories interconnected by a reconfigurable mesh network [11]. This multi-
processor architecture efficiently makes use of task-level parallelism in many complex DSP
applications, and also efficiently computes many large tasks using fine-grained parallelism.

The research goal can be divided into two separate perspectives. The first part is study-

ing, parallelizing and optimizing the video encoding algorithms on the current ASAP sys-



tem. The second part of this research focuses on applicdtieen architecture design
and implementation of the next generation AsAP processor. The following subsections

illustrate the project goal specifically.

2.1.1 Multimedia Application Characteristics and Approaches

Researchers have studied the characteristics of multimedia applications in the past
decades [12-16]. According to the past researches, multimedia applications are long be-

lieved to exhibit the following features:

¢ Video algorithms typically repeat a small set of operations over a continuous data set.

The intensive computation for highly regular operations shows high data parallelism.

e Multimedia applications always operate on a narrow data types. an 8-bit video pixel
and a 16-bit audio sample is sufficient to encode the input range of human visions

and hearings.

¢ Intensive I/0O or memory accesses, and data locality which represent streaming nature

of multimedia applications.

e Algorithms require a huge computation. In the area of video encoding/decoding, a
frame rate of 30 frames per second is a normal realtime throughput requirement. A

higher frame rate 60 fps or even 120 fps is common for some high-end applications.

Based on the characterization results, the past industry support for multimedia appears
in three forms: application-specific processors, multimedia extensions to general-purpose
processors, and multimedia co-processors. However, none of these methods can achieve
both high performance and flexibility for emerging standards. Furthermore, the recent
video standards like MPEG-4 and H.264 show less processing regularity and are difficult
for the long existing single-instruction-multiple-data (SIMD) approach which mainly ex-

ploits explicit data parallelism in multimedia applications.



Proc.1 Proc.? Proc.3

Task1 A .
Task2|, B —» Taskl—» Task2—» Task3I—>
Task3| | C —> A B C

Improves performance and
potentially reduces memory size

(@) (b)

Figure 2.1: Multi-task application execution: (a) a trawlit@l approach on a processor-
memory system, and (b) a distributed processing approach using task level parallelism

2.1.2 Parallel Programming Model

AsAP achieves high energy-efficiency by avoiding driving global signals across a chip,
centralized memories and function units, all of which are power hungry tasks. This can be
accomplished by partitioning the target applications into different small tasks. Figure 2.1
shows a comparison of traditional shared memory model and a distributed processing ap-
proach using task level parallelism. This dissertation proposes a distributed processing
approach to parallelize video encoding algorithms by exploiting existing locality property
of video applications. The distributed processing approach can significantly reduce mem-
ory access energies because a distributed array of small local memories is far more energy

efficient than a single large shared memory.

2.1.3 Next-generation Fine-grained Many-core System

Considering the application characteristics and combined with the power wall and
memory performance gap challenges, the second project goal of this project is to design a

fine-grained many-core system with the following features:

e The proposed many-core system should keep exploiting data-level parallelism with
configurable SIMD style data-path. However, design trade-offs are required to keep

a single core as small and efficient as possible.



e The proposed many-core system should keep exploiting task-level parallelism which
is a natural property of streaming applications. Such task-level parallelization ap-
proach has advantages over SIMD approach in that it can speed up the irregular

serial parts of current video standards, such as the entropy encoding in H.264/AVC.

e The proposed many-core system should achieve low power consumption. The cur-
rent ASAP architecture uses globally asynchronous-local synchronous (GALS) clock-
ing style where each processor owns their own oscillators and can stall if processors
are idle [17]. The dynamic voltage and frequency scaling (DVFS) can further reduce

the system power consumption [18].

e The proposed many-core system should provide a flexible low-cost topology and in-
terconnection architecture. This project explores different low complexity topologies
combined with processor shapes to further improve the throughput of current AsAP

architecture.

e The proposed many-core system should offer flexible memory system for video ap-
plications. Current ASAP architecture is not efficient when algorithms require a large
data memory. The proposed future system should contain a flexible configurable
memory system. The design of this memory system can utilize the characterization

results of H.264 video encoding algorithms.

2.2 Related Work

Researchers have developed various H.264/AVC ASICs for different applications rang-
ing from mobile to high-definition television (HDTV) [19-26]. However, real-time en-
coding of high-definition (HD) H.264 video (up to 1080p) is a challenge to most existing
programmable processors. This section surveys the related programmable approaches in-

cluding: traditional DSP processors and general-purpose processors, reconfigurable com-

10



puting fabrics and many-core streaming processors.

2.2.1 Traditional DSPs and Microprocessors

Traditional digital signal processors (DSPs) have been used for media processing tasks,
such as the Texas Instruments TMS320C6000 families [27]. Some other media processors
are proposed specially for multimedia applications such as MPACT [28] and the Philips
Trimedia architecture [29]. These media processors combine VLIW DSPs, special co-
processors, video I/0O and memory resources into a video processing platform. General-
purpose microprocessors are also aware of the importance of multimedia application and
have incorporated multimedia extensions into their architectures. All these instructions ex-
ploit sub-word parallelism available in video applications [30]. Most of them include three
kinds of media instructions, data permutation and transfer instructions, SIMD ALU instruc-
tions and special instructions for specific media processing operations. Some examples of
the SIMD-like multimedia extension instructions are Intel's MMX [31] and SSE [32], HP’s
MAX2 for the PA-RISC architecture [33], Sun Microsystem’s VIS for the SPARC architec-
ture [34], MIPS’'s MDMX and Motorola’s ALTIVEC for the PowerPC architecture [35].
However, both DSP and microprocessors have not fully exploited the streaming nature of
multimedia applications because they are designed for more general-purpose applications.
They can not meet the realtime requirement in many multimedia applications and show

poor energy efficiency.

2.2.2 Reconfigurable Computing Fabrics

A different approach is based on reconfigurable computing fabrics. Since most of the
processing time in multimedia applications is spent on a small number of computation
kernels, researchers have used the hardware/software co-design approach to integrate a

general-purpose processor with reconfigurable co-processors or SIMD data-path to speed

11



up the kernel algorithms. Many research projects have eaglthis approach, such as
RaPiD [36], MorphoSys [37] and PACT extreme processing platform [38]. The problem of

this approach is that they can not scale well and the energy efficiency is still not high.

2.2.3 Streaming Processors and Many-core Processors

Streaming processing is proposed for applications that has - computation intensity, data
parallelism and producer-consumer locality [39]. Streaming processing is firstly introduced
as a programming model for chip multiprocessor (CMPs) and multi-core architectures.
Streamlt [40] and Smart Memories [41] are two examples of such programming models
which take advantages of the locality found in streaming applications. Based on the stream
processing idea, many programmable stream processors are proposed, such as Stanford
Imagine [39], RSVP [42] and SIMPIl architecture [43]. These architectures normally use
hierarchical structures: grouping processing elements into clusters and then those clusters
are integrated into chips. A recently-fabricated streaming processor Storm-1 [44] repre-
sents the state-of-art streaming processors. Storm-1 integrates two CPU cores and a cluster
of parallel integer ALUs organized into 16 data-parallel lanes with 5-ALU VLIW per lane.
Strictly speaking, these streaming processors can be categorized into parallel processing
architectures but not multi-core systems since they have processors acting as centralized
controllers.

There exist many other many-core systems that are proposed specially for multimedia
applications.

TheCELL processor is based on a heterogeneous chip multiprocessing architecture [45].
The major goal is to improve the performance per area by reducing the size and complexity
of a single core and have more cores on a single chip. The first implementation of Cell
Broadband Engine (CBE) supports both scalar and SIMD execution equally well and pro-
vides a high-performance multi-threaded execution environment for all applications. CBE

integrates a single 64-bit power processor element (PPE) oriented for control tasks and

12



eight synergetic processor units (SPESs) optimized for datktlaread-level parallelism in

a unified system architecture. One of the innovations in Cell is the Synergistic Processing
Unit (SPU) which promotes programmability by exploiting compiler technique to target the
data parallel execution primitives and also rely on statically scheduling for instruction-level
parallelism. An SPU is essentially a SIMD computation engine. However, by carefully de-
signing data alignment scheme and scalar layering, SPUs can support scalar operations
very well and also can minimize the overhead of data transfer between scalar and vector
operations. Instead of using caches inside the SPU, each SPU contains a local single-port
SRAM unit which provides the SPU execution engine with both instructions and data. The
synergetic processing drives Cell’'s performance. However, the programmability of hetero-
geneous Cell processor remains a challenging problem.

The Ambric processor is a homogeneous many-core processor [46]. The massively
parallel processing array (MPPA) is composed of hundreds of 32-bit RISC processors and
a hierarchical organization is used to combine processors into different clusters which share
a large on-chip memory. Ambric MPPA model is a distributed-memory, multiple instruc-
tion, multiple data (MIMD) architecture. Ambric is similar to ASAP in the sense that both
of them use communication to synchronize between different processor cores. The pub-
lished running applications on Ambric include a motion estimation (ME) accelerator, a
deblocking filter for real-time broadcast-quality, high-definition (HD) MPEG2 and H.264
video compression. A possible problem with Ambric architecture is that they use two syn-
chronous registers called a channel to communicate between two processor objects. The
two register buffer may not be enough for applications that have unbalanced workloads and
require massive communication. AsAP also achieves higher energy efficiency than Ambric
which uses synchronous clocking style without dynamic voltage and frequency scaling.

TILE64 is a recently-proposed general-purpose 64-Core SoC Chip with mesh intercon-
nection from Tilera Inc [47]. Each core is an identical 3-issue 32-bit VLIW DSP with 8 KB

separate instruction and data cache and a unified 2-way 64 KB L2 cache. The chip uses

13



dynamic routers and 2D mesh topology for inter-processomoanications. The first sili-
con chip has been reported to boot SMP linux system. TILE64 is a typical coarse-grained
many-core system with dynamic network-on-chip routers.

Fine-grained Massively Parallel Processor Based on Matrix Architecturds pro-
posed for mobile multimedia applications [48]. This design integrates 1 Mbit SRAM for
data registers and 2048 2-bit grained processing elements connected by a flexible switching
network. The target application domain in this design is image processing applications on
portable devices. The proposed architecture works as a accelerator of a RISC processor in
a real system. This processor have demonstrated that fine-grained many-core processors

can achieve both high performance and high energy efficiency.

2.3 Summary

This chapter describes the goal of this research — designing and applying a fine-grained
many-core system for advanced video coding. A survey of related parallel architectures for

multimedia applications is presented.

14



Chapter 3

H.264/AVC Video Encoding Algorithms

This chapter gives an overview and thorough analysis of the H.264/AVC video com-
pression standard. The amount of computation and memory requirement of underlying
computation-intensive tasks have been identified and analyzed. This research suggests that
video encoding composed of a transformation-based small block data-flow processing is
suitable for fine-grained many-core architecture. Finally, some related parallel video en-

coder designs are discussed and compared with our approach.

3.1 Overview of H.264/AVC Video Encoding

3.1.1 Introduction of Video Encoding

Video encoding aims to reduce the amount of information to describe video signals.
Ideally, in an lossless compression system, signals can be compressed by senders and re-
covered perfectly by receivers. Unfortunately, lossless approach can only achieve a modest
amount of compression of image and video signals. Most practical video compression tech-
niques are based on lossy compression, in which greater compression is achieved with the
penalty that decoded signals are not identical to the original, which is tolerable by human

being’s vision system.

15



Residual

Video inpuit Temporal Pl spatial
Compression Compression
Coefficients
A
Stored Entropy Encoded output
Frames Vectors a] Encoder )
»

Figure 3.1: General video encoder block diagram

Figure 3.1 shows a general video encoder which has been used in most video standards
including H.264/AVC standard. Basically, a video encoder consists of three major function
units: a temporal compression unit, a spatial compression unit and an entropy encoder as
Figure 3.1 shows [49]. The input to the temporal compression module is uncompressed
video frames. The temporal compression module makes use of the similarities between
neighboring frames to reduce temporal redundancy. Predicted frames are constructed by
previous or future frames. The output of the temporal compression module is residual
data and other coding parameters including motion vectors which are used for motion es-
timation. The residual frames are sent to a spatial compression unit which attempts to
reduce the spatial redundancy by exploiting the similarities between neighboring samples.
A transformation is applied to the residual data to convert samples into frequency domain
in which they are represented by transform coefficients. The coefficients are further quan-
tized to remove insignificant values. The output of the spatial compression block is a set
of transform coefficients. The transform coefficients and the coding parameters from the
temporal compression unit are sent to an entropy encoder. The entropy encoder uses vari-
able length coding or arithmetic coding methods to remove statistical redundancy in the
data and outputs a bitstream which consists of coding parameters, residual data and header

information.

16



Fn: Current Frame; Fn-1: Reference Frame; Fn’: Reconstructed Frame; uFn’: Unfiltered Reconstructed Frame
Dn: Residual Data; Dn’: Reconstructed Residual Date; X: Transform Coefficients

D X i
+ n Bitstream
Fn > T | Q [o» Reorder —» EE:éroodpg'r >
(Current) i
—> ME
Inter ref.
frame
Fn-1 N
(Reference) 4 MC ) T
1 or 2 previously
ded fi . . .
encodedrames Ly, Cm?:e | Intra | ME: Motion Estimation
| Prediction Prediction |intra ref. MC: Motion Compensation
frame T: Transform
Q: Quantization
v+

uFn’ D’
Fn’ . f n 8 -1
(Reconstructed) < Filter |« \_):__' T <« Q <

Figure 3.2: H.264/AVC encoder block diagram which includes tataflow paths, a “for-
ward” path (left to right, shown in blue) and a “reconstruction” path (right to left, shown in
red)

3.1.2 H.264 Video Encoding/decoding Architecture

Image and video compression has been a very active research area for over 20 years. A
lot of international image and video compression standards have been developed, including
JPEG, MPEG and H.26x series standards. H.264/AVC is the latest video coding standard.

The H.264/AVC encoding follows the same video compression flow as shown in Fig-
ure 3.1. Figure 3.2 and Figure 3.3 shows the overall H.264/AVC encoding and decoding
block diagram respectively. An input frame is processed in units of macro-block (a 16 x 16

block within a frame). Some of the symbols shown in the figures are:

I, denotes the current frame.
F,_1 represents the reference frame.
F) represents the reconstructed frame.

P denotes the prediction block.

17



Inter ref.
9
| frame

MC
(Reference)

\ 4

1 or 2 previously
encoded frames

Intra
Prediction

frame
P uFn’
n < Filter |«

(Reconstructed)

Bitstream

Entropy

-1 -1
T € Q |« Reorder [€— decode

Figure 3.3: H.264/AVC decoder block diagram with similarafbow path to the “recon-
struction” path in an encoder

D,, represents forward residual block.
D;, represents reconstructed residual block.
uF! stands for reconstructed block not filtered.

X stands for quantized transform coefficients.

As Figure 3.2 shows, the H.264 encoder includes two data flow pd&ibrveard Path
(from left to right) and aReconstruction Patffrom right to left). TheForward Pathcon-
sists of inter-frame motion estimation and compensation, intra prediction, transformation
and quantization, and reorder and entropy coding. For each data block that belongs to input
FrameF,,, the encoder first uses the previous reconstructed image samples to generate the
predicted block P through intra- or inter-frame mode, and then produces the forward resid-
ual block D,, by subtracting the predicted blodR from current block. Next, the encoder
carries out the block transformation and quantization to obtain a group of quantized trans-
form coefficientsX. Finally, the encoder applies reorder and entropy coding operations
on X. The entropy-coded coefficients together with side information (prediction modes,
guantization parameter, motion vector information, etc) form the compressed bitstreams.
The ReconstructiorPath is made up of de-quantization, inverse transformation, and filter-
ing module. For each input group of quantized transform coeffici&nthe encoder first

generates the reconstructed residual blégkby de-quantization, inverse transformation

18



operations, and then produces reconstructed bidckby adding the prediction block to
the reconstructed residual bloék,. Next, the encoder utilizes filtering operations to re-
duce the effects of blocking distortion, and creates a reconstructed reference-fy&mme

a series of blocks.

The H.264/AVC decoder is basically a reconstructed path of the encoder. For the com-
pressed bit-stream, the decoder first generates a group of quantized transform coefficients
X by entropy decoding and reorder operation, and then uses the decoded side information
to produce reconstructed residual blaok by de-quantization and inverse transformation.
Meanwhile, the decoder creates the prediction block P with the help of side information,
and adds it to the residual blodk/, to produce reconstructed bloek’, which is filtered

to create each decoded blogk.

3.2 H.264/AVC Video Encoding Algorithms

H.264/AVC achieves significant video compression efficiency compared with prior stan-
dards (39%, 49% and 64% bit-rate reduction versus MPEG-4, H.263 and MPEG-2 respec-
tively) [50]. This high coding gain increase comes mainly from a combination of new
coding techniques such as inter-prediction with quarter pixel accuracy, intra-prediction,
multiple reference pictures, variable block size and context-based adaptive entropy coding.
The video visual quality is further increased by an in-loop de-blocking filter to reduce edge
effects of block-based video coding [49]. However, all of the new techniques come with
a cost of high computation complexity which makes a software approach of a real-time
high-definition video encoder almost impossible in current general-purpose processors and
DSPs. This section introduces the key coding blocks in H.264/AVC encoding with a focus

on the complexity analysis and parallelization of the coding blocks.

19



Reference Block

Frame i-1 Search Area

Frame i

Current Block

Figure 3.4: Full Search motion estimation

3.2.1 Inter Prediction
Basic Idea

Inter prediction uses block-based motion estimation and motion compensation to pre-
dict current frames based on one or more previously encoded video frames. The task of mo-
tion estimation (ME) of a macroblock is to find a 16x16-sample region in a reference frame
that closely matches the current macroblock. The reference frame is a previously encoded
frame from the sequence and may be before or after the current frame in display order. An
area in the reference frame centered on the current macroblock position (the search area) is
searched and the 16 x 16 region within the search area that minimizes a matching criterion
is chosen as the “best match”. The selected “best” matching region in the reference frame
is subtracted from the current macroblock to produce a residual macroblock (luminance
and chrominance). The residual macroblock with a motion vector describing the position
of the best matching region (relative to the current macroblock position) is encoded and
transmitted.

Figure 3.4 shows a full search motion estimation process. We can choose a search

window where the current block is in the center of the window with a maximum horizontal

20



16x16 16x8 8x16 8x8 8x4 4x8 4x4

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7

Figure 3.5: Multiple inter-prediction modes defined in H.28AC

and vertical displacement pfpixels. A full search algorithm calculates a total(@f + 1)?

cost functions, usually an SAD (Sum of Absolute Differences), to find the optimal match
within the search window. I&(x,y) andb(z, y) are the pixels of the current and reference
blocks with coordinates andy, anddz,dy are the coordinates of motion vector (MV), the

SAD for aM x N-pixel block can be expressed as:

M-1N-1

SAD(dx,dy) = ZZ]axy—b(x+d:vy+dy)|( p <dzx,dy < p)

z=0 y=0

In H.264/AVC, the motion estimator considers multiple reference frames (up to 16
frames) and produces minimum SADs (SAR) and relevant MVs as the output for each
16x16 pixel block and its sub-partitions, 16x8, 8x16, 8x8, 4x8, 8x4 and 4x4 as shown in
Figure 3.5. Generally, a small partition is used for video region with more details and a
large partition is used for background with fewer details. The small partitions might in-
crease the bitrate due to the necessity of coding more motion vectors. The optimal inter
block size is determined based on the rate distortion (RD) costs.

In H.264/AVC motion estimation, motion vectors can be fractional numbers and this
type of inter-prediction is called sub-sample prediction. Figure 3.6 shows an example of
integer and sub-sample prediction. In Figure 3.6(a), a 4x4 block in the current frame can
be predicted by existing samples in a reference frame (grey dots in Figure Figure 3.6(b)) if
motion vectors are integers. If motion vectors are fractional values, the prediction values

(grey dots in Figure 3.6(c)) are generated by interpolation between adjacent samples in the

21



O‘x
@]

Q9 0O O OO0 @ @ @ @ O O OO OO OO OO

O ®© @ @ 0 O OO0 @ @ & @ 8 QU O O D

@ @ @ @

OB BN BN BN BNO) OO0 @ e & @& 00 0 0 O O

@ @ @ @

C @& e e e O O O O O O @ C O 0 0O 0O

d@ ® @ @

C ® ®© 6 & O @ O O Q g O g O O

0O QO QO O O g O O o9 0 O 0 Q @ 0
(a) 4x4 block in current frame (b) Reference block: vector (1,-1) (c) Reference block: vector (0.75, -0.75)

Figure 3.6: Examples of inter-prediction (a) a current 4x@cklin the current frame, (b) in-

teger prediction where reference pixels are from existing samples in a reference frame, and
(c) sub-sample prediction where reference pixels are generated by interpolation between
adjacent samples in a reference frame

reference frame (white dots).

The sub-sample prediction can be further divided into 1/2, 1/4 pixel precision predic-
tion. A higher coding efficiency in terms of Peak Signal to Noise Ratio (PNSR: unit dB)
and lower bit rate is expected for a higher resolution of sub-sample prediction method.

Another complexity introduced by H.264 inter prediction is motion vector prediction.
Based on the observation that motion vectors of neighboring partitions are often highly
correlated, motion vectors of current blocks can be predicted by those of nearby previously
coded blocks and motion vector differences (MVD). Figure 3.7 shows MV prediction based
on neighboring left and top block MVs. As Figure 3.7(a) shows, E represents the current
block. If the neighboring left block A, top B and top-right C blocks have the same patrtition
size, the predicted MVs of E are medians of the MVs of A, B and C. Figure 3.7(b) shows
a case where A, B and C have different block sizes. The motion vector prediction brings
more dependencies between a current block and its neighboring blocks, which becomes

one of the limitations for parallelization of H.264/AVC inter prediction.

22



B C
(16x16) | (16x16) 5 | 1ox8 | crioxe)
4x8
A
8x4
A E 8x4
(16x16) (16x16) ) E (16x16)

(a) (b)

Figure 3.7: The H.264/AVC motion vector prediction for cagdgere current and neigh-
boring partitions have (a) the same size, and (b) different sizes

Complexity and Parallelization

Intuitively, the computation time of motion estimation increases linearly if more ref-
erence frames are used or a large search range is used. As an example, implementing a
full-search ME for a 30Hz CIF video (352x288 pixels), with = 5 reference frames and
a search range ofp = 16 pixels, requires an examination 8f x (2p + 1)? = 5445
locations for each image block and more than 16 GOPS (SAD operations). This does not
take into account the computation of sub-sample prediction, motion vector prediction and
variable block size determination. The motion estimation is the most computation intensive
part of an H.264/AVC encoder. Many fast ME search algorithms such as three-step-search,
four-step-search, 2D log-search are proposed to replace the optimal full search algorithm
to reduce the computation complexity at a cost of coding efficiency (lower PNSR) [51].

In order to understand the complexity of the ME algorithms, we use the standard
H.264/AVC reference software JM 12.4 [52] to conduct more quantitative experiments.
A 25-frame 30 Hz QCIF (176« 144) Foreman video sequence with quantization parameter
(QP =24) is used. The rate-optimization is turned off and context-adaptive variable length
coding (CAVLC) is used. We have examined different motion estimation parameters and
their effects in terms of processing time and bit rate.

1) Number of reference frames:In this experimental setup, we set the search range

+16 pixels, use all 7 block estimation modes, and conduct an optimal full search. Fig-

23



124 | ] 250

| ]
] 245 -
104 ]
] 2404
8 =~
© 235

230 u
] 225 \
44 |
| 220

Motion Estimation Time (s)
[}
1
Bitrate (kb/:

| |
21 215 B
T T T T T T T T T T T T
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Number of Reference Frames Number of Reference Frames
(a) motion estimation time (b) bitstream bitrate

Figure 3.8: H.264 encoder performance with different number of reference pictures

ure 3.8(a) shows the motion estimation time to encode 25 frames with the number of
reference frames varying from 1 to 5. If only one reference frame is used, the encoder
spends 77.8% of its computation time on motion estimation. Figure 3.8(b) shows the bi-
trate change with different number of reference frames. Increasing the number of reference
frames from 1 to 2 results in twice the computation time with only a 7% bitrate reduction.
This test shows that one reference frame is sufficient for many applications.

2) Search range: In this experimental setup, we use one reference frame and all 7
block estimation modes as well as an optimal full search algorithm. The search range has
been varied to measure encoder performance.

Figure 3.9(a) shows the motion estimation time and encoded bitstream bitrate. The
ME time quadratically increases as the search range increases. Figure 3.9(b) shows an
interesting fact that the optimal search range with the smallest bitrate number is not always
the largest search range. In this experiment, a 16x16 search range is the optimal search
range. Many adaptive search range adjustment methods have been proposed to achieve the
smallest bitrate with less computation time [53].

3) Sub-pixel sample prediction: In this experimental setup, we use one reference

frame and all the 7 block estimation modes as well as an optimal full search algorithm. The

24



250.5

| |
40+ 250.0 - / \
7 2495 " .
7 [ ] — ]
% 304 ] ~a L —— ./
P 249.0
£ 254 @ ]
S S 2485 v
= 20 b g
g K]
£ ] g 248.0-
o
S 10 247.5 4
[s} 4
= 5] /-/ 247.0 4
= J
| |
0+ 246.5
T T T T T T 1 B
0 10 20 30 40 50 60 70 246.0 . . . . . ; . ; . ; . ; . .
Motion Estimation Search Range 0 10 20 30 40 50 60 70
Motion Estimation Search Range
(a) motion estimation time (b) bitstream bitrate

Figure 3.9: H.264 encoder performance with different ME search range

search range is set to hel6 pixels. Our experiment shows that extra sub-pixel sample
prediction (quarter-pixel precision) takes 27% more computation and achieves a 33.6%
bitrate reduction.

4) Variable block size: In this experimental setup, we use only one reference frame,
full search and a search rangeiof6. Three different block size settings are used: 1. 16x16
block only; 2. 16x16, 8x16, 16x8, 8x8 modes only and 3. all 7 block modes. The setting
2 takes about 9.8% more computation time for a 10.6% bitrate reduction compared with
setting 1. A further split of partition size in setting 3 takes 8.5% more computation time
for an extra 1.3% bitrate reduction compared with setting 2. This results show that a four
block size mode is enough for many applications.

5) Full-search vs fast-search:In this experimental setup, we use one reference frame,
16x16 search range and all 7 block modes. The fast search algorithm in JIM (UMHexagon
search) uses only 17.7% the computation time of a full search algorithm with a 2.7% bitrate
increase. A simplified version of UMHexagon search performs even better: with around
12% computation time and a 6.9% bitrate increase. This explains why people are interested
in exploring various fast search algorithms. In order to implement the inter prediction

motion estimation in many-core systems, fast-search algorithms are essential to reduce

25



memory access and computation complexity.

Traditionally, in order to speed-up this bottleneck of video algorithms, dedicate hard-
ware engines are used, which basically consists of (a) a parallel array of processing ele-
ments for pixel level SAD operations; (b) a local memory to exploit data reuse to reduce
the external memory access; (c) an I/O control unit.

As for programmable approach, both fine-grained and coarse-grained parallelism are
available in ME algorithms. The fine-grained parallelism exists within a macroblock. If
both a reference frame and a current block data are loaded, the macroblock can be parti-
tioned into different sub-blocks and each sub-blocks can be distributed into different pro-
cessing elements (PEs) for parallel processing. The challenge for fine-grained parallel
processing is how to distribute the inputs and collect the results from each PE and how
to reuse the local memory to reduce data redistribution. Figure 3.10 shows an illustration
of the fine-grained parallel mapping of motion estimation algorithm. The data of current
16x16 macroblock is distributed to 16 PEs and each PE operates on a 4x4 pixel block. The
corresponding macroblock in the reference frame is also distributed to each PE. After the
cost function is computed in current position, the search motion vector increments by one
in both X and Y direction. In order to reuse most of the reference block data, some PEs
can pass data to the PEs at bottom left, ie. PE (1,0) can pass its portion of reference frame
to PE (0,1). A new row and new column data can be loaded from either on-chip or external
frame buffer.

Motion estimation algorithms also have coarse-grained parallelism. At the frame level,
if multiple reference frames are used, the motion estimation can operate on each reference
frame in parallel. At the macroblock level, although motion estimations can operate in par-
allel, MVs need to be processed in raster-scan order due to the dependency introduced by
motion vector prediction. Thus, MBs within the same frame can be processed concurrently
only if their neighboring top and left MBs have already been encoded and reconstructed.

This rule also applies to some other H.264 coding units such as intra-prediction and de-

26



New Row of Data-in from
Reference SearchWindow

M v v v
0.0 /(1,0] A2.0)]( 0)4'—
K

/ New
<€—— Column of
(0.1) K/ Data-in
from
— Reference
©.2) / / / Search

4 [ Window
e «—

Search MV = (1, 1)

Figure 3.10: Parallel motion estimation mapping to a finergréhmany-core system

block filtering.
Overall, the regularity of the ME algorithms makes ME an ideal application for parallel

processing both at fine-grained macro-block level and coarse-grained frame level.

3.2.2 Intra Prediction
Basic Idea

The intra prediction is a new feature introduced by H.264 for effective intra-block cod-
ing. The basic idea of intra prediction is to predict current block by the neighboring left
and top block within the same frame. The luma intra-prediction in H.264 has two predic-
tion strategies: intra 4x4 and intra 16x16. The intra 4x4 that predicts each 4x4 luma block
individually, is well suited for images with significant details. The intra 16x16 that predicts
the entire 16x16 luma block, is suitable for flat background region. The chroma uses a 8x8
prediction strategy and we call it chroma intra 8x8. There are a total of 9 modes for intra
4x4 luma block and a total of 4 modes for intra 16x16 luma block and intra 8x8 chroma
block. Since the intra 16x16 luma block and intra 8x8 chroma block prediction modes are

a subset of the 9 modes used by intra 4x4 luma block, we only illustrate the operations of

27



M|A|B|C|D|E|F]|G]|H
l{la|b|c|d
Jlel|l f|lg]|h
Klilj]] k]!
Lim|n|ol]p

Figure 3.11: Labeling of prediction samples of a (4, 4) block

0 (vertical) 1 (vertical) 2 (DC) 3 (diagonal down-left) 4 (diagonal down-right)
M A[B[CID[E[FIGH [MA[B[CD[E[F[dH [MAB[C[DE[F[GH [MA]B]C|D[E[F|GH| AlB[C[D[E[F[G[H|
| | > | | | | |
3 3 > 3 Meanof - ] 3
K K > K| A K K
Livvvv L > L s Ly LL]
5 (vertical-right) 6 (horizontal-down) 7 (vertical-left) 8 (horizontal-up)
MAB[CID[E[F[G H [MA[B[CID[E[F[GH [MA[B[CID[E[F[GH Al B[C[ D[ E[F[G[H
| | | |
J J J J
K K < K K
L L L L

Figure 3.12: Nine 4x4 intra prediction modes

the 9 different modes used by intra 4x4 luma block. Figure 3.11 shows the labeling of the
samples in a intra 4x4 block. The top 9 samples are from the three 4x4 blocks on the top of
a current block. The left 4 samples are from the neighboring left 4x4 blocks.

The 9 different modes for intra 4x4 block are shown in Figure 3.12. Mode O, 1, 2
are very straightforward which use only neighboring left or neighboring top 4 samples for
prediction. For mode 3 to 8, the predicted samples are formed by using a weighted average

of the samples A to M.

Complexity and Parallelization

The main complexity of intra-prediction arises from the calculations of all the 9 modes
for intra 4x4) and 4 modes for intra 16x16 to determine the best prediction partition size
and mode. Researchers have proposed many fast mode decision algorithms [54]. However,

the computation of intra prediction is not as complicate as inter prediction. Besides, in a

28



Frame

Slice 0| Luma: Y

1 4|56 ‘ 7 ‘ 8 (
3
| | Chroma: Cb Chroma: Cr 5
7
9

‘\lc.nw
o
~
©

| o MIN

Slice 1 Slice

@) (b) (©

Figure 3.13: Parallelism of H.264 intra prediction (a) ceagsained slice level parallelism
(b) coarse-grained parallelism among luma and chroma encoding (c) fine-grained paral-
lelism among each macroblock

video sequence, the number of I-frame (using only intra prediction) is usually less than the
number of P or B frame (using inter prediction). We use the same experiment setup as in
previous subsection. The experiment result shows that the compression ratio of inter pre-
diction is about 5-6 times that of the intra prediction. We also examined the effectiveness
of the 9 modes of the intra 4x4 prediction. We have used three different setups with: 1) 0-2
modes 2) 0—4 modes 3) all 0-8 modes. Our experiment results show that setup 2 and 3 can
reduce 15% and 23% bitrate of Intra-coding frames compared with setup 1.

Three levels of parallelism can be exploited to speed up the intra prediction as Fig-
ure 3.13 shows. H.264 supports the partition of one frame into different slices which can
be encoded independently as shown in Figure 3.13 (a). Unlike the inter prediction, the in-
tra prediction of luma and chroma components can be predicted separately as Figure 3.13
(b) shows. Figure 3.13 shows a fine-grained parallelization at the macroblock level. The
number of the macroblocks represents the processing order of MBs within one slice. The
MBs in the same slice can be encoded at the same time. A further partition of the MBs to

smaller sub-blocks is also feasible.

29



3.2.3 Transform and Quantization
Basic Idea

Based on the fact that H.264/AVC introduces smaller 4x4 blocks, the standard uses
a 4x4 integer transform different from the 8x8 DCT (Discrete Cosine Transform (DCT))
transform adopted by previous standards. The integer transform can reduce implemen-
tation complexity and ensure drift-free property (no further noise introduced during the
reconstructed path). Another feature of H.264 transform is that multiplication scaling is
integrated in the quantization process [55]. A typical 4x4 block H.264 transform and quan-
tization process can be illustrated as follows:

1) Step 1: The forward 4x4 integer transform operates on a 4x4 bfoakd produces

a 4x4 blockY'.
11 1 1 11 1 1
1 1 1
v _ 1 5 -1 -1 {X} 1 3 -5 -1
1 -1 -1 1 1 -1 -1 1
1 1 1
(1 -1 1 -3 | 3 -1 1 —3 ]

2) Step 2: The previous 4x4 block Y is quantized individually by the following equa-
tion. Y;; is a coefficient of the transform described aboitep is a quantizer step size

andZ;; is a quantized coefficienE F;; is a scaling factor from the transform stage.

J— PF;;
sz - round( }/; . QS—ter )

In H.264, 52Q)steps are stored in a table indexed by a quantization paranigfer0 to

51). In order to avoid division operations, the above equation can be simplified as follows:

R MF
Zij = round( Yij - oes >

30



Hadamard .| DC Coefficient
Transform 4x4 “1 Quantization
) luma DC
Intra_16x16 Iumi Forward Integer | AC Coefficient
~ DCT 4x4 “1 Quantization E
Hadamard | DC Coefficient
16 bit data input Transform 2x2 Quantization >
—> A
8x8 Chroma Chroma DC
| Forward Integer | AC Coefficient
i DCT 4x4 1 Quantization >
others . .
| Forward Integer | AC Coefficient S
i DCT 4x4 “| Quantization

Figure 3.14: Data-flow of H.264 transformation and quanitirat

where
PF;; MF

QStep  Qgbits

and

qbits = 15 + floor(Q P/6)

The above equations can be further simplified in integer arithmetic:

1Zij| = (|Yij| - MF + f) > qbits

sign(%;) = sign(Y;)

For improved compression efficiency, H.264 also employs a hierarchical transform
structure, in which the DC coefficients of neighboring 4x4 transforms are grouped in 4x4
blocks and transformed again by a second-level transform if an MB uses the intra 16x16
prediction mode. Figure 3.14 shows a complete data flow of the H.264 forward transform
and quantization process, which exposes explicit task-level parallelism for our proposed

fine-grained many-core system.

31



Complexity and Parallelization

The main operations of H.264 forward transform and quantization in the forward path,
inverse transformation and de-quantization in the reconstructed path are simple shift, addi-
tion and table look-up operations. The DCT and related modules use 17% computation of
the real-time baseline encoder [56]. The memory requirement of the 4x4 transform and the
guantization table is small (only 76 16-bit word for data and look-up tables).

The regularity of the transform and quantization operations makes these coding units
ideal for parallel processing. Since all the transform is applied to a 4x4 block, all the 4x4
blocks within one MB can be processed in parallel. The chroma and luma components
within one MB can be processed in parallel. All the MBs in a frame slice can also be
processed in parallel. In fact, the parallelism available in other tasks of the H.264 en-
coder limits to what extent we can parallelize the transform and quantization from a whole

throughput point of view.

3.2.4 De-block Filter
Basic Ideas

De-block filtering is one of the key techniques for H.264 to achieve a high subjective
quality. Since H.264 uses a 4x4 block-based integer transform and variable block size mo-
tion estimation, the de-block filter is essential to reduce the introduced blocking artifact.
The de-block filter is applied to all the edges of the 4x4 blocks within one macroblock as
Figure 3.15 (a) shows. The filtering is applied in an order from left to right on the vertical
boundariesa to d; and from top to bottom on the horizontal boundaries in a macroblock.
Figure 3.15 (b) shows samples adjacent to the boundaries of two plackig. Each
filter operation affects up to three samples on either side of the boundary depending on
a parameter boundary strength«). The filtering strength depends on the current quan-

tifier, the coding modes of adjacent blocks and the gradient of image samples across the

32



e o
| | | p3
A N O R O o
Vertical boundar p1 |

I I I I ! Y E Horizontal

— — -4 -+ — g k po| Boundary

I

—— — — h p3|p2|pl| p0] q0l gl g2 g3 qo0
-T-T T EECX R
(I I 2
a b c d i i 3
16x16 luma 8x8 chroma i

(@ (b)

Figure 3.15: H.264 de-block filter (a) edging filter order in aaroblock (b) samples adja-
cent to vertical and horizontal boundaries

Block p or g
intra-coded

oefficient coded i
block p or q

Yes Block boundary is

acroblock boundar

Different
reference picture
or MV

\4
Bo=s 53| [ = 3570

Figure 3.16: Determination of boundary strength Bs

boundary. Figure 3.16 shows the boundary strength Bs determination process. As shown

in Figure 3.15, a group of sampleg2( p1, p0, q0, ¢q1, ¢2) are filtered if Bs > 0 and
Ip0 — ¢0] < avand|pl — p0| < § and|ql — ¢0| < 5. « and are threshold values defined

in the standard. The filters f@f, p1, p2 (Bs=4) are shown as follows.

Po=P2+2XP1+2Xpo+2Xq+q+4) >3

Py = (p2+p1+po+q+2)>2

Py =(2Xps+3Xpa+p+po+aqo+4)>3

33



Block depends on
MB00, MB01 and MB10

|
~T mBoo | |mBot | ME
4x4 block Q / @ 3
A4

o
N

/»W

~—

Block depends on
MBO01, MB02 and MB11

—

w)
R
4

Lt N O ORORO
order

MB0O MBo1 MBO02 MB11
MB10

Figure 3.17: Examples of macroblock level parallelism of BHh&64 de-block filtering
where current macroblock depends on top and top right macroblocks

Complexity and Parallelization

In H.264, de-blocking filter exists both in encoder and decoder and contributes to a
considerable amount of computation especially at the decoder side. In a baseline encoder,
around 7% of the computation time is reported for de-block filtering [56]. In the decoder,
36% of the computation goes for the deblock filtering where 40% is speRtsazalcula-
tion and 60% is spent on filtering operations [57]. The complexity of the de-block filtering
mainly comes from the conditional operations in the inner loop of the algorithm and the ir-
regular data access due to adaptive deblocking. The filter unit also requires a lot of memory
access since all the reconstructed frames need go through the filter.

The challenge of parallelizing the de-block filter is how to partition the tasks into dif-
ferent sub-tasks so that each sub-task can operate on a small set of data. Two levels of
parallel partitions are available for parallel processing. At the macroblock level, the algo-

rithms can be partitioned in the same way as the intra prediction. As Figure 3.17 shows,

34



E8l( 13 )B13
|

Figure 3.18: A concurrent processing order of the de-blot&rfiithin one macroblock

macroblock MB0O, MB01, MB11 are at the row O of a frame and MB10, MB11 are at
the row 1. The number below each macroblock shows a tight parallel processing order for
each macroblock. Filtering MB10 may need to wait until MBOO and MBO1 are filtered.
However, since the de-block filtering processes the vertical boundaries first as Figure 3.15
shows. The vertical boundary filtering of MB10 can proceed concurrently with MB0OO and
MBO1 and then waits for the finish of the MBOO horizontal filtering and the MBO1 1st ver-
tical boundary filtering. In this way, a maximum concurrency of the de-block filtering can
be exploited for parallel processing.

Within a macroblock, fine-grained parallelism exists at all the edges between 4x4 sub-
blocks. However, due to the fact that the edge processing has to follow the exact order as
specified in Figure 3.15(a), there are data dependencies between the edge filtering. Fig-
ure 3.18 shows one of the processing order which maximizes the concurrency between the
32 edges within one macroblock. The order shows the earliest cycle that corresponding

vertical and horizontal edges can be processed.

35



3.2.5 Entropy Coding

In H.264, each 4x4 block of quantized transform coefficients is mapped to an array
of 16 elements in zig-zag order. The data are sent to an entropy coding unit which uses
either context-adaptive variable-length coding (CAVLC) or context-adaptive binary arith-
metic coding (CABAC) depending on the encoder profiles. Generally, CABAC achieves a
9%-14% bitrate reduction with a higher computation compared with CAVLC [58]. Both
CAVLC and CABAC contain serial operations that are difficult to parallelize in existing
programmable processors. Parallelizing CABAC is more challenging than CAVLC be-
cause of its bit-serial operations. That explains why all previous CABAC architectures
are hardware-based to our best knowledge. However, we can exploit the task parallelism
among CAVLC encoder for parallel processing. A more detailed parallel implementation
and performance comparison of CAVLC on the fine-grained many-core system is intro-

duced in the next chapter.

3.3 Related Work

Many coarse-grained parallel multi-core approaches have been proposed for H.264/AVC
encoding. Most of them exploit thread-level or frame-level parallelism in video encod-
ing algorithms. Chen et al. propose a parallel H.264/AVC encoder utilizing multi-level
threading [59]. Their results show good speedups ranging from 3.74x to 4.53x over well-
optimized sequential code on a quad-core system. Roitzsch proposes a slice-balancing
technique for H.264 video decoding by modifying only the encoding stage and reports a
performance speedup of up to 4.7 [60]. Rodriguez et al. use message passing paralleliza-
tion at GOP (Group of Pictures) and frame level to speed up H.264/AVC encoding [61].
Zhao et al. present a wavefront parallelization method for H.264/AVC encoding [62]. Their
parallelization method is conducted at both frame and macroblock level. Sun et al. propose

a similar parallel algorithm based on a wavefront technique [63]. They partition one frame

36



into different macroblock regions which are processed iedepntly. The macroblocks
within the macroblock region are then parallelized with the wavefront technique.

Stream processing has been proposed for multimedia applications that have compu-
tational intensity, data parallelism and producer-consumer localities. The stream model
was first proposed by Hoare in communicating sequential processes (CSP) [64]. With the
rapid development of IC technology, many architectures and processors supporting stream
models have emerged, such as Imagine [65] and RAW [66]. Khailany et al. use concur-
rency between stream commands, data parallelism, instruction-level parallelism and sub-
word SIMD parallelism to speedup H.264/AVC motion estimation and deblocking filter
kernels to achieve realtime 1080p HDTV encoding [67].

There is also a trend to use graphics processing units (GPUSs) to accelerate video appli-
cations. Cheung et al. present an overview of video encoding and decoding using multi-
core GPUs [68]. Chen et al. implement H.264/AVC motion estimation on a GPU and report
a 12 times speedup versus general-purpose CPUs [69]. However, GPUs are more suitable
for applications with abundant explicit thread-level and data-level parallelism and are less

efficient for some serial video encoding algorithms in the H.264/AVC standard.

37



Chapter 4

A Parallel 1080p H.264 Baseline

Residual Encoder

This chapter targets energy-efficient H.264 baseline encoding from low resolution to
HD video encoding on a fine-grained many-core architecture. Our programmable approach
achieves both high performance (up to real-time 1080p) and flexibility. We focus on the par-
allelization of the H.264/AVC baseline residual encoder which utilizes integer transform,
guantization and context-adaptive variable length coding (CAVLC) to encode residual data
from intra and inter prediction procedures. The integer transform and quantization are well
suited for parallel implementation. However, many high-performance CAVLC encoders
are implemented in hardware due to its serial processing property [70, 71]. We choose
to implement this software residual encoding accelerator because it is an essential task of
H.264 baseline encoding. The configurable and programmable residual encoder can be

used as a software co-processor for a full HD encoder.

38



Input Output
 —

Vddhig‘h‘{:ﬂ- Vddiow Tile
Osc DMem
IMem
Core N
. \ N
16 KB Shared Memories Comm
< < =3

2z
v

Figure 4.1: Architecture of targeted many-core system.
4.1 Introduction

This research demonstrates our fine-grained many-core architecture can achieve high
performance and energy efficiency for both video encoding algorithms with high data-
level parallelism like integer transform and quantization and serial algorithms with fine-
grained task-level parallelism like CAVLC. We propose a distributed processing approach
to parallelize the H.264/AVC residual encoding at 4x4 block level. The proposed fine-
grained parallelization exploits the existing locality and streaming nature of H.264/AVC
residual encoding algorithms. Our work differs from previous research in that we apply a
fine-grained approach to exploit task-level parallelism in H.264/AVC encoding.

The fine-grained parallelization brings challenges for programmers in terms of memory,
mapping, throughput and power optimizations. Our programming methodology yields an
H.264/AVC residual encoder capable of realtime 1080p (1920x1080) HDTV encoding with
both higher energy efficiency and area efficiency compared with other software approaches
in common DSPs and customized hybrid multi-core architectures.

The rest of this chapter is organized as follows. Section 4.2 introduces the features of

39



410 ym

5.939 mm

5.516 mm

(a) Die microphotograph (b) Testing board
Figure 4.2: A fully-functional AsAP chip in 65 nm CMOS which runs at a maximum of
1.2GHzand 1.3 V.
the targeted many-core system and the corresponding parallel programming methodology.
In Section 4.3, the H.264/AVC residual encoding algorithms including transform, quanti-
zation and CAVLC encoding are described and analyzed. Section 4.4 presents the approach
to parallelize the residual encoding kernel in terms of partitioning, mapping and optimiza-

tion. Section 4.5 shows the performance analysis and results. Section 4.6 concludes the

chapter.

4.2 The AsAP Architecture and Programming Methodol-

0gy

4.2.1 Many-core Array Architecture

The target AsAP (Asynchronous Array of Simple Processors) architecture is a fine-
grained many-core system which is composed of simple cores that operate at independent
clock frequencies and contain small memories for high energy efficiency [11].

The AsAP platform targets applications which can be partitioned into small tasks run-

ning separately on small and simple processors [72]. A second generation design allows

40



General-Purpose Processor

Sequential C

Implementation

Proc. @

Memory

ol
/v

MPI-based Parallel Simulator

Parallel C

Implementation

Proc. @ @

v
A

Memory B

Fine-grained Many-core Simulator

Fine-grained

Parallel

Implementation

<&

Proc 0,0 Proc 1,0
—» Task 0 [ Task 1 [
Memory Memory

void main(){
int data_in[16];
int data_out[16];
row_trans(data_in);
column_trans(data_out);

}

void row_trans(int *data_in) {

begin row_trans //thread 0
int ibuf0,0buf0;
int data_in[16],data_out[16];
for(:)
data_in[0:15]=ibuf0; <€—

...... //row transform
—»obuf0 = data_out[0:15];

¥

End

begin column_trans //thread 1
int ibuf0,0buf0;
int data_in[16],data_out[16];
for(;5)
data_in[0:15]=ibuf0; €—

...... //column transform
—>» obuf0 = data_out[0-15];
}

end

begin 0,0 (chipin west) //proc 0,0
MOVE DMem 0 ibuf)<—

//row trans.
—»MOVE OBuf Dmem 0

End

begin 1,0 (chipout east) //proc 1,0
MOVE DMem 0 ibuf) €—
//column trans.
—»MOVE OBuf DMem 0

end

(a) Sequential C Program

(b) Parallel C Program

(c) Fine-grained AsAP program

Figure 4.3: A fine-grained parallel programming methodolegtyh corresponding multi-
task application execution models and integer transform code examples.

processors to operate at independent supply voltages and contains 16 KB shared memo-

ries [73].

Figure 4.1 shows a high-level diagram of the AsAP chip which is fabricated in 65 nm

CMOS technology. Figure 4.2 shows the AsSAP chip die microphotograph and test board.

The system is composed of 164 16-bit homogenous DSP processors, three dedicated ac-

celerators and three 16-KB integrated shared memories, all of which have local clock os-

cillators and are connected by a reconfigurable globally asynchronous locally synchronous

(GALS) clocking style mesh network [74]. Compared with synchronous and mesochronous

on-chip communication approach [75], the GALS simplifies the clock design, provide easy

scaling into future deep submicron technologies and increase energy efficiency.

41



Each DSP processor contains a 16-bit datapath with a 40-cinadator and 128 word
instruction and data memories. Although processors are not tailored specially for video
encoding, they handle residual encoding very well since most of the encoding tasks require
very small amounts of instruction and data memories. Processor tiles are connected through
configurable nearest-neighbor or long-distance links.

In our platform, each processor can run at one of two supply volt&ges,, and
Vaarow @nd optimized clock frequencies. This per-core based supply voltage and frequency
configuration feature is useful for achieving maximum power efficiency in video applica-

tions with dynamic workloads as demonstrated in Section 4.5.

4.2.2 Parallel Programming Methodology

Figure 4.3 shows the parallel programming methodology for the proposed video en-
coder. The methodology is divided into three steps, which is further illustrated with corre-
sponding multi-task application execution models and examples of integer transform com-
posed of row and column transform tasks.

We first implement a sequential C program, which uses a traditional shared memory
model on a general-purpose processor as shown in Figure 4.3(a). The integer transform
tasks are implemented as C functions. The algorithm is fully verified to ensure bit-level
correctness compared with H.264/AVC JM software [76].

Then the sequential algorithm is partitioned into multiple parallel tasks which are im-
plemented with simple C programs separately as shown in Figure 4.3(b). The integer trans-
form can be divided into two tasks, row and column transforms. The two tasks can be
combined by linking their inputs and outputs using a GUI-based mapping tool. We have de-
veloped a linux-based parallel simulator based on message passing interface (MPI) library
to verify the parallel C implementation. All the partitions in this level are coarse-grained
and have no constraints on available resources including data and instruction memory.

Then coarse-grained tasks are repartitioned to fit on the resource-constrained AsAP

42



Residual
Data

4x4 Integer
Transform

2x2 or 4x4
Hadamard
Transform

Bitstream
CAVLC
Encoder

Luma DC of Intra
16x16 mode
and Chroma DC

Figure 4.4: Residual data encoding procedure in an H.264/év¢oder.

processors. As shown in Figure 4.3(c), the row and column transforms are implemented
on individual AsAP processors. The final encoder is simulated on the configurable Verilog
RTL model of our platform using Cadence NCVerilog. By using the activity profile of the
processors reported by the simulator, we evaluate its throughput and power consumption.
The distributed processing approach is suitable for video and communication applications
with streaming features so that large shared memories are avoided and each processor can

work on its own piece of data.

4.3 Residual Encoding in H.264/AVC

Figure 4.4 shows the residual data encoding procedure in the H.264/AVC baseline pro-
file. First, a 4x4 Integer Transform (IT) is applied to the residual data from either intra
or inter prediction procedures. For the intra 16x16 prediction mode, an additional 4x4
Hadamard Transforms (HT) is applied to the 16 luma DC values within one macroblock. If
the residual data are chroma DC coefficients, a 2x2 HT is applied. The CAVLC encoder en-
codes the zig-zagged 4x4 or 2x2 quantized transform coefficients and sends the bitstream
out. The integer transform and quantization has been described in previous chapter and

Figure 4.4 only describes the CAVLC encoder in detail.

43



N7 7 % N\ 4 A\ K

0 1 4 5 1 19 2 23
7 % R | I ZI

2 3 6 7 20| 21 24| 25
ZIN % %

8 9 12| 13
%IV I ¥ I

10 11| 14| 15

Figure 4.5: Scanning order of residual blocks within a malrch

Table 4.1: Elements of CAVLC Encoding per Block
Elements || Description

Coefttoken|| Encodes the number of nonzero coefficient and
number of signed trailing ones - one per block

Signtrail Encodes the sign of trailing ones
one per trailing ones maximum 3 per block
Levels Encodes the remaining nonzero coefficients
one per level excluding trailing ones
Total zeros Encodes the total number of zeros

before the last coefficient - one per block
Runbefore Encodes the number of run zeros preceding
each nonzero levels in reverse zigzag order

4.3.1 CAVLC Encoding

The CAVLC encoder is used for encoding transformed and quantized residual coeffi-
cients of one video macroblock in the processing order as shown in Figure 4.5. A maximum
of 27 blocks must be encoded within one macroblock. Block “~1"contains 16 Luma DC
coefficients if the current macroblock is encoded in 16x16 intra mode. Blocks 16 and 17
are formed by the DC coefficients of two Chroma components.

The CAVLC encoder can be partitioned into scanning and encoding phases. In the scan-
ning phase all of the blocks are scanned in zigzag order. In the encoding phase, five different

types of statistic symbols are encoded sequentially using look-up tables as Table 4.1 shows.

44



4x4 HT DC 2x2 HT quant.
3 3 T

scanning ——1" | encoder [P packer
A x A
LumaDC || Chroma | 3| Data M Total_zeros

Zigzag encoder

IT & Quant. i CAVLC
|
[
|
|
Residual Data — |: ,—t C%iféslggren
* | »
Chroma /| Predict
Axa 1T :: nC Sign_trail
I encoder
* ¢ Y ! 1 \ 2 /
1 — Bistream
:l CAVLC »| Levels VLC >
|
l
I|
|
|

quant. || DC quant. |-) receiver |

| Run_before
encoder

|
I
|
I
|
|
I
|
I
|
: Luma DC Chroma Forward
|
I
|
I
I
|
I
|
I
I

__________________________ 1

Figure 4.6: Data flow diagram of the proposed H.264/AVC reslidmcoder.

The complexity of CAVLC mainly comes from the context-adaptive encoding of the first
and third elements;oefttokenand levels. Thecoefttokenis encoded for the total number

of nonzero coefficients and trailing ones. Five different VLC tables are availablsofor

eff tokenencoding and the choice of table depends on the number of nonzero coefficients
in the neighboring left and top blocks. This data dependency requires a large memory to
store the number of nonzero coefficients for high quality video encodingleVktsare the
nonzero coefficients (excluding trailing ones) encoded in reverse zigzag ordelevEte

code is made up of an all O prefix followed by a symbol 1 and suffix. The length of the
suffix is initialized to O unless there are more than 10 nonzero coefficients and less than 3
trailing ones, in which case it is initialized to 1. The length of the suffix can be adaptively
incremented if the current level magnitude is larger than a certain threshold. A maximum

of 6 bits are used for suffix encoding [77].

4.4 The Proposed Parallel Residual Encoder

Figure 4.6 shows the data flow of the proposed parallel residual encoding kernel. The
input residual data are sent to the shared 4x4 integer transform module. Then the trans-

form coefficients are forwarded to the AC quantization, Chroma DC and Luma Intra 16x16

45



data in |QPTable}—>] axa 1T
—> & Daa (Integer
Receive‘raf °~ Transl)
|
| vV vy ¥
data in| QP Table —>»| 4x4IT
—>| &Daaf_ _ _| (Integer 4x4 AC 4x4 AC
Recejp/ing Trans. Quant Quant
|
Y / ] v
Intra 16x16 Buffer & Buffer & > data_out
DCHT == —-.4)(4 A? Chroma >| Chroma g Data —>
Quant uan DCHT DC Quaa— D> "&eVINg
A | /
y Y Y .
Chroma Buffer & | data out Intra Intra
DCHT Data [—> 16x16 |—>| 16x16 DC
Quant Receiving DCHT Quant
(8) Non-optimized (b) Optimized with amost two times
higher throughput

Figure 4.7: Two mappings of integer transform and quantizati

Hadamard Transform and quantization modules separately. All the quantized coefficients
are collected by the data receiver module and sent to the CAVLC encoder. In the CAVLC
encoder, the zigzag and CAVLC scanning block are the first phase of processing. Then cor-
responding syntaxes are distributed to five different encoding units in parallel. The packing
unit collects and packs the final codes into an output bitstream. When implementing the
encoder on the array processor, each task is first mapped to a single processor to allow
parallel execution. If either more memory or high performance is required than can be
provided by a single processor, the task is mapped to multiple processors. Code for each
processor is implemented independently, considering only its inputs and outputs. Once the
mapping and communication patterns are determined, coding for the small-memory pro-
cessing array is similar to writing codes for a sequential machine. However, an efficient
parallel mapping of this application on a fine-grained architecture still requires overcoming
some challenges in terms of memory usage, mapping and throughput optimization. The

following subsection describes our approach to these problems.

46



4.4.1 Integer Transform and Quantization
Memory and Algorithm Optimization

Since the proposed encoder works at the 4x4 block level, most of the time a 16-word
memory is required for storing streaming data. Thus, the 4x4 integer transform can be di-
rectly implemented on one AsAP processor in 97 cycles to process each 4x4 block (without
configuration overhead). As for the quantization, we use look-up tables to implement com-
putations such a@ P/6, Q P mod 6,29 /6 and24*** /3. Another problem for quantization
is that the size of intermediate values exceeds 16 bits due to the large size of multiplication
factors. This can be solved by using the 40-bit accumulator to store the intermediate values
so that a maximal precision is preserved during the quantization procedure.

If the macroblock is in intra 16x16 prediction mode, the luma DC (block —1) are first
sent to the CAVLC encoder as shown in Figure 4.5. This processing order breaks the natural
task-level pipeline because the DC values can not be fully collected until all the luma AC
blocks within one macroblock are transformed and quantized. Thus, we need to buffer a
maximum of 256 quantized luma AC values to reorganize the block order. We can compress
two 8-bit AC values into one 16-bit word so that the buffer tasks can be implemented on
one processor. Similarly, a maximum 64 quantized chroma AC values must be buffered so

that the Chroma DC values can be sent first (block 16 and 17 in Figure 4.5).

Mapping and throughput optimization

Figure 4.7(a) shows a 6-processor direct mapping of the integer transform and quan-
tization procedures on the array processor. The two dashed lines represent long-distance
links. The chroma DC HT and quantization procedures are implemented in a single pro-
cessor. This fine-grained mapping creates an application level pipeline so that the major
transform and quantization tasks are running in parallel. Our initial evaluation shows quan-

tization is the bottleneck of this mapping. In order to support HDTV 1080p at 30 fps,

a7



11

ol1]|4]|5|0of1]4]5 0|1|4]5
2(3|6|7|2]3]|6]|7 21367

8|9 |1213| 8|9 [12[13] ccccecceccs 8|9 |12]13

10{11|14[15]| 10|11 (14|15 10{11(14[15 11

0]1[4]5 of1]0]1 01
21367 2lafafs| T 2|3
9891213 ol

10| 11| 14|15 23

9
(&) Luma (b) Chroma Cb or Cr

Figure 4.8: Macroblocks in a QCIF frame.

the 4x4 AC quantization processor needs to operate at 2.14 GHz. Figure 4.7(b) shows a
9-processor mapping. We have duplicated4ké AC Quantnit to double the throughput

of the quantization tasks. The transformed coefficients are sent frodxthE processor
alternately to the tw@x4 AC Quanprocessors. The chroma DC HT and quantization are
implemented in two processors which also buffer half of the Luma and Chroma AC blocks
within one MB. The intra 16x16 DC HT and quantization are running on two processors in-
dependently. The 9-processor mapping doubles the throughput with three extra processors
and simple code duplication and re-mapping.

We can further parallelize the integer transform and quantization due to the vast data
parallelism available in the transform and quantization operations. The residual encoder is
parallelized in a way similar to a software pipeline. Therefore the throughput of the encoder
depends on the slowest task. Since the integer transform and quantization are fast enough
for 1080p video encoding, we do not need to further improve this part. In the following
subsection, we focus on the parallelization of the CAVLC encoder which may be slower
than the integer transform and quantization tasks in the case that a test video sequence

contains many non-zero residual data.

48



Non-zero VLC |data out
Coeff Run—>>| Router 8 —>| Binay —>
Encode Packer
A A
TotalZeros ~
Encoding > Router 7 [« Router 6
A
Level Level
Encode >! Encode —>| Router 5
P1 P2
A A
data in Sign
—>| Daa S| i <] cavLc 9 - -
Receiver > Zig-zag 2| scaming Trailing >| Router 3 >| Router 4
ones
A
7 A
Chroma > Luma > NumCoeff
Predict P Predict P Router 1 >»| Trailing >1 Router 2
nnz nnz < Ones
A A
Y Y
16 KB Shared Memory
(968 B maximum used)

Figure 4.9: A 20-processor CAVLC straightforward mapping €aranually without long-
distance interconnection.

4.4.2 The CAVLC Encoder

Compared with integer transform and quantization, the CAVLC algorithm is intrinsi-
cally serial due to the dependencies among 4x4 blocks within one macroblock and the
neighboring macroblocks within a single video frame. However, task level parallelism can

still be exploited by distributing different tasks among processors [78].

Memory Optimization

In the CAVLC encoder, theoefftokensymbol (refer to Table 4.1) is encoded with a
table look-up based on the number of nonzero coefficients (TotalCoeff) and trailingl-
ues (TrailingOnes). In H.264/AVC, five different look-up tables are used for this purpose
and the choice of table depends on a param&awhich is the average of the number of

nonzero coefficients of the neighboring left and upper blocks namdeand nB respec-

49



tively. Figure 4.8 shows the organization of macroblockshimitone QCIF frame. The

gray and dark gray blocks are data-dependent blocks between neighboring macroblocks.
As macroblocks are processed in raster scan order, a large memory is needed to store the
number of the nonzero coefficients of those data-dependent blocks. However, as each mac-
roblock needs onlyA andnB from neighboring 4x4 blocks, the memory requirement can

be reduced by maintaining a global memoryupipernA and left nB in one of the 16-KB
on-chip memories of ASAP array. For one 1080p HDTV frame uppernA contains 960
parameters ankft_ nB contains 8 parameters. As each parameter uses no more than 5 bits,
theuppernAand left nB can be further compressed to save half of the memory.

In our proposed CAVLC encoder, an arithmetic table elimination (ATE) technique is
used to encode level information. The level encoding starts from the last nonzero coefficient
(excludes trailing ones). Two parametdeselsandvicnum, are sent to the encoding unitin
each iterationVIcnumis initialized to O or 1 and can be updated for the next level encoding
depending on the current level magnitude. The encoding unit encodes VLCO and VLC1-6
separately with simple shift and addition operations. Due to the limit of the instruction
memory,levelencoding has been implemented on two processors as shown in Figure 4.9.
The P1 processor receivewvelinformation, sendgevelandvichumto P2 and updates the
vichnumeach time.

We use look-up tables to encode the other symhmieff token total_zerosandrun_before.
Most of the data in the VLC tables are less than 4 bits except for some entriesdo-the
eff tokenwhen the number of total nonzero coefficients is larger than 12. Moreover, the
VLC table used to encodetal_zeroshas a triangular structure, where most data are zeros.
Based on the above observations, we can divide the tables into smaller compressed tables
and then determine which table to use at run-time with little extra computation. Our ap-
proach achieves a compression ratio of 4 so that the data tables of theda#ikeken,

total_zerosand run_beforefit into one processor’s 128-word 16-bit data memory.

50



0,0 2,0 3.0 4,0 5.0
. — —> —P
datareceiver| router router router vel_packer
4 F A A
A
0,1 1.1 2,1 3;1 4,1 5,1
|- -
zig |zag scanning umcogffone level p2 totalzeros coeflrun
r 3
Y Y b
0,2 1,2 2,2 32
ichroma_nnz luma_nnz Bigntrailones level pl
16-KB Shared Memory

Figure 4.10: A 15-processor CAVLC mapping performed by an matec task mapping
tool [79].

Dataflow Mapping

As Figure 4.6 shows, the CAVLC encoder can be easily partitioned into a number of
independent serial and parallel tasks. When implementing the encoder on an array pro-
cessor, each task is firstly mapped to a single processor to allow parallel execution. Each
processor stores only a small amount of data (up to a 4x4 block data) for local computation.
It is worth mentioning that the fine-grained partition step determines the throughput of the
encoder since all of the tasks are implemented in a software pipeline style. In the following
step, we need to map the fine-grained task graphs into the 2D mesh array architecture. This
mapping step can either be conducted manually or automatically by a customized AsAP
mapping tool which aims to maximize nearest neighbor communication and insert as few
number of routing processors as possible [79].

Figure 4.9 shows a 20-processor straightforward manual mapping using only nearest-
neighbor connections. The CAVLC scanning unit sends statistical information only to the

coefftokenencoding unit and theoefftokenencoding unit passes the information imme-

51



Sign Non-zero
- | CAVLC ~ . « |TotalZeros| fR
20720 [ i [ 109 [ Econg [~ i B
T | | |
] T ’ ¢ Y o '\ s
datain | .. NUmCoeff | -1 > |
—> Recaiver railing >| Router > Router 2 [ | Router @
_Ones >
K L) A []
\ 4 L 2 v Y VY
Chroma —>» Luma Level Level VLC |[data out
Predict _ Predict Encode F—=>» Encode Binay F—>
nnz nnz P1 P2 Packer
A A
Y Y
16 KB Shared Memory
(968 B maximum used)

Figure 4.11: A 15-processor CAVLC mapping done manually witlbaghput identical to
the mapping shown in Figure 4.10.

diately to the nexsign.trail encoding unit. This takes place for every encoding unit before

it begins to operate on its own portion of data. This approach simplifies the mapping and
will not degrade the throughput since the code produced by each unit needs to be collected
in sequential order by the VLC packing unit anyway. In Figure 4.9n@@rediction unit

is implemented on two processors for Luma and Chroma separately. The 16 KB shared
memory supports two independent interfaces, which is ideal for this case.

The mapping in Figure 4.9 is inefficient due to the constraints of a maximum of two
input ports per processor and only nearest-neighbor processor communication. Eight rout-
ing processors are required to pass data around the graph. Figure 4.10 shows a compact
15-processor automatic mapping by the AsAP mapping tool which aims to map an algo-
rithm with the shortest interconnection links and number of routing processors. The four
long arrow lines represent long-distance links. The length of all the links are less than
one processor. A saving of five routing processors shows the efficiency of the low overhead
long-distance interconnection architecture [80]. With a little more manual optimization, we
have another similar 15-processor mapping shown in Figure 4.11, which is more regular

and uses exactly a 5 by 3 processor array plus the shared memory. As shown in the shadow

52



ol -
!Transform & Quantization ! | CAVLC Encoder
| K

|
data_ini QP Table —>| 4x4 1T | Zig 22 CAVLC |
——>| & Data (Integer ! P2 >| Scanning
| Receiver4~ © =] _Trans.) || P2 |
RN v i A ! |
| Y i : i Y |
4x4 AC axanc |l ig-zag CAVI_‘é"") Sign TotalZeros Non-zero | ,
| Quant Quant |i | PL > Scanning - Trailing > Encoding —>| Coeff Run| |
' [ P1 —>»| ones Encode i
e e g o e e -
i N * o \\ 2 I
: Buffer & - Buffer & J‘-b Data NUmCoeff | -— 1 =
| Chroma > Chroma | |+ Recel railing > Routert —>| Router 2 Router3 | |
DC HT DC Quanif— | eceiver Ones I
- 2 B | I SR
| i K v Y|
. Intra Intra | chroma > Luma Level Level VLC *data_out
| 16x16 |—>| 16x16 DC || Predict | Predict Encode >| Encode Binary J.—)
i DC HT Quant I nnz nnz P1 P2 Packer | |
................. [y Py W Iy W S
Y Y
— - => long-distance links 16 KB Shared Memory

—> nearest-neighbor links (968 B maximum used)

Figure 4.12: The proposed 25-processor H.264/AVC residuabader mapping.

box of Figure 4.11, compared to the CAVLC data-flow in Fig 4.6, we added two more pro-
cessors for thenz predictionandlevel encodingand three routing processors which are
required because of the constraints of two input ports per processor. Overall, the parallel

mapping is very straightforward but effective once the algorithm are partitioned well.

Throughput Optimization

The throughput of the 15-processor mapping can be further optimized by characterizing
the workload of each processor and speeding up the processors in the critical data path.
The non-critical processors add only latency to the system and do not affect the overall
throughput. Since the processors stop once they finish their jobs, the processing time of
one 4x4 block approximates the processor active time during the encoding.

Our evaluation shows the critical path of the CAVLC encoding includes zigzag reorder,
CAVLC scanning, level encoding P1&P2, and VLC binary packing. Three methods are
adopted to optimize the mapping. First, the coding of these critical path processors are op-
timized by using AsAP’s instructions and features such as block repeat, automatic address

generation and data forwarding. Second, the workload of VLC packing is re-mapped onto

53



Il Processor IMem Used [__]Processor IMem Unused

128 4—r— — II I

112

96

80

64

48

32

Processor Instruction Memory Usage (Words)

CSELE S XX B OO O TiE ST L ot
F P OO W@ W AT EF E L TGP P GndP P Fad® R
oo Ol 2 O%QOQQ’DQ@QQ‘Q’Q’é\Q’é\ IR I M)
SRS IIN SR RNINYOEEPACPAGCIEPN
LN > 5+ VLR IS G L 9
¥ o g N° @OﬁVAVQo@ e NN P &
PR N T X
@ & v S
§ & S
& A

Figure 4.13: Instruction memory usage of the proposed 25gssor encoder.

routing processors. The codes can be packed as soon as they are produced by each encod-
ing unit. Third, we add another two processors to further parallelize zig-zag and CAVLC
scanning procedures as shown by the CAVLC encoder in Figure 4.12. These three opti-
mizations triple the average throughput of the CAVLC encoder which can encode 1080p

(1920x1080) HDTV at 30fps or higher for various video test sequences.

4.5 Simulation Results and Comparison

4.5.1 Implementation Results

Figure 4.12 shows our proposed 25-processor fine-grained mapping for the H.264/AVC
residual encoder. A total of 8 processors are used for transform and quantization and
17 processors including one 16-KB shared memory (968 bytes maximum used for 1080p

HDTV) are used for CAVLC encoding. There are eight long-distance links with a length

54



Processor DMem Used [___] Processor DMem Unused

128

112

©
[«2)

80

64

48

32

Processor Data Memory Usage (Words)

ot S 00/\,\/\,\0?@ 'é\?ﬁ\'/o ‘b & 7
o*:v%\@ B W Vet B’ 05T @ -
\e%‘ b‘.‘l‘& \Q\{b' b:\-oé 'b"\@) ‘(\&0 ?g\/ §V00® \/\5 @\Q’ \/QJ’@\f\/ \/Q‘O« Q\’O
F @ IS T <9
XS O Q;\ AN O
< Q)‘{"{\

Figure 4.14: Data memory usage of the proposed 25-processoder.

of one processor. All other processors not included in the application mapping within the
AsAP array (Figure 4.1) are turned off to save power by halting their oscillators and dis-
connected them from the power grid with their individual power transistors. We may use
the large number of unused processors to implement other workloads such as wireless com-
munication or encryption for some applications such as a wireless security video encoding
system.

Figure 4.13 and Figure 4.14 summarize the instruction and data memory usages for
each processor among the 25 processors, respectively. Our implementation shows that
128-words of instruction and 128-words of data memory are more than enough for the
H.264/AVC residual video encoding. Each processor of the 25-processor encoder uses an
average of 72 words of instruction memory, which is 56.3% of all available instruction
memory; and an average of 48 words of data memory, which is 37.2% of all available data

memory.

55



In our proposed residual encoder, the throughput of thefisamsand quantization takes
a maximum of 3960 cycles to encode one macroblock. The throughput of the CAVLC en-
coder is highly dependent on specific test video sequences and encoding QP value. In
H.264/AVC, the coded block patterns (CBP) are used to determine the all-zero residual
blocks which are not necessary to be encoded. Considering the CBP effects, we performed
the simulations of our residual encoder using 8 test sequences with different frame size
including QCIF foreman, CIF football, 4CIF soccer, 720p stockholm, 720p shields, 1080p
rush hour, 1080p pedestrian area and 1080p blue sky. All of these test sequences are en-
coded with four different QP values from 25 to 36.

We use the JM 12.4 reference software to encode original video sequences with a base-
line setting. We collect the intermediate residual data after the intra and inter prediction
in reference software and send them to our residual encoder as testing inputs. Simulation
results are calculated by averaging the cycles of encoding one macroblock of one | type and
one P type frame with a QP value from 25 to 36. If all the processors run at a maximum of
1.2 GHz with a supply voltage of 1.3 V, the encoder needs to encode one macroblock with
less than 4902 cycles to support 1080p HDTV encoding. Figure 4.15 shows the average
cycles to encode one macroblock for all the tests. As shown in Figure 4.15, all of the tests
use less than 4902 cycles to encode one macroblock. The QCIF foreman test sequences has
the highest computation complexity and requires 4841 cycles to encode one macroblock at
QP = 25. All of the other test sequences have a very steady encoding throughput in terms
of average cycles per macroblock within a range of 3500 to 4200 cycles per macroblock.
The results indicate that the encoder meets the real time requirement of 1080p HDTV en-

coding at 30 fps.

4.5.2 Performance Evaluation

A more detailed analysis of processor execution reveals some interesting insights into

the bottleneck of our design. Figure 4.16 illustrates average processor activity of the en-

56



c000 [0 QP=25 [ QP=28 NN QP=32 NN QP=36
_ \4902 cycles for 1080p video

« @30 fps and 1.2GHz clock

S 4000 —

o]

o |

Q

©

£ 3000

@

D- -

()]

Q

9 2000

(&)

Q

o |

o

2 1000

<

0-H
«\a‘\ 0{0@ Oc'c'e( \(\0\“\ ‘\8\6‘5 \(\0\)( ° 5\’&
W 10 ¢ & oo¥ EARE o S
QQ\? (o) »C P S 129° \/0%09 Qedes \/0%09
A®°

Figure 4.15: The average cycles to encode one macroblockdbséquences with varying
frame sizes and QP values.

coder for encoding foreman testing video wih? = 25. The activity of each processor

(the amount of time spent executing, instead of stalling), is indicated by the black bar in
the figure. The white bar indicates the time stalled on output, while the gray bars indicate
the time spent waiting for input to arrive. Figure 4.16 shows that thedxbAC Quant
processors are running all the time and they are both bottlenecks of our design in this case.
The two processorbitra 16x16 DC HTandIntra 16x16 DC Quangre stalling on input

for most of the time because the video frames are not encoded in intra 16x16 mode. The
QP Table & Data Receivesnd4x4 IT processors stall on output for more than 30% of the
whole encoding time because the downstrdash AC quanprocessor is not fast enough to
consume their outputs. Figure 4.16 also shows tha¥ti@ Binary Packeis busy most of

the time due to the large volume of output bitstream which causes the other upstream pro-
cessors in the CAVLC encoder to stall on output during execution. Most of the processors

stall on input which indicates that at some time the source processors are providing data at

57



]- Instruction Execution [ Stall on Input [___] Stall on Output \

100 4—

80

60

40

20

Processor activity percentage (%)

Figure 4.16: Processor activity of the residual encodereavaiicoding QCIF foreman at
QP =25.

a slower rate than the destination processor can consume it. The large amount of stall time
in Figure 4.16 shows a large slack for most of the processors, which provides a potential to

reduce the clock rate and supply voltage to increase energy efficiency.

4.5.3 Power Consumption Optimization

Power Estimation

One advantage of the target many-core system is that each processor its own oscillator.
The clock can be totally halted when the processor stalls for a certain amount of time either
because of input empty or output full. During a short stall, the clock can still be active which

results in more power consumption than the case of a total standby with halted clock. The

58



overall activity of processors allows us to estimate thel totarage power by:

PTotal = § PEze,i + E PStall,i + E PStandby,i

(4.1)
+ Z PComm,i + Psharedmemory

where Pggc i, Pstatir Pstandby,i aN0d Poomm,i represent the power consumption of compu-
tation execution, stalling with active clock, standby with halted clock and communication
activities of thei*” processor among 25 processors, respectively, cimemory 1S the aver-

age power of the 16-KB shared memoBf.. i, Psiaii i, Pstandby; are estimated as follows:

PExe,i = Q- PExeAUg
Pstani = Bi* Pstaliavg (4.2)
PStandby,i = (]- — Q4 — 62) : PStandbyAUg

where Pryeavg, Pstaliavg QN Psianany avg @re average power while the processor is 100%
active in execution, stalling and standby (leakage only);3; and (1 — «; — 3;) are the
percentage of execution, stall and standby activities of procéssmpectively. The com-

munication power of processocan be estimated as follows:

PC’omm,i = Z (5’Lj . PCommActive,Lj
j (4.3)

+PC'ommStandby,Lj )

whereg;; is the communication active percentage of InKcommActive,z; @A Pcommstandby,L;
are the average power consumed by a link with a lehgiHnile the link is 100% active and
standby. Table 4.2 shows the measured average power consumption of various functions
at 1.3 V and 1.2 GHz. We have included two types of communication link power since
the length of the long-distance communication links in our application are no more than

one tile. As shown in Table 4.2, all the components consume little standby power and the

59



Table 4.2: Power measured at 1.3V and 1.2 GHz.

100% Active  Stall Standby
(mw) (mwW) (mW)

Operation of

Processor 62.0 31.0 0.13
Shared Memory 4.3 NA 0.11
Nearest-neighbor comm. 5.9 NA ~0
Long-distance comm. one tile 12.1 NA ~0

communication circuits consume nearly zero leakage duesiosmplicity.

Based on the average cycles per macroblock data as we present in Figure 4.15, Ta-
ble 4.3 lists the maximum frequencies to support realtime (30 fps) encoding of all the 8 test
sequences. The processors only need to run as low as 15 MHz to encode QCIF foreman
sequence at 30 fps. Among all the tests, the 1080p pedestrian area video sequence requires
the highest frequency of 1032 MHz for real-time encoding. Based on equations 4.1, 4.2, 4.3
and Table 4.2, we can reasonably estimate the average power consumption of our residual
encoder. We use the processor and communication activity data from the profiling of en-
coding all the 8 test sequences &P = 25. Table 4.3 shows the power consumption of all
the tests without voltage and frequency scaling which means all of the processors run at the
same maximum frequencies and corresponding supply voltages. The QCIF foreman real-
time encoding consumes only 4 mW and the power number increase proportionally with
the frame size. The encoder consumes 115-121 mW for 720p HDTV tests at 30 fps and
433-544 mW for 1080p HDTYV tests at 30 fps.

Power Optimization

The power dissipation of our encoder can be further reduced by adjusting the frequency
and voltage of each processor. Based on the processor activity number, each processor has
an optimal operating frequency so that the processors can be active as much as possible. By
running at these optimal frequencies, the power wasted by stalling and standby activities of

the processors is eliminated. As shown in Figure 4.16, in that case th&G@wix4 quant

60



Table 4.3: Power consumption of residual video encodingingnat 30 fps with and with-
out static voltage and frequency scaling (VFS)

Max Power Power
Test Frame| Freq. | w/oVFS | w/VFS | Power
Size | (MHz) (mw) (mwW) | Change
Foreman QCIF 15 4.0 3.0 —25%
Football CIF 45 9.1 7.1 —22%
Soccer ACIF 174 32 27 -16%
Stockholm 720p 425 115 78 -32%
Shields 720p 397 121 89 —26%
Rush hour 1080p| 939 433 271 -37%
Pedestrian area 1080p | 1032 544 347 —-36%
Blue sky 1080p | 905 447 260 —42%

processors must run at the highest frequencies and the atheggsors can run at lower
frequencies.

Our platform supports two global supply voltage gridg ., and Viiro,. The val-
ues ofVyamign andVyare, are variables for different test cases. Thgg;,, is chosen to
support the maximum frequency based on the measured voltage frequency curve [74]. The
Vaarign 1S set to 1.15 V for all the three 1080p video tests shown in Table 4.3. Based on
our simulation, the two AC quantization processors are set to rif;at,, for the three
1080p tests. The other processors can ruvat,, or Viamign, depending on their optimal
operating frequency. If a4, the processor can reach its optimal operating frequency,
the supply voltage is set 8G;q1.,.,; OtherwiseV ;4 is chosen. To find the optim&l,o.,
we changed/ 1.0, from Vigpign down to 0.65 V and chose thggz.., value which results
in the minimum total power consumption.

Figure 4.17 shows the total power consumption corresponding to thgsg values
for the Foreman video test. As shown in the figure, the optivhal,., is 1.05 V with total
power of 582 mW for 1080p Foreman encoding at 30 fps, a reduction of 29.5% when com-
pared with the previous case in which all processors run at 1.2 GHz and 1.3 V. Similarly,
we can scale the voltage and frequency for the 720p encoder at 30 fpsWhesg is set
at 0.90 V and the optimal,;..., is 0.80 V, which reduces 61.3% of the power dissipation

and results in 148 mW power in total.

61



Total Power (mW)

0.7 0.8 0.9 1.0 1.1 1.2 1.3
vdd,_ (V)

Figure 4.17: The total power consumption over various valfeB;i..., (With Viamign
fixed at 1.3 V) while processors running at their optimal frequency and encoding Foreman
at QP=25. Each processor is set at one of these two voltages depending on its frequency.

Table 4.3 summarizes the estimated power consumption of encoding the eight video
sequences & P = 25 with voltage frequency scaling (VFS). As shown in Table 4.3, with
VFS, the residual encoder only consumes 3 mW for QCIF foreman encoding at 30 fps. For
the two 720p video tests, the encoder consumes 78-89 mW with VFS. On average, with
Vaarigh andVygre,, at 0.85V and 0.75 'V, the encoder consumes 84 mW power dissipation
for 720p video encoding at 30 fps—an average reduction of 29% compared with the design
without VFS. For the three 1080p 30 fps video sequences, the encoder consumes 260—
347 mW. On average, Withqmi,, andVygre, at 1.15 V and 0.9 V, the encoder is capable
of 1080p video encoding at 30 fps with 293 mW power dissipation—an average reduction
of 38.4% compared with the design without VFS. The results demonstrate the effectiveness
of voltage and frequency scaling for video applications with dynamic workloads. Another
observation is that as frame size increases, the power savings increase with voltage and

frequency scaling. This is because high-definition video encoding has more unbalanced

62



o—Delay from PTM simulation (ps) =9 Energy/op from PTM simulation (fJ)

- Delay from general scaling rule (ps) —fli—Energy/op from general scaling rule (fJ)

90 - 1.8V 1883 ] 1.8V
80
20 800 -
700 -
60 1 600 -
50 1 500 -
40 - 400 -
30 - 300 A
20 - 200 -
10 - 100 A
0 0
180 130 90 65 45 32 22 180 130 90 65 45 32 22
(nm) (nm)
(a) Delay (b) Energy per operation

Figure 4.18: Delay and energy per operation of an inverter driving a fanout of 4 based on
SPICE simulation using predictive technology model (PTM) [81]; the general scaling rule
assumes a/s? reduction in delay and &/(sv?) reduction in energy/op whereis the
technology scaling factor andis the voltage scaling factor [82].

workloads among the encoding tasks, which provides more power-saving potentials for

voltage and frequency scaling.

4.5.4 Performance Comparison

The H.264/AVC baseline encoder has been implemented on many DSP platforms. In
order to fairly compare with other reference designs, we estimate the loading fraction of
residual encoding in a full baseline encoder. Since this loading fraction is affected by many
different variables such as processor architecture and test video sequences, we use a range
to estimate the fraction number.

The CAVLC occupies 18.2% computation time of the full baseline encoder running
on a general-purpose computer [83]. Our parallelized IT and Quant modules take around
56.2% computation time of CAVLC encoding. Since the other reported designs use VLIW,
SIMD, or multiple-issue architectures which are very likely able to execute multiple in-

structions per cycle during the computation of IT and Quant, we estimate they double their

63



performance while computing these workloads. In this wayestenate the IT and Quant

take about 5.1% computation time of the full encoder. Summing up the two fractions, the
residual encoder is estimated to take 23.3% computation time of a full encoder. We added
a fluctuation ranging fromt3% to roughly estimate the test sequence variation which is
observed in our JM encoding tests over various test sequences from QCIF to 1080p frame
sizes. Thus, we estimate the residual encoder takes about 20.3% to 26.3% of a full baseline
encoder.

For a fair comparison, all of the reference data are scaled to 65 nm technology at a
supply voltage of 1.15 V. We use a technology scaling rule justified by SPICE simulation
of an inverter driving a fan out of 4 under different technology nodes and supply voltages
with prediction technology model (PTM) [81] as shown in Figure 4.18. We use the metrics
of throughput (Mpixel/s), throughput per area ((Mpixel/s)/fenergy per pixel (nJ/pixel)
to compare the throughput, hardware efficiency and energy efficiency of each design.

Based on the loading fraction and technology scaling rule, we estimate the residual en-
coder performance of published software H.264/AVC baseline encoders on two DSP plat-
forms and two hybrid multi-core architectures as shown in Table 4.4. Since the proposed
residual encoder on AsAP is configurable and programmable, we include the performance
data of our design encoding 1080p, 720p and CIF at 30 fps at different supply voltages as
shown in in Table 4.4. The energy per pixel of ASAP reduces as we reduce the frame size
and supply voltages. A reduction of 36% and 52% energy per pixel are achieved for 720p
and CIF video encoding compared to 1080p encoding.

For a fair comparison, we only compare the other designs with AsAP while encoding
1080p at 30 fps because the other results are scaled to 65 nm and 1.15 V. As shown in Ta-
ble 4.4, compared with the encoder on the TI DSP C642, the proposed residual encoder on
AsSAP has 2.9-3.7 times higher throughput, 11.2-15 times higher throughput per chip area
and 4.5-5.8 times smaller energy per pixel. Compared with ADSP BF562 DSP, our de-

sign has 2.3-3.0 times higher throughput and 5.6—7.2 times smaller energy per pixel. The

64



G9

Max Esti. Res? Est. Resf Other results scaled to 65 nm & 1.15V

Platform Arch.  Tech. Vdd Area Freq Power Throughput Throughput Energy Throughput Throughput/Area  Energy
(nm) V) (mm?) (MHz) (mW) (Mpixel/s) (nJ/ipixel) (Mpixel/s) ((Mpixel/s)/mi) (nJ/pixel)
8-way
T1 C642 [84] VLIW 130 1.2 72 600 718 CIF@24fps 9.3-12.0 59.8-77.2 16.7-21.6 0.9-1.2 21.2-27.4
Dual-core
ADSP BF561 DSP 130 1.2 NA 600 1110 CIF@30fps 11.6-15.0 74-95.7 20.9-27.0 NA 26.2-33.9
[85]
CPU +
Cell [86] SIMD PE 90 1 221 3200 NA 1080p@31lfps 244-317 NA 366-476 2.8-3.2 NA
SODA? CPU +
customized || SIMD PE 90 1 14.29 300 68 CIF@30fps 11.6-15.0 4.5-5.9 17.4-22.5 2.3-3.0 3.9-5.2
for H.264 [87]
Dual-core
Intel P8400 CPU 45 1.1 107 2260 12,560080p@12fps 25 500 13.2 0.06 437.9
[88]
ASICH89] ASIC 130 1.2 4.0 108 36.6 720p@30fps 27.7 1.3 106.1 106.1 0.60
(ISSCC2007)
1.15/0.9 4.6 959 293 1080p@30fps 62.2 4.7 62.2 13.5 4.7
ThASS"A"‘F’,{k (zérg’es) 0.85/0.75 4.6 411 84 720p@30fps  27.6 3.0 27.6 6.0 3.0
0.675/0.675 4.6 45 7.1 CIF@30fps 3.0 2.3 3.0 0.65 2.3

a The residual encoding throughput is estimated based on a loading factor of 20.3%—26.3% of a full baseline encoder.

b SODA is not fabricated and data are from synthesis results [87].

¢ Measured results by implementing the same residual encoder on Thinkpad T400 Core 2 Duo PC.

4 The P8400’s typical power is not available, so 50% of TDP (25W) is used based on benchmark data of a general-purpose processor [90].

€ The residual encoder is estimated to be one sixth the total chip area based on the die photo and the power is estimated to be 20% of the total power.

f The AsAP’s area includes 25 cores and one 16-KB shared memory. Three sets of supply voltages are used for 1080p, 720p and CIF video encoding separately.

Table 4.4: Comparison of residual encoder on different software platforms and ASICs; the original published data are included under
different technology nodes and supply voltages; For comparison, data are scaled to 65 nm technology with a supply voltage 1.15 V
assuming d /s reduction in area; throughput and energy are scaled based on a scaling rule justified by the SPICE simulation shown in

Figure 4.18.



IBM cell processor is a heterogeneous multi-core architector high-end gaming and
multimedia processing [91]. The reference design on Cell has 5.9 to 7 times higher scaled
throughput than our design at a cost of 4.2 to 4.8 lower area efficiency than AsAP. The
Cell processor power number is not available though AsAP should have far higher energy
efficiency due to area alone. The customized SODA is specially optimized for H.264 by
introducing flexible SIMD width, diagonal memory organization and special fused opera-
tion instructions [87]. Compared to the customized SODA, our implementation achieves
2.8 to 3.6 times higher throughput and 4.5 to 5.9 times higher area efficiency. AsAP has
similar energy efficiency compared to the SODA customized for H.264. SODA has not
been fabricated and both area and power data are from synthesis results [87].

We also implemented the same residual encoder written in sequential C and compiled it
with Intel C++ Compiler 9.1 on a state-of-the-art Intel Core 2 Duo P8400 computer running
Windows XP SP2 with 3G Bytes DDR3 RAM. To be fair, we doubled the performance esti-
mation of our sequential implementation based on the fact the encoder could be potentially
parallelized at the thread-level on the dual-core processor [59]. As shown in Table 4.4, the
throughput of our design is around 4.7 times the scaled throughput of the design running on
the P8400. Our results show a state-of-the-art general-purpose processor can not meet real-
time 1080p encoding requirement with around two orders of magnitude smaller throughput
per area and around 93 times higher energy per pixel compared with our design on AsAP.

For a complete comparison, we also estimate the area and power consumption of a hard-
ware residual encoder based on a 720p H.264 baseline encoder chip fabricated at 130 nm
CMOS [89]. Based on the die photo, the area of the residual encoder is estimated to occupy
one sixth the total chip area. The power of the residual encoder is related to both work-
load (23.3%) and the chip area. Thus, a medium value (20%) is used to estimate the total
power consumption of the residual encoder. As expected, ASIC achieves higher area and
energy efficiency — 7.9 times higher area efficiency and 7.8 times higher energy efficiency.

However, the efficiency of hard-wired ASICs come at the cost of little flexibility.

66



4.6 Conclusion

We have implemented a high-performance parallel H.264/AVC baseline residual en-
coder on a fine-grained many-core system. The encoder is composed of integer transform,
guantization and CAVLC blocks. The 25-processor residual encoder is the first software
implementation on a fine-grained many-core system that supports realtime 1080p HDTV
encoding to the best of our knowledge. We exploited data and task level parallelism in
the H.264/AVC algorithms at the fine-grained block level and utilized the benefits of the
GALS architecture to reduce power dissipation based on the workload of each processor.
The design achieves higher throughput, much higher throughput per chip area, and much
lower energy per pixel than the exact same encoder implemented on a general-purpose mul-
tiprocessor. It also compares very well with published implementations on programmable
DSP processors, thus demonstrating the great promise of fine-grained many-core processor

arrays for use in video encoding.

67



Chapter 5

Application-Driven Processor Shape and

Topology Design

5.1 Introduction

For many-core processors, long inter-processor communication links dissipate signifi-
cant power that does not directly contribute to the workload processing [92]. Thus, many-
core processors that utilize scalable interconnects and aovid global wires normally can
attain higher peorformance.

Network-on-Chip (NoC) approaches are used to connect large numbers of processors
on a single-chip because they are more efficient than less scalable methods such as global
shared buses. There exist many design alternatives for NoC architectures which differ
mainly in switching policy, topology and routing algorithms. Most proposed NoC architec-
tures are based on dynamic packet switch routing and some are based on static configurable
circuit-switch interconnection which has smaller area, lower power dissipation and lower
complexity while trading off routing flexibility [93].

Network topologies define how nodes are placed and connected, affecting the latency,

throughput, area and power of a network. Due to its simplicity and the fact that processor

68



tiles are traditionally square or rectangular, the neanegghbor 2D mesh topology is a nat-

ural solution for both dynamic and static on-chip communication architectures. However,
efficiently mapping applications can be a challenge for cases that require communication
between processors that are not adjacent on the 2D mesh. This condition could require
processors to forward data for static interconnection architectures, and intermediate routers
for dynamic router-based NoCs. The power consumption and communication latency also
increase as the number of routing processors or routers between two communicating cores
increase. There exist other common topologies for NoCs such as 2D torus, fat tree, oc-
tagon and higher dimensional meshes and tori which provide higher routing capability and
communication bandwidth with costs of higher wire density and longer global wires [94].
Furthermore, these topologies present significant challenges for many-core physical imple-
mentations especially with the number of cores per die expected to soon reach thousands
and more.

For many applications mapped onto homogeneous chip multiprocessors, communica-
tion between processors is often largely localized [95, 96], which may result in local map-
ping congestion; an increase of local connectivity can ease such congestion. This motivates
us to propose new topologies with increased local connectivity while keeping much of the
simplicity of a mesh-based topology.

Many-core NoC topology design has a strong impact on application performance, phys-
ical design time and application mapping effort. This work proposes regular and scalable
topologies and tile shapes for dense interconnection of many-core arrays which result in an
overall application processor with fewer cores and a lower total communication length.

The main contributions of this chapter can be summarized as follows:

1. Seven NoC topologies are proposed and compared to the common 2D mesh including
two 8-neighbor topologies, two 5-neighbor topologies and three 6-neighbor topolo-
gies. Three of them utilize hexagonal-shaped or 5-sided “house-shaped” processor

tiles.

69



2. A complete functional H.264/AVC residual encoder and a2.80a/g OFDM base-
band receiver are mapped onto all topologies for realistic comparisons.

3. Commonly available commercial CAD tools are used to implement tiled CMPs for
all proposed topologies. All seven topologies including the hexagonal and house-
shaped processor tiles are physically implemented in 65 nm CMOS using standard
cells and Manhattan-style wires without full-custom layout. The final layouts are all

DRC and LVS clean.

The remainder of this chapter is organized as follows. Section 5.2 reviews related work.
Section 5.3 describes and evaluates the proposed inter-processor communication topolo-
gies. Section 5.4 presents mapping of two applications onto a 2D mesh and all proposed
topologies. Section 5.5 describes the physical design flow and the approach to implement
the non-rectangular processor tiles. Section 5.6 presents the chip implementation results

and section 5.7 concludes this chapter.

5.2 Related Work

Many topologies have been used for on-chip inter-processor communication, such as
buses, meshes, tori, binary trees, octagons, hierarchical buses and custom topologies for
specific applications [94]. Many high radix topologies have been proposed to minimize hop
count at the cost of higher routing complexity and possibly higher energy consumption [97,
98]. The low complexity 2D mesh has been used by most fabricated many-core systems
including RAW [66], AsAP [11,72], Intel 80-core [99], TILE64 [47], AsAP2 [73,74] and
Intel 48-core Single-Chip Cloud Computer (SCC) [100].

Prior work has been reported using hexagonal interconnections for on-chip wire rout-
ing and off-chip multiprocessor communication. Chen et al. [101] propose Y architecture
for on-chip interconnections and show that it can increase communication throughput by

20.6% over the 2D mesh with Manhattan-style wires. Zhou et al. [102] propose hierarchi-

70



cal three-way interconnection, Y tree architecture, foragonal processors. These two
papers only theoretically propose hexagonal interconnection architectures and showcase
the throughput benefit only ion-Manhattarstyle wires are used. Shin [103] proposes

a hexagonal mesh for the interconnection of multiple processors in a system, which has
been demonstrated to have higher communication performance and robustness than other
topologies. Furthermore, Decayeux and Seme proposed a 3D hexagonal network as an
extension of 2D hexagonal networks [104]. As mentioned before, such off-chip hexago-
nal networks are used to connect computation nodes, which is different from our proposed
on-chip hexagonal-shaped processor tiling.

Becker et al. [105] developed a hexagonal Field-programmable Analog Array in a
0.13um CMOS technology. The basic building block is a hexagonal analog circuit block
which communicates with six neighbors. Extension to a many-core processor is similar in
topology, but very different in terms of impact on tile area and total application intercon-
nect. Malony studies the two-dimensional regular processor arrays which are geometri-
cally defined based on nearest-neighbor connections and space-filling properties [106]. He
theoretically proves the hexagonal array is the most efficient topology in emulating other

topologies by analyzing the geometric characteristics.

5.3 Processor Shapes and Topologies

In this section, various topologies are proposed, where several use non-rectangular pro-
cessor shapes for compact tiling. The proposed topologies avoid long global wires and in-
crease routing capability and communication bandwidth compared with the 2D mesh. The
worst-case communication distance for four basic communication patterns and the maxi-

mum interconnect wire delay for different processor tiles are used to evaluate all topologies.

71



(&) Square (b) Circle (c) Hexagon
Figure 5.1: Example tiles of constant area with random uniformly-distributed wire
endpoints.

o
A Al AC £
v e
> < 2 = -
4 EY S -
v ¥
v v

(d)
4 /\/qﬁtﬁg\
>
A A A
7 v i
N \(k(t/
(h)

(e) (f) (9)

4
v
A ]
12
=
<+ [v

v

4

4
v

v
A
e A

Figure 5.2: The (a) baseline 2D mesh (4-4 Rect) and seven gedopology/shape com-
binations: (b) 8-8 Rect, (c) 8-4 Rect, (d) 5-5 House, (e) 5-5 Rect Alt. Offset, (f) 6-6 Hex,
(g) 6-6 Rect Offset, and (h) 6-6 House Offset. (Designs are named using: the total num-
ber of interconnection links, the number of nearest-neighbor interconnection links, and the
processor’s shape.)

72



5.3.1 Processor Tile Shapes

To the best of our knowledge, all previously-fabricated VLSI processors have been of a
rectangular shape, often nearly square. As illustrated in Figure 5.1(a)(b), it stands to reason
that a circular shape would allow shorter wires for a given netlist, resulting in smaller
area and lower wire capacitance which would result in higher speeds and lower energy per
operation. A simple experiment with ideal shapes and one million randomly-placed wires
yields a 2.2% reduction in total wire length for a circular tile compared to a square tile. On
the negative side, it is clear that circles do not pack together without wasted space between
tiles. On the positive side, circles pack wgkx neighbors while rectangles obviously have
only four. It is reasonable to expect a rectangular tile to have longer wires on average
compared to a square tile.

In contrast to the circle, the hexagonal shdpespack efficiently without gaps between
tiles and it retains the 6-nearest-neighbor property. The same wiring experiment was run
for a hexagonal tile and it resulted in a 1.8% reduction in total wire length compared to the
square tile.

A reduction in total wire length yields a pure benefit in area, energy and delay for
processor tile design. The inclusion of common rectangular blocks such as memory arrays
in a processor tile increases routing congestion but is shown in Section 5.6 to be tolerable.
In addition, we demonstrate that Manhattan-style wire routing is fully compatible with

non-rectangular tile shapes.

5.3.2 The Proposed Topologies

The eight different topologies in combination with processor tile shapes are shown in
Figure 5.2. Switch fabrics are assumed to reside inside each processor tile. The well-known
2D mesh in Figure 5.2(a) is used as the baseline topology for comparison. All topologies

are named by: 1) the total number of direct interconnection links, 2) the number of nearest-

73



neighbor interconnection links, where nearest neighba@slafined as directly connected
processors that touch at the edge or the vertices. and 3) the processor’s shape. For example,
the baseline 2D mesh is namédl Rectwhere tiles are rect-shaped and connected by four
links, all of which are nearest-neighbor interconnect links.

The next logical extension of the 2D mesh is to include the four diagonal processors in
an 8-neighbor arrangement nanm@& Rectas shown in Figure 5.2(b) where each rect tile
can directly communicate with 8 neighbors. This approach has increased routing conges-
tion in the tile corners due to the four (uni-directional) links that pass through each corner
(the dashed lines in Figure 5.2(b)).

The third topology is an 8-neighbor mesBt4 Rec} as shown in Figure 5.2(c) where
the baseline 2D mesh is augmented with direct connections with processors two tiles away.
In this case, the “pass through” routes are not just in the corners, but pass through the entire
tile.

Figure 5.2(d) shows a 5 nearest-neighbor topoldgpp (House) where each tile is a
“house-shaped” pentagon. There are various house shapes and the center-to-center Eu-
clidean distances between a tile’s center and its five neighbors are not equal. However,
the center of a house-shaped tile can be chosen so that the Euclidean distances from the
center to all five vertices are equal, which yields only one type of house-shaped tile where
the rectangular shape at the bottom is square. If the square shape has an edge length of
w, the center-to-center distance for three of the five connectionsasd the other two
connections have a length ofx /(2 + v/2)/2.

Figure 5.2(e) shows an alternative 5-neighbor topoldspp (Rect Alt. Offsg@twhere
every other row of rect tiles are offset. Theb Rect Alt. Offsdtas the same interconnection
topology as th&-5 House. All processors are square-shaped with an edge lengthTtie
center-to-center Euclidean distance between two processor tiles can bevdifitdes are
aligned) or\/5/2  w (if tiles are in an offset position). This topology has the advantage of

a regular processor shape while achieving the same routing capability as the house-shaped

74



o
o

= LREL o
/

N

Figure 5.3: A spectrum of 6-neighbor topologies with offsst house-shaped tiles which
differ in the area of the triangle roof of the house shape.

tile topology.

Our sixth proposed interconnect topology is the 6-nearest-neighbor array using hexagonal-
shaped processor tiles as shown in Figure 5.2(f). The processor center-to-center Euclidean
distance is/3 * w if the length of the hexagon edgeus The hexagonal grid is commonly
used in mobile wireless networks due to its desirable feature of approximating circular
antenna radiation patterns and its optimal characteristic of six nearest neighbors. The sym-
metry and space-filling property make the hexagonal processor tile topology an attractive
design option for many-core processor tiles.

Figure 5.2(g) shows our seventh topology narel Rect Offsetvhere every row of
tiles is offset so that each tile has 6 nearest neighbors. For tiles with hesyd width
w, the center-to-center distance in the horizontal direction is clearlifor adjacent tiles
in the row above and below, the center-to-center Euclidean distarée?g4 + h2. Thus,
if we setw = \/w?/4 + h2, or h = v/3/2 x w, then all six neighbors will reside at equal
center-to-center Euclidean distances.

Figure 5.2(h) shows the eighth topology§ House Offsg@twhere every neighboring
row of house-shaped tiles are offset so that each tile has 6 neighbors. In fact, as shown
in Figure 5.3, there are a spectrum of topologies that fall into this category where the
triangle roof of the house-shaped tile can have varying area. However, there is no geomet-
rically optimal topology with six equal-Euclidean-distance neighbors. If the area of the
roof triangle is 0, it becomes tl&6 Rect Offsetopology which has the advantage of equal

center-to-center Euclidean distances for all six neighboring tiles as shown in Figure 5.2(g).

75



Table 5.1: Euclidean and Manhattan link lengths for all togas with one unit of length
equal to the square root of the area which is one for all topologies and shapes

Topology Nearest-neighbor Link Longer Link
Num. | E. Dis. | M. Dis. | Num. | E. Dis. | M. Dis.

4-4 Rect 4 1.00 1.00 0 — -
8-8 Rect 4 1.00 1.00 4 1.41 2.00
8-4 Rect 4 1.00 1.00 4 2.00 2.00
5-5 House 3 0.95 0.95 2 1.24 1.51
5-5 Rect Alt. Offset| 3 1.00 1.00 2 1.12 1.50
6-6 Hex 6(2) | 1.07 1.07 | 0@4)y — 1.47
6-6 Rect Offset 6(2) | 1.07 1.07 | 0@4)y - 1.46

" The 6-6 Hexand 6-6 Rect Offsehave six nearest-neighbor links using
Euclidean wires. However, the two topologies have two nearest-neighbor
links and four longer links using Manhattan-style wires.

Therefore, we consider only tf&6 Rect Offsetor this type of topology in the following
sections.

The center-to-center distance can be used to represent the communication link length
between two processor tiles. Table 5.1 shows the number of different types of communi-
cation links and the corresponding link length for all topologies. For comparison purpose,
the link lengths are calculated based on both Euclidean and Manhattan rule. As shown in
Table 5.1, if Euclidean rule is used, the4 Rect 6-6 Hexand6-6 Rect Offsehave only
one type of communication link due to equal center-to-center Euclidean distanc8-8he
Rect 8-4 Rect5-5 Houseand5-5 Rect Offsetopologies have two types of links due to the
unequal center-to-center Euclidean distance between processor tiles. If Manhattan rule is
used, all topologies have two types of link except4hé Rect2D mesh. Thé&-6 Hexand
6-6 Rect Offsehave two short links and four long links instead.

Due to limitations of current wafer sawing technologies, chips from round wafers
are traditionally square or rectangular. In fact, the opportunities and limitations of non-
rectangular processors on a chip are analogous to non-rectangular chips on a wafer. For
the case of a rectangular chip composed of non-rectangular processors, there are areas on

the periphery of the chip in which processors cannot be placed for the topologies shown in

76



0.35

—&— 5-5 House

0.3} —%— 5-5 Rect alt. offset] |
—6— 6-6 Hex
—8— 6-6 Rect offset
0.25F

o
N
T

0.15

o
[
T

0.05

Fraction of area unavailable for processor tiles

0%
0 5 10 15 20 25 30

Number of processors (n) on one edge of an array (n x n)

Figure 5.4: Fraction of area unavailable for processor iitled non-mesh arrayn(x n)
for type d—g in Figure 5.2: 5-5 House, 5-5 Rect Alt. Offset, 6-6 Hex and 6-6 Rect Offset,
respectively.

Figure 5.2(d), (e), (f), (g) and (h). Figure 5.4 shows the percentage of unavailable area for
the four topologies with varying processor array sizes. If the processor array size is larger
than 30 by 30, this area overhead becomes less than 2.7% of the total chip area for the
hexagonal-shaped tile array and 2.0% for the house-shaped tile array. The overhead area
for type (e) and (g) is less than 1.7% of the total chip area. In practice, these areas could be
filled with useful chip components such as decoupling capacitors, or portions of hardware

accelerators, memory modules, I/O circuits or power conversion circuits.

5.3.3 Performance Evaluation

This section analyzes the performance of the proposed seven topologies by using the
worst-case communication distance of four basic communication patterns which include

one-to-one communication (in which two processors at opposite corners of the processor

77



30

—0— 4-4 Rect
—v— 8-8 Rect
| —8— 8-4 Rect
—#— 5-5 House & Rect alt. offset
—6— 6-6 Hex & Rect offset

N
6]

N
o
T

=
o
T

Worst—-case distance (Num of procs)
=
(6] (6]

0 2 4 6 8 10 12 14
Number of processors (n) on one edge of an array (n x n)

@)

15

—&o0— 4-4 Rect
—v— 8-8 Rect
—&— 8-4 Rect
—%*— 5-5 House & Rect alt. offset
—6— 6-6 Hex & Rect offset

10

Worst—case distance (Num of procs)

0 2 4 6 8 10 12 14
Number of processors (n) on one edge of an array (n x n)

(b)

Figure 5.5: Comparisons of the worst-case communication distance across a processor
array (» x n) for different topologies where the number of input ports of each processor

is equal to the number of interconnection links for four basic communication patterns:
(a) one-to-one, one-to-all and all-to-all, and (b) all-to-one.

78



array communicate with each other), one-to-all broadcastvhiich one corner proces-

sor broadcasts data to all the other processors), all-to-one communication (in which all
processors communicate with the processor in the middle of the array) and all-to-all com-
munication (in which every processor communicates with all other processors). All real
application communication patterns can be a combination of these four communication
patterns.

The number of neighboring inter-processor communication links and the number of
input ports determine the local communication capability of a topology. The input port of a
processor refers to the communication interface including buffers and related circuits. The
number of input ports can be less than the number of neighboring interconnection links of
one processor.

As shown in Figure 5.2, depending on the number of interconnection links, the topolo-
gies require a different number of input ports to make maximal use of nearest-neighbor
interconnections. The baselide4 Rectmesh requires four input ports and the two 8-
neighbor Rect topologies require eight input ports. The house-shaped tile and hexagonal-
shaped tile topology require five ports and six ports, respectively. The increase of the
number of input ports incurs significant hardware overhead in terms of buffers and related
communication circuitry. However, the number of input ports into the local processor can
be less than the number of neighboring interconnections, in which case processors are ca-
pable of talking to all connected neighboring processors but not at the same time. The
following subsections discuss both the case with the same number of input ports as the
neighboring interconnections and the case with a limitation of two input ports for all pro-

posed topologies.

Varying number of input ports

In tiled CMPs, if processors have varying numbers of input ports, the communication

can be distributed in multiple directions. Thus, the worst-case communication distance is

79



shorter for those topologies with more input port procesaarknearest-neighbor intercon-
nections.

For one topology, the worst-case communication distance of one-to-one, one-to-all and
all-to-all communications are the same. As for different topologies, Figure 5.5(a) shows
that the4-4 Rect 5-5 Houseand 5-5 Rect Alt. Offsehave similar worst-case commu-
nication distances which are approximately linearly proportional to the size of the array.
The worst-case communication distances ofgt&Hexand6-6 Rect Offsetiopologies are
shorter than those of the4 Rect5-5 Houseand5-5 Rect Alt. Offsetiopologies. The two
8-neighbor Rect meshes have the shortest worst-case communication distances because of
more interconnection links.

Figure 5.5(b) shows the all-to-one worst-case communication distances for all seven
topologies. The performance trends are similar to the one-to-one, one-to-all and all-to-all
communication cases. THe6 Hexand6-6 Rect Offsetopologies show very close per-
formance to the two 8-neighbor Rect meshes which have two more sets of communication

links.

Two input ports

By limiting the number of input ports of the local processor to two, all topologies have
the same one-to-one and one-to-all performance as shown in Figure 5.5(a) where varying
numbers of ports are used. This means for one-to-one and one-to-all communication, two
input ports are enough for all seven topologies and an increase of input ports does not
improve the results. For all-to-one and all-to-all communication patterns, the topologies
with more links have the same worst-case communication distance as the topologies with
fewer links if one processor has only two input ports as shown in Figure 5.6. This shows
that a reduction of input ports decreases the performance of the topologies with more links
in the case of all-to-one and all-to-all communications.

For simple single-issue processors that normally consume no more than two operands

80



30

—©— All-to-one for all seven topologies i
—+8— All-to—all for all seven topologies

N
(6]

N
o
T

Worst—case distance (Num of procs)
[~ =
o [§)]

a1
T

0 2 4 6 8 10 12 14
Number of processors (n) on one edge of an array (n x n)

Figure 5.6: Comparisons of the worst-case communicatioramigt across a processor
array (v x n) with a limitation of two input ports for each processor.

per clock cycle, adding more than two input ports may not have the benefits as shown in the
worst-case analyses with varying number of input ports. Of course there may be benefits
if the processor uses complex instruction styles which process more than two operands per
cycle. For many cases, it is attractive to use two input ports for all proposed topologies,
in which case the hardware overhead is minimized without affecting the communication
performance too much. This limitation is justified by mapping two complex applications

onto the proposed topologies in Section 5.4.

5.3.4 Interconnect Wire Delay

All discussed topologies permit an easy tiling of processors for dense on-chip networks
without very long global wires. The two topologies in Figure 5.2(b) and Figure 5.2(c)
have a maximum global interconnect link length no more than the dimension of one pro-
cessor tile. There are no global wires for 2D mesh, house-shaped and hexagonal-shaped

tile topologies. The actual delay of local interconnect wires, which is proportional to the

81



4x  16x Rw/5 Rw/5 Rw/5 Rw/5 Rw/5

N1 '\/\/\ '\M NNV MN
[ [: Ii. L \ J_\. J_\. J_\. 1
209/10I 245 I 2CQ/SI 209/5I 209/10I ICL
R./5 c/5/- R4S C kg5 C9 ks C‘%W/s C°/y_
A T A MW MWA—<—~8
ZCg/SJJf\-ZCg/SI 2Cg/5I 2Cg/5I \ CMOI ;I:CL

4x 16x cc/1oR 5 cc% /5 Cel5 R 5 ClS/g 5 Col5 7R /5 Col10/
N2 MN AN NN N
o> | ;“ T 1T L L C

260  2C/5T 2CJ5T 2C/5T 2cg/5I 209/10I

-

Figure 5.7: Thdl5 lumped RC circuit model used to simulate the wire delay for different
shaped processor tiles considering crosstalk effects between the main wire transmitting
signal from A to B and two adjacent wires N1 and N&,,, C, and C, are metal wire
resistances, ground capacitances and coupling capacitances from adjacent intra-layer wires,
respectively.

Table 5.2: Interconnect link wire length, delay and length and delay skew for square-
shaped, house-shaped and hexagonal-shaped processor tiles with different sizes at 32 nm
CMOS technology

Proc. tile area = 0.04 mfm| Proc. tile area = 4.0 mf| Proc. tile area = 36 mf
Square| House| Hex | Square| House| Hex | Square| House| Hex

Max. link
length (mm) 0.30 0.35 0.32 3.00 3.53 3.16 9.00 10.59 9.48

Max. link
length diff. (mm)| 0.20 0.26 0.29 2.00 2.58 2.93 6.00 7.74 8.79

Max. link

wire delay (ps) 28.6 34.7 31.1 338.0 | 391.7 | 347.6 | 1014.0| 1186.0| 1060.0
Max. link wire
delay skew (ps) | 22.9 24.9 27.5 217.8 | 282.6 | 324.8| 676.0 | 866.6 | 983.2

size of processor tiles, depends on the physical positiomeftvitch fabrics inside the
local processor tile. Table 5.2 shows estimates of the maximum interconnect link lengths
and maximum link length differences for the square-shaped, house-shaped and hexagonal-
shaped processor tiles based on three nominal processor tile sizes 0°04 mm¥ and
36 mnt which approximate the scaled area of one processor tile in 32 nm CMOS for
AsAP2 [73,74], Tl C64x DSP [76] and the Intel Sandy Bridge processor [107], respec-
tively. All wire lengths are calculated based on the Manhattan-style wiring.

Figure 5.7 shows th&l5 lumped RC model used to simulate wire delay while consid-
ering effects of crosstalk noise. As a common case, the wires are assumed to be in an inter-

mediate layer which incurs both ground and coupling capacitances depending on the metal

82



wire dimensions (space, width, thickness, length) and-iatger dielectric [108]. The sim-
ulation is based on HSPICE utilizing the device model from 32 nm CMOS Predictable
Technology Model (PTM) [109]. The wire dimensions used for simulation are derived
from International Technology Roadmap for Semiconductors (ITRS) [110] reports. The
metal resistance, ground and coupling capacitance valggs(, andC. in Figure 5.7)

are calculated by PTM online interconnect tool. The center victim wire delay is measured
from input A to output B including the buffer composed of two FO4 inverters. Based on
the single buffered wire delay data (wire length from 0.1 frim 2 mn? with 0.1 mn?
interval), long wires can be optimally segmented, which provides a more realistic delay
estimation. As shown in Table 5.2, the delay data are based on the worst-case scenario
where the signal on the center victim wire moves in the opposite direction of its aggressor
neighbors N1 and N2.

Table 5.2 shows the interconnect wire delay and delay skew for square-shaped, house-
shaped and hexagonal-shaped processor tiles with the three sizes. For the 8. Sdhatim
processor tile running at a 2 GHz clock frequency, the maximum interconnect wire delay for
all processor shapes ranges from 5.7% to 6.9% of one clock cycle. For the dneaiium
sized processor tile running at a 2 GHz clock frequency, the maximum interconnect wire
delay for all three shapes ranges from 67% to 78% of one clock cycle. For the 36 mm
large processor tile running at 4 GHz, the maximum interconnect wire delay takes 4.0—
4.7 clock cycles for the three shapes. The interconnect wires for both the medium sized
and large processor tiles may be pipelined to increase throughput [111]. Compared with
square-shaped tile for all sizes, the maximum wire delay of the house-shaped tile increases
by 15.9% to 21.3% and the maximum wire delay of hexagonal-shaped tile increases by
2.8% to 8.7%.

For a fully-synchronous system, special design effort is required to balance the inter-
connect wire delay skew to increase the maximum achievable frequency. As shown in

Table 5.2, the actual max link wire delay skew is smaller than the maximum link wire

83



buffer —

IR
{ure e

¥
South

Figure 5.8: A 2D mesh processor array using five-port routdrergrone port connects to
the local processor core.

A A

Proc. tile A [ Proc. tile B 1

Figure 5.9: A diagram of two processor tiles in #hd Rectmesh processor array with four
interconnection links and two input ports per tile.

delay. For the 0.04 mfsmall processor tile and the 4 Mimedium sized processor tile
running at a 2 GHz clock frequency, the maximum interconnect wire delay skew for all pro-
cessor shapes takes around 5% and 55% of one clock cycle, respectively. For thé 36 mm
processor tile running at 4 GHz, the maximum interconnect wire delay skew is around 3.7
clock cycles on average. Compared with square-shaped tiles for all sizes, the maximum
wire delay skew of the house-shaped tile increases by 8.7% to 29.7% and the maximum
wire delay of hexagonal-shaped tile increases by 20.1% to 49.1%. The results suggest the
placement of switch fabrics for non-rectangular tiles has higher impact on link wire delay

skew than the square tile.

84



5.4 Application mapping

54.1 Target Interconnect Architecture

The proposed topologies can be used for dense on-chip network with either dynamic
routers or static circuit switches. Figure 5.8 shows the inter-processor communication in a
typical 2D mesh processor array using dynamic routers. As the diagram shows, processors
are connected by 5-port routers each with five buffers and one 5 by 5 crossbar. The dynamic
routers also include hardware logic to implement different routing algorithms for different
topologies.

The static circuit-switch interconnection has smaller area, lower power dissipation and
lower complexity than dynamic router interconnection. In this work, we assume processor
tiles are connected with circuit switches which are suitable for applications with steady
communication patterns. Figure 5.9 shows 4hé Rectmesh array using circuit switches
each with four nearest-neighbor interconnection links and two ports connecting to the pro-
cessor core. In this case, each processor is capable of taking two inputs from the four
directions and sending data to all four directions. The long distance communication is per-
formed by software in the intermediate processors. The circuitry diagram of other topolo-

gies is similar, which differs in the number of links among neighboring processor tiles.

5.4.2 Two Benchmark Applications

Parallel programming on the discussed many-core systems with dense on-chip networks
includes two steps: 1) partitioning the algorithms at a fine-grained level; 2) mapping the
tasks to the nodes of the processor array and connecting the nodes with available links
defined by the topology [112]. In order to compare all discussed topologies, two complete
applications including an H.264/AVC residual encoder and an 802.11a/g OFDM baseband
receiver are manually partitioned and mapped onto all topologies.

Figure 5.10 shows a 22-node task graph of an H.264/AVC residual baseline encoder

85



l

Shared Memory

Figure 5.10: Task graph of a 22-node H.264/AVC video resiénabder.

Datain
Dat'a axa IT 4x4 AC
Receive Quant. |
V4 Buffer &¥ Non-zero_| VLC  |Data out
gjaﬁto » —Fc?r\i/t:r aedl Chroma Coeff Run _T:Eat:r d Binary —»
" DC HT || _Encode A r*/ Packer
Buffer ¥ Intra Intra ¥ I J
Chroma_ || 16x16 DC || 16x16 DC Tg;ﬂgjgo— *an?vtaar g —Fc?at:r '
DC Quant Quant HT r*/
Dat Yl 7 CAVLC Level Level Dat
R aa gF;1ag —l3Scanning || Encode—» Encode "F na ard
ecelverI P1 P1 P2 orwa
Data v Zig-Zag S%':‘X;Sg Trsali?i:g I_ > Data Data
Forward|— > P2 — P2 Ones A orx/ar Forward
Chromay || Luma +a NumCoefl |
. . Dala —»— .. Data
Predict Predict €f— Trailing —»-
nnz nz | Forwardeq— e Forward
Shared Melmory
(968 KB maximum used

Figure 5.11: An H.264/AVC video residual encoder mapped oroagssor array witd-4
Rectmesh topology. The processors in gray are used for merging and forwarding data.

86



Chroma
DC Quant

ZigZag
P2

Data_in Data 4x4 AC

Receiver [© Quant

Figure 5.12: An H.264/AVC residual video encoder mapped oroagssor array witle-6
Hextopology.

composed of integer transform, quantization and context-adaptive and variable length cod-
ing (CAVLC) functions [112]. The encoder also requires a shared memory module as
shown in the task graph.

Figure 5.11 shows an example mapping of the H.264/AVC residual encoder capable of
1080p HDTV encoding at 30 fps (frames per second) on the basékhRectmesh that
uses 32 processors plus one shared memory.4¥h&ectmesh is inefficient in handling
a complex application like H.264/AVC encoding. A total of 10 processors are used for
merging and forwarding data which accounts for 31% of the total number of processors.

Figure 5.12 shows a possible 25-processor mapping on the propdsel@xtopology.

The hexagonal-shaped processors accept a maximum of two inputs from the six nearest-
neighbor processors. Compared with the design usifhgldRectmesh, seven processors
are saved, which accounts for a 22% reduction in the total number of processors.

Figure 5.13 shows a 22-node task graph of a complete 802.11a/g WLAN baseband
receiver which is computation-intensive requiring two dedicated hardware accelerators:
Viterbi decoder and FFT. The complete receiver includes necessary practical features such
as frame detection, timing synchronization, carrier frequency offset (CFO) estimation and
compensation, and channel estimation and equalization [113]. Figure 5.14 shows a map-
ping of the 802.11a/g baseband receiver (54 Mbps) on the badediriRectmesh that uses

32 processors plus the Viterbi decoder and FFT accelerators with 10 processors used for

87



Viterbi
Decoder

Figure 5.13: Task graph of a 22-node 802.11a/g WLAN basebarsivex

CFO | GUARD Data Data Data | to MAC layer
— —
COMPEN. | 'REMOV—» Forwa Forward—» Forward
f A A !
rom ACCIOFF I i
ADC { DATA | AUTO- ["For--0| Data of CHANNG ) Data _| CHANNE
DISTR. T>CORR. | G Forward | L EQUAL. | Forward®[™ L EST.
| | ?F’ | A ?’ i
ENI:’RGY_ _>FRXME corpic | Dhta Data |, PAD CPHRAE,\'I
COMP. DET. |-ANGLE | Forward | Forward | REMOV. '
| | '% | oxer A AESTL
Fc? gt:rd Tls,l\*lr'\\: © |oFogEst. MAgE;Na— _BCRO%ABL"_SCDIEA_M‘"SUBCARR'
v O “[scqu [ reorp.
v v POST v DE- DE- J v
Data _{, Data L, mviNG DE- —DmTERLEA >
Forward | Forward SYN. |INTERLEAV] v PUNC.
: —4 FFT
VIERBI
DEC.

Figure 5.14: An 802.11a/g baseband receiver mapped on tbegsor array with baseline
4-4 Rectmesh topology.

merging and forwarding data.
Figure 5.15 shows a mapping on the hexagonal-shaped tile architecture which requires
only 24 processors plus the Viterbi decoder and FFT accelerators—25% fewer processors

than those used in the4 Rectmesh mapping.

88



ACC. OFF GUARD
ECTOR REMOV,
COMP,

DE- Data
MAPPING Forward
DE- PRE-
BR & DL PAD
5 INTERL R&D REMOV | CHANNE
EAVE 1 . EST.
DE- SUBCARR
INTERL ~REORD' [L Data
EAVE 2 orward
VITERBI
DEC.

Figure 5.15: An 802.11a/g baseband receiver mapped on teegsar array witlt-6 Hex
topology.

CORDIC -
ANGLE

to MAC layer

from ADC

5.4.3 Application Mapping Results
Total number of used processors

All six proposed topologies (type (b)—(g) in Figure 5.2) are much more efficient than
the4-4 Rectmesh (type (a) in Figure 5.2), resulting in processor count reductions of 16%
to 22% for the H.264 encoder and 19% to 25% for the 802.11a/g baseband receiver as
shown in Figure 5.16. The results are the same folStseHouseand5-5 Rect Alt. Offset
architecture due to essentially the same topology property. Similarlg-thelexhas the
same result as th&-6 Rect Offsetrchitecture. The number of used processors of the
8-8 Rectand 8-4 Rectmeshes is smaller than tfte5 Houseand 5-5 Rect Alt. Offset
topologies because of more communication links between processors. However, the two
8-neighbor Rect meshes require a slightly larger number of processors than the two 6-
neighbor topologies which yield the largest processor number reduction (24%) compared
to the4-4 Rectmesh. This is because the communication patterns of the two applications
are mostly localized. Thus, topologies with more nearest-neighbor links yield more benefits

than topologies with fewer nearest-neighbor links.

89



T T T T T T T T T T T T
4.82..32 [ H.264 residual encoder |
sod] oo Il 802.11a receiver |
26T 26”26””27”26”'27"26""2'5 """" 25 T
25 |24 - : - 24 24
@
5 _
7
8 204
o
o
a
5 154
3
S 10
zZ
5 ]
0 T o T e e
eC eC eC NG e &
A’A?\ %,%?\ %,A@ 5 \)\0 \" 8) 6,6 eo\o
% i %
50 ©

Figure 5.16: The number of processors used for mapping twécagipns to the seven
topologies (type (a)—(g) in Figure 5.2).

Total communication link length

The total communication link length for the two applications can be calculated based
on either Euclidean or Manhattan link length as shown in Table 5.1 and the application
mapping diagrams.

Figure 5.17 shows the total communication length based on non-Manhattan-style wires.
The 8-8 Rectand8-4 Recthave an average of 3% and 9% longer communication lengths
than the4-4 Rectmesh because they use more long communication links 69helexand
6-6 Rect Offseaire the most efficient topologies, yielding the largest reduction (19%) in
average total communication link length compared to the basélth&ectmesh.

Figure 5.18 shows the total communication link length based on Manhattan-style wires.
All proposed topologies result in a slight increase of the total link length ranging from 1%
to 5% compared to the baselided Rectmesh. This small link length increase because of
Manhattan wires has little influence in application performance, area and power consump-

tion, which will be demonstrated by the following physical implementation results.

90



T T T T T T T T T T T T T
50449 J[[]H.264 residual encoder ||

45 47 45 Il 502.11a receiver

43 43
42
41 [l40 [ a0

N
o
1

38
36

w
o
]

N
o
]

The total communication length

—_
o
|

0 . :

o ch & ] ot o
ARE AV  T
3 . ?\60\ 6‘6?\

6¢

Figure 5.17: The total communication length based on nonHdtan-style wires (Eu-
clidean link length) for the two applications mapped on the seven topologies (type (a)-(g)
in Figure 5.2). The link length is estimated based on the assumption that the area of each
processor tile is equal to one square unit of the length.

E’ ' ' ' ' H.264 residual encoder
; Il 802.11a receiver |
50 - 48 T Y7 BN
% 47
= _|42 45 e 4344 43 A4 43.]
_E 41 41 41
S 40~ - : : -
=3
= N
2 30
@
C
il .
8 204
c
>
S
% 10 y
(@]
I
o
g 01— T T T
X X X (2]
== eC eC eC N
brb‘ & %‘% & %A « 5—6 \,\0
eC
59

Figure 5.18: The estimated total communication length basddanhattan-style wires for

the two applications mapped on the seven topologies (type (a)—(g) in Figure 5.2). The link
length is estimated based on the assumption that the area of each processor tile is equal to
one square unit of the length.

91



5.5 Non-rectangular Processor Tile Physical Design

This section presents the design methodology of implementing a fully functional pro-

cessor and corresponding CMPs based on the proposed seven topologies.

5.5.1 Physical Design Methodology

For performance evaluation, a small processor with configurable circuit-switch inter-
connection is used for all physical designs. The processor contains a 16-bit datapath with a
40-bit accumulator and 560-Byte instruction and 256-Byte data memories. Each processor
also contains a configurable clock oscillator and two 128-Byte FIFOs for data buffering
and synchronization between two processors [73, 74]. Each inter-processor link is com-
posed of 19 signals including a clock, 16-bit data and 2 flow-control signals [93]. This
processor is tailored for all topologies under test with a different number of neighboring
interconnections ranging from 4 to 8. The internal switch fabrics are changed accordingly.
The hardware overhead is minimal for 5-neighbor, 6-neighbor and 8-neighbor processors
with only 0.5%, 0.7% and 2.0% hardware overhead based on synthesis results. The two
8-neighbor topologies add more complexity because processors communicate with two
far-away processors via dedicated links as shown in Figure 5.2. In order to make CMP
integration simpler, four additional sets of pins are inserted into the processor netlist after
synthesis and are directly connected with bypass wires. This adds routing congestion in
the corner for the topology shown in Figure 5.2(b) and across the processor tile for the
topology in Figure 5.2(c).

All processors are implemented with a fully automated design flow spanning from RTL
description to layout-level verification with STMicroelectronics 65nm CMOS technology.
The processors are synthesized from Verilog with Synopsys Design Compiler and laid out
with an automatic timing-driven physical design flow with Cadence SoC Encounter. Tim-

ing is optimized after each step of the physical design flow: floorplan, power planning, cell

92



Hexagonal
Processor Core

B Lt

L o A Ao Ao 4

Figure 5.19: DRC clean and LVS clean layout of a hexagonalgasar and a 6 by 6
multiprocessor array.

placement, clock tree insertion and detailed routing. A configurable oscillator (OSC) is

manually designed from standard cells and laid out separately.

5.5.2 Non-rectangular Processor Tile and CMP Design

The house-shaped tile and hexagonal-shaped tile bring challenges for physical imple-
mentation. The first challenge to design the hexagonal processor is how to create a hexag-
onal shape at the floorplan stage. Rectangular placement and routing blockage in SoC
Encounter are used to create approximate triangle corner blockages with each rectangular
blockage differing by one unit in width and height. All rectangular blockages are piled
together to create an approximate triangle in the four corners of the rectangular floorplan.

A proper placement of pin positions can help to achieve efficient global routing and easy
CMP integration. At the floorplan stage, four sets of pins are put along the diagonal edge
of the corner and two set of pins are placed in the horizontal top and bottom edge. Since all

macroblocks have rectangular shapes (OSC, IMEM, DMEM and two FIFOSs), this presents

93



(b)

@)

(e) (f)
Figure 5.20: The final DRC and LVS clean processor tile laycotsesponding to topolo-
gies (a) 4-4 Rect, (b) 8-8 Rect, (c) 8-4 Rect, (d) 5-5 House, (e) 5-5 Rect Alt. Offset, and

(f) 6-6 Rect Offset. The hexagonal tilé-6 He¥ shown in Figure 5.19 is not included. All
tiles have cell utilizations from 81% to 83%.

94



a challenge to place the macroblocks. In this design, theaoblouks are placed along the
edge and the oscillator and IMEM are placed in the left and right corners, respectively as
shown in Figure 5.19.

Metal 6 and metal 7 are used to distribute power over the chip and the automatically-
created power stripes can stop at the created triangle edge in the corner. The power pins are
created on the top and bottom horizontal edges. When integrating the hexagonal processor
together, the power nets along the triangle edge can be connected automatically or manually
by simple abutment.

Once a hexagonal processor tile is laid out, a script is used to generate the RTL files
of the multiprocessor. The CMP array can be synthesized with empty processor tiles in-
side. Another script places the hexagonal tiles with the blockage area overlap with nearest-
neighbor processors along the triangle edge of each hexagonal tile. SoC Encounter can
connect all pins automatically although there are overlaps between LEF (library exchange
format) files. The final GDSII files are read into Cadence icfb for design rule check (DRC).

Figure 5.19 shows the final layout of a hexagonal-shaped processor tile and a 6 by 6

hexagonal-tiled multiprocessor array.

5.6 Chip Implementation Results

All discussed topologies enable an easy integration of processors by abutment without
global wires in the physical design phase. For all topologies, there is no long-distance
inter-communication link across more than two processors and processors are pipelined in
a way that the critical path is not in the interconnection links. Therefore, the maximum
achievable frequency of an array is the same as an individual core, which is one of the key

advantages of our proposed dense on-chip networks.

95



100000

H
1
8
8

80000

“E 60000

40000

Area (u

Area Increment (%)
> A N W s oo
Max frequency (MHz)
Py
8

20000 200

Frequency difference (%)

(c) Max clock freq. (d) Incremental clock
freq.

40

N
S

@
8
o

&
8

0
S

Clock skew (ps)
@
8

N

S
A
S

-
5

Energy increment (%)

Energy per operation (pJ)
Clock skew increment (%)

&
3

o

(e) Energy per operatiortf) Incremental energy  (g) Clock skew (h) Incremental clock
per operation skew

Figure 5.21: Comparison of seven optimized processor tiles showing (a) absolute area; (b)
incremental area relative to te4 Recttile; (c) absolute maximum clock frequency; (d)
incremental clock frequency relative to thel Recttile; (e) absolute energy per operation;

(f) incremental energy per operation relative to #héd Recttile; (g) absolute clock skew;

(h) incremental clock skew relative to tHe4 Recttile. The processor types 1 to 7 corre-
spond to the topologies shown in Figure 5.2 (a) to (g) whichdafeRect 8-8 Rect 8-4

Rect 5-5 House -5 Rect Alt. Offse-6 Hexand6-6 Rect Offset

96



5.6.1 Processor Tile Implementation Results

Seven tile types are implemented from RTL to GDSII layout to get reliable estimates of
how the topologies affect the system performance in nanoscale chip design. All floorplans
use the same power distribution design and the 1/0O pins and macroblocks are placed along
edges reasonably depending on the topology.

In standard-cell design, the cell utilization ratio has a strong impact on the implemen-
tation result. A higher cell utilization can both save area and increase system performance
if the design is routable. In order to get a minimum chip area for all tiles, we start with
a relatively large tile area which results in a small cell utilization ratio. Then the tiles are
repeatedly laid out while maintaining the aspect ratio and reducing the area by 5% in each
iteration with minor pin and macroblock position adjustments in the floorplaning phase.
Once a minimum area within 5% has been reached, the area change is reduced to 2.5%.
The layout tool is pushed until it is not able to generate an error-free GDSII layout for all
tiles. Figure 5.20 shows the final layouts of the other six processor tiles besides the hexag-
onal tile shown in Figure 5.19. Our methodology results in high cell utilizations for all tiles
ranging from 81% to 83%.

Figure 5.21(a) shows the absolute area of the seven processors and Figure 5.21 (b)
shows the area increments compared to the basélh&ecttile which has the smallest
area and the highest cell utilization of 83%. The hardware overhead of all processor tiles
is very small. For the other six designs, the relative area increment is proportional to the
number of nearest-neighbor connections. Compared with the badefinRecttile, an
area increase of 1.3%, 2.9% and 5.9% are required for the 5-neighbor, 6-neighbor and
8-neighbor tile designs, respectively. All six designs have a cell utilization of 81%.

Figure 5.21(c) depicts the maximum clock frequency of all seven designs and Fig-
ure 5.21 (d) shows the frequency increment relative to the baseknRectile which can
operate at a maximum of 1065 MHz at 1.3 V. Due to an increase of area, the two 8-neighbor

mesh tiles can operate at 1.9% and 2.9% higher frequencys-Bieect Alt. Offseand6-6

97



Hextiles have noticeably higher frequencies than other designs which achieve a frequency
increase of 6.1% and 5.8%, respectively. Bi& Housdile has the same processor logic
design and area as the5 Rect Alt. Offsetile, while it has a frequency increment of only
1.5%. This is probably because the required aspect ratio for the house-shaped tile is not a
good fit for this particular physical implementation. This can also explain whg-#B&ect
Offsettile has the lowest frequency, a reduction of 3.0% in maximum frequency compared
to the baselind-4 Recttile.

Figure 5.21(e) shows the energy per operation and Figure 5.21 (f) shows the incremental
energy per operation compared to #hel Recttile. The energy is estimated based on a
20% activity factor for all internal nodes. All six proposed tiles have a higher energy per
operation ranging from 3.7% to 8.4% because of the extra circuits for interconnections.
Like the area increment, the average energy increments are proportional to the number of
neighboring interconnections as shown in Figure 5.21 (f).

Figure 5.21(g) shows the worst-case clock skew for all seven processor tiles and Fig-
ure 5.21(h) shows the clock skew increments compared td-th&®ecttile. The8-8 Rect
tile shows a 29% higher clock skew probably because routing congestion in the corners
affects the clock tree synthesis. The more circle-like shape helps the layout tool to generate
a clock tree with smaller clock skew. As expected, the house-shaped tile and hexagonal-
shaped tile have the lowest clock skew with a reduction of 54% compared to the baseline

4-4 Rectile.

5.6.2 Application Area

Application area depends solely on the number of used processors and the processor
tile sizes if processors are compactly tiled. Figure 5.22 shows the normalized application
area of two benchmark applications for all seven topologies. ComparediwiitRect the
six proposed topologies reduce application area by 14% to 22%. Corresponding to the

largest reduction of the number of used process6 Hexand6-6 Rect Offseachieves

98



I 44 Rect [ 8-8 Rect [l 8-4 Rect [l 5-5 House
I 5-5 Rect Alt. Offset I 6-6 Hex [l 6-6 Rect Offset

1.0+

Ao '\b‘olo elo glo S
NN ’,\% |°‘ AD 16

TSRPLL

o
oo
1

o
(o))
1

o
EaN
1

o
N
!

Normalized Application Area

o
o
|

H.264 residual encoder 802.11a receiver

@)

I 44 Rect [ 8-8 Rect |l 8-4 Rect [l 5-5 House
I 5-5 Rect Alt. Offset I 6-6 Hex [l 6-6 Rect Offset
. . . , . : .

1.0 g e

0.8+

o
N
I

Normalized Application Power

0.0
H.264 residual encoder 802.11a receiver

(b)

Figure 5.22: The final mapping results of the H.264 residual encoder capable of HD 1080p
encoding at 30 fps and 802.11a/g baseband receiver in 54 Non-rectangular Processor Tiles
Design and CMP IntegrationMbps mode (a) normalized application area, and (b) normal-
ized power consumption.

99



the largest application area savings, a 22% reduction cadparthe4-4 Rect

5.6.3 Application Power

For applications mapped to the many-core processor array, the average power can be

estimated by:
PTotal = Z PCore,i + Z PComm,i + Pother (51)

whereFPe,e; and Poomm i represent the power consumption of processor core and commu-
nication circuits of the'* processorP,,,., is the average power of other chip components
such as memory modules or accelerators. The power consumption of processor core can

be estimated as:

PCore,i = ;- PCoreActive + (1 - ai) . PCoreStall (52)

whereq; is the processor activity factoFc e active @aNA Pooresian @re the average proces-

sor power consumption while the processor core is 100% actively executing instructions
and stalling (executing no-ops). Simulation results show Haat. running = 2 * Pcorestal

for all topologies. The two applications are simulated based od-#hdRecttopology to
collect the computational processor activity factors and their output link activity factors.
Due to a minimal workload change on computational processors across different topolo-
gies, the computational processor activity factors of all topologies are almost the same.
Simulation results show that the average computational processor activity factors are 58%
for H.264/AVC residual encoder and 49% for 802.11a/g baseband receiver, respectively.
The activity factors of routing processors are estimated based on the number of input links
and the corresponding link activity factors. The routing processor activity factors are 9.0%

and 18.2% for H.264/AVC residual encoder and 802.11a/g baseband receiver, respectively.

100



The communication power of processman be estimated as follows:

Poommi = Z (0ij - PoommActive,L; + PCommIdie,L;) (5.3)
j

whered;; is the communication active percentage of ljnk
PoommActive,r.; aNd Poommirale,r; are the average power consumed by a link with a length
L while the link is 100% active and idle. The communication link power is estimated
based on simulation which is in a range of 5% to 10% of the processor power consumption.
The link idle power (mainly leakage power) is nearly zero due to the simplicity of the
communication circuits.

The voltage and frequency scaling are considered for more accurate power estimation.
In order to meet the throughput requirement for the two mapped applications, processors
need to run at 959 MHz at a supply voltage of 1.15 V for H.264 residual encoder and
594 MHz at a supply voltage of 0.92 V for 802.11a/g baseband receiver. All processors run
at the same clock frequency and supply voltages.

Based on the above equations as well as the processor power consumption numbers,
application mapping diagrams, the required clock frequencies and supply voltages for pro-
cessors, Figure 5.22(b) shows the normalized average power consumption of the H.264
residual encoder (encoding 1080p video at 30 fps) and the 802.11a/g baseband receiver (54
Mbps) for all seven topologies.

Compared tal-4 Rectthe six proposed topologies reduce application power by 9% to
17%. The6-6 Hexachieves the largest average application power savings, a 17% reduc-
tion compared tat-4 Rect The5-5 Rect Alt Offset is the second most power-efficient
topology, yielding 15% average power consumption compared4drect Although the
6-6 Rect Offselhas essentially the same topology propertg-#&Hex, it reduces only 11%

application power compared ¥4 Rect

101



5.7 Conclusion

This chapter presents seven low area overhead and low design complexity topologies
other than the commonly-used 2D mesh for dense on-chip networks. The proposed topolo-
gies include two 8-neighbor meshes, two 5-nearest-neighbor and three 6-nearest-neighbor
topologies—three of which use a novel house-shaped and hexagonal-shaped tile. Two com-
plete applications are mapped onto all topologies for realistic comparisons. Commonly
available commercial CAD tools are used to implement tiled CMPs for all proposed topolo-
gies including the two non-rectangular processor tiles. The application mapping and chip
implementation results demonstrate the effectiveness of the inter-processor interconnect
of all proposed topologies. Compared with 2D mesh, the hexagonal-shaped 6-nearest-
neighbor topology reduces 22% application area and 17% average power consumption
with a 2.9% area increase per processor tile. The rectangular-shaped 6-nearest-neighbor
topology provides the same interconnect architecture as the hexagonal-shaped tile. De-
spite being less power-efficient, its simpler physical design makes it an attractive design

alternative for many-core dense on-chip networks.

102



Chapter 6

Efficient Distributed On-Chip Shared

Memory for Video Applications

The memory wall problem has long existed due to the fact that the bandwidth and
latency of main memory have not kept pace with CPU performance [114,115]. This speed
disparity has widened significantly for many-core systems which have limited memory
pins and hundreds or even thousands of memory-hungry cores. The primary solution to
the memory gap has been the implementation of multi-level memory cache hierarchies.
However, the cache consistency and coherency problems emerge for many-core systems,
which require significant hardware or software overhead to enable data sharing between
multiple processors.

For multimedia applications, typically the workload has regular memory access patterns
and small memory requirements, which makes alternative architectures attractive. The goal
of this research is to explore the design of a distributed shared on-chip memory system
for fine-grained many-core architecture where each processor operates independently and

asynchronously.

103



Table 6.1: An estimate of memory requirements for DSP andovadgorithms

Applications Memory Size (Bytes)
64-point FFT 256
1024-point FFT 4096

8x8 DCT 64

Motion Estimation (48 x 48 search range) 2304

16x16 Intra Prediction 416

1080p CAVLC 1684

1080p deblocking filter 456
Adaptive Loop Filter (HEVC) 1562
Sample Adaptive Offset (HEVC) 640

6.1 Background

6.1.1 Video Application Memory Requirements

The memory requirements of DSP and multimedia algorithms depend on the coding
approach and the amount of parallelism exploited. A theoretical lower bound of data mem-
ory is the minimum memory size required by an algorithm to work efficiently without data
swapping. For most algorithms, this lower bound can be easily determined. For example,
a double-buffered 1024-point complex FFT requires approximately 4096 words of mem-
ory storage [116]. Table 6.1 lists an estimate of memory requirements of several DSP and
video algorithms including two filter algorithms for the next generation high efficiency
video coding standard (HEVC). The estimation is based on either C implementations such
as Motion Estimation, Deblock Filter and the two HEVC filter algorithms, or assembly im-
plementations on the current ASAP system such as FFT, 8x8 DCT, 16x16 Intra Prediction
and 1080p CAVLC. The memory requirements of these tasks range from several hundred
bytes to several KBs. Some of the algorithms require additional line buffer for system-level
integration such as deblock filter, adaptive loop filter and sample adaptive offset. The line

buffer sizes are in the range of several KBs to a dozen KBs.

104



6.1.2 Current AsAP Memory System
M otivation of Small Memory Processors

Modern processors typically spend a significant percentage of die area for memories
which might occupy over half of the chip area [117]. Large memories reduce the area avail-
able for computation units, consume significant power, and require longer memory access
latencies. Based on the observation of small memory requirement of DSP and multimedia
tasks, the first generation ASAP processor uses 26% area for memories per core with 64-
word 32-bit instruction and 128-word 16-bit data memory [117]. The second generation
of ASAP chip spends 18% die area on memories per core with 128-word 35-bit instruction
memory and 128-word 16-bit data memory [18]. In order to support applications requiring
large memories, the current ASAP system also includes three 16-KB on-chip shared mem-
ories supporting connections with up to four programmable processors, and each contains
a single-port SRAM that can range up to 64 KWords or 128 KB [118]. The shared memory
can reach a peak throughput of one read or write per cycle. In addition, each port supports
least-recently-serviced priority arbitration during times of simultaneous access by multiple
processors. In order to integrate the memories into the GALS array, each port contains an

input and output FIFO, and the block contains a local clock oscillator.

Memory Limitations for Mapping Video Applications

The current ASAP memory system is efficient for mapping: 1) DSP and multimedia
kernels, and 2) applications with high task-level parallelism and small local memory re-
guirement. However, there exist some limitations: 1) there is no capacity hierarchy and a
large capacity gap between the local 128-word data memory and 16-KB shared memory, 2)
the latency to access the large shared memory is high due to the cost of synchronization FI-
FOs, 3) the large shared memory is accessible only from processors that are adjacent to the

memory, which results in a waste of top or bottom processors used as memory controllers,

105



B Memory
. Control

B Computation
" Routing

:.i...!.!+!.|...!. +=1=+=I. !.|.!.i..

clock
e
data
valid
—
request

I B
"""""!'i'!'i'!'i'!"'!"*-'i

Figure 6.1: A full H.264 baseline encoder mapped to ASAP ptaif[119].

and 4) the area efficiency of the shared memory is low with only 37% area spent on SRAM
itself.

The current memory system is not efficient in handling video applications requiring
larger local memories due to data dependencies. We have mapped a full H.264/AVC en-
coder to the second generation AsAP system as shown in Figure 6.1. Three memory in-
tensive tasks in the H.264 encoding are the current/reference frame management, motion
vector management and non-zero coefficient management in entropy encoding. They arise
from the fact that the encoding is based not only on the current macro-block but also on
previously encoded macro-blocks. The encoder uses 115 AsAP processors, two shared
memories and the motion estimation accelerator [120]. A total of 33 processors are used
solely for storing temporary data, which incurs high area and power overhead.

In order to alleviate the memory system limitation, we have proposed a bufferless

shared memory modules to bridge the gap between the large buffered shared memory mod-

106



Core Core
Local “ Local
\/ Mem \_’ Mem
External External
Mem _ Mem
\__ \/
Type (a) Type (b)
Core s Core
/—> Local Local
Mem Mem
&’ External '\/ E)I(lerr:al
Mem
N—| \A
Type (c) Type (d)

Figure 6.2: The four basic data memory organizations: (@g)siaddress space, (b) separate
address space, (c) cache, and (d) software-managed memory.

ules and small local memory. The novel source synchronous bufferless shared memory can
enable safe memory sharing across different clock domains with low access latency and

high throughput.

6.2 Shared Memory Primary Architecture

There are a variety of design options for adding a larger amount of data memory to a
GALS many-core architecture like ASAP. This section first discusses the available primary
architectures which determine the relationship between processor’s local memory and on-

chip shared memory and the programmer’s view of the shared memory system.

6.2.1 Single Processor’s View

Figure 6.2 shows four basic data memory organizations from the viewpoint of one pro-
cessor. These organizations differ in the relationship between local memories (LM) and

on-chip external memories (EM). The processor in type (a) has a single address space for

107



Proc0 [¢«—> Proc0 [¢«—>
- ) . Arbitration & Single-
. Multi-port . Permutation [«<—>»{  port
. MemO ° Network MemO
ProcN [«—» ProcN [€«—>
(a) (b)
Single-
ProcO [«—> «>»| port
MemO
. Arbitration & -
. Permutation .
* Network hd
Single-
ProcN [«—> <> port
MemM

(c)

Figure 6.3: Three basic organizations of on-chip shared mgrsystems with (a) one
multi-port memory, (b) one single-port memory and (c) multiple single-port memories.

LM and EM. EM can be considered as an extension of the memory space to the LM. Type
(b) has separate address spaces for LM and EM. The two memories independently interact
with the processor core. Type (c) is a traditional cache architecture where LM contains a
subset of data in the EM. Thus, there are duplicate data in the memory system. In type (d)
organization, LM and EM have separate address space. However, processors only operate
on data from LM and software manages the movement of data from EM to LM. Type (d) is
like a software-management cache without duplicate data in the system.

Type (d) also has the merit that the design of the shared memory module has very
little impact on processing elements. The shared memories in previous generation AsAP
use type (d) organization which is efficient for handling streaming applications like video
encoding. This work continues to use this organization for the proposed bufferless shared

memory module.

108



Mem
P >»
<> Mem ~ | Logic
ProcO [« [ vem Network _
Vector <«>»| Mem <> -
Proc. | Mffm Crossbar Logic v v v
nterface : Proc . Logic Logic Logic
. roct 1€ hd Mem Mem |° ° °[ Mem
<« Mem
<»| Mem » Togic
(a) IRAM (b) Smart Memory (c) Processor-In-Memory

Figure 6.4: Three related on-chip memory systems: (a) igeit RAM (IRAM) [121],
(b) Stanford Smart Memory [122], and (c) Processor-in-Memory (PIM) architecture such
as FlexRAM [123] and the distributed PIM for motion estimation [124]

6.2.2 Sharing Among Multiple Processors

Depending on the memory organizations, Figure 6.3 shows three types of shared mem-
ory architecture. Type (a) allows processors to access the memory simultaneously through
independent memory ports. Processors in type (b) share a single-port memory through an
arbitration and permutation network. Processors in type (c) share a group of single-port
memories through an arbitration and permutation network. Multi-port memories are ex-
pensive in terms of area compared with single-port memories. The previous generation

AsAP uses type (b) architecture where four processors share one single-port memory.

6.2.3 Related and Proposed Memory Architecture

Figure 6.4 shows three related on-chip memory systems. Figure 6.4(a) shows the Intel-
ligent RAM (IRAM) architecture which integrates a vector processor with wide datapath
and multiple DRAMSs onto a single die [121]. The IRAM has one memory address space
and memories are not shared among processors.

Figure 6.4(b) shows the Stanford Smart Memory system which is a modular reconfig-
urable architecture targeting at reconfigurable computing applications [122, 125]. Smart

Memories are composed of SRAM cells and configurable fabrics, which allows on-chip

109



< R > Arbitration & Single-
ProcO [«—> . Permutation j¢—» port
«—»] Network MemO
. Inter- .
* connection i
* Network |e— :
| Abiions | [Singe
ProcN [«—> . «—> port
< > Network MemM

Figure 6.5: The proposed shared on-chip memory system alfpmiultiple processors to
access multiple single-port memories via an interconnection network and an arbitration and
permutation network.

SRAM resources to be configured as caches, buffers, or scratch-pad memories. Smart
Memories can be configured to have a unified address space for both processors or separate
address spaces for each processor. The flexibility of the Smart Memories system results
in a 32% area overhead, and 23% power overhead for a 16-KB SRAM capacity [126] at
0.18-um CMOS.

Figure 6.4(c) shows the processor-in-memory (PIM) architecture where hardware logic
and memories are tightly integrated into a single tile which communicates with each other
through an on-chip network. There is no direct memory module sharing and each proces-
sor utilizes separate memory address spaces. Examples of processor-in-memory architec-
ture are the FlexRAM [123] where the hardware logic is a general-purpose processor, and
the distributed PIM for motion estimation where the hardware logic is motion estimation
ALUs [124].

Figure 6.5 shows the proposed on-chip memory architecture where multiple processors
are capable of accessing multiple single-port memories via the interconnection network.
Each single-port memory supports a small number of input requests with the help of the
arbitration and permutation network. Each memory module may have different address
space for one processor or they can be configured to share a unified address space for one

processaotr.

110



Table 6.2: Area, access time and power consumption of vasmesl SRAMs at 65 nm
CMOS technology and 1.1 V supply voltage

Sizes| Area | % of AsAP | Access Time| Read Dynamic | Leakage
(KB) | (mm?) | Core Area (ns) Power (mW) (mw)
1 0.015 9.0% 0.439 13.1 0.8
2 0.022 12.8% 0.479 11.0 15
4 0.037 21.9% 0.515 17.2 3.0
8 0.088 51.9% 0.545 20.4 5.9
16 0.147 86.4% 0.617 25.5 11.4
32 0.280 164.4% 0.702 40.7 20.8

6.3 Shared Memory Physical Parameters

The physical design parameters, such as memory capacity and density, ports and phys-

ical distribution, affect how the memory is integrated into a processor array.

6.3.1 Capacity

The capacity is the size of each single-port SRAM within a memory module. Table 6.2
lists the statistics of a single read/write port SRAM (area, access time and power consump-
tion) of various-sized SRAMs at 65 nm CMOS technology and 1.1 V supply voltages. The
data is estimated by CACTI memory model tool [127].

The area scales closely with the size of the SRAMs and the area of an 8 KB single-port
SRAM is about half size of an AsAP processor core. As the SRAM capacity increases, the
access delay and dynamic power per read operation also increases. The 8 KB single-port
SRAM runs 24.1% slower and consumes 56% more power than the 1 KB SRAM. The
leakage power also scales closely with the size of the SRAM. The 8 KB single-port SRAM
consumes 6.4 times more leakage power than the 1 KB SRAM. The SRAM statistics sug-
gest that a moderate size of shared memory module with moderate power and access time
is suitable for the video applications which require up to several KB memories per task as

shown in Table 6.1.

111



M M
R g PlPlP|P|Mm
PlP|P|P M M PlPlP|P|P]|P
plelele mep|lrP|P|P
PlP|P|P PIm|P|P|M]|P
PlP|P|P PIP|P|P|M
PIPIP|P M M P|lP|P|P|P|P
M M PP [P P M| P P P P
(a) (b) (c) (d)

Figure 6.6: Various topologies for distribution of memoriean ASAP array: (a) memories

at the top and bottom of the array, (b) memories at the left and right edge of the array, (c)
processor tiles are replaced by memory tiles, and (d) memories at the left and right empty
space of an array witB-6 Rect Offsetopology.

6.3.2 Density

The density of the memory modules refers to the number of shared memory modules
integrated into the AsAP system of a particular size. This parameter depends on available
die area for memory, memory capacity and application requirements. As an example, the
previous generation AsAP processor spends 18% area on local memories. A 16 KB shared
memory module is twice the size of one AsAP processor. If the budget of the die area
for memory is 25% of the total chip area, the 164-core system can integrate around eight
16 KB memory modules. With more memory modules, application data can be potentially

partitioned among multiple memory modules to expose more parallelism.

6.3.3 Distribution

The distribution of memory modules within the array can take many forms and has a
strong impact on application mapping. The memory modules can be placed at the four
edges of the 2D mesh processor array as shown in Figure 6.6(a)(b). The processor tiles can
be replaced by memory tiles as shown in Figure 6.6(c) where nearest-neighbor connections
of some processors are lost. The memory modules can also be added to the empty space of
certain topologies such as the 6-6 Rect Offset array as shown in Figure 6.6(d). The memory

distribution can be a combination of the presented four forms depending on the area budget.

112



. Chip
Chip PLL
Core 0 Core 1 Core 1 Core 1

fcrysta\ i i
Crystal L2/3
: —‘PFPLL Interconnect Crystal | L2/3
Oscillator _ N [FLL] Interconnect
N x f, Cache Oscillator B Cache
crystal fcrystal I 1

Divid
meers Core 2 Core 3
ullu Core 2 Core 3
clks
(@) (b)
AsAP
Chip Core 0 Core 1
osc 0SC
A

A y

| Shared Memory |

A A

>

\4 A

|OSC| |OSC|

Core 2 Core 3

<

(©

Figure 6.7: Shared memory clocking architectures use (a) related, (b) partially related, and
(c) fully unrelated clocks.

6.4 Shared Memory Clocking Architecture

The clock architecture has the strongest impact on the shared memory module design.
Figure 6.7(a)(b) shows two commonly used clock architectures for multi-core processors
and their on-chip shared memory systems. Usually, four cores share a single L2/L3 cache
and an external crystal oscillator is used to generate a low frequency reference clock. PLLs
can be used to generate desired clocks for processors, interconnect and shared memories.
All these chip components can operate either at related derived clocks from one PLL or at
partially related clocks from multiple PLLs. A simple case of Figure 6.7(a) is that proces-
sors and memories use the same derived clock, which yields a fully synchronous system. A
recent Intel 8-core Xeon processor adopts the latter clocking architecture, which contains
16 PLLs, 8 DLLs, and independent clock domains for each of the cores, caches, system

interface and 1/O regions [3].

113



request valid -

e nearﬁflﬁ ‘ osc ‘ d‘ata
-t
Memory Proc. |data Memory Proc. |clk_source Memory

- clk_source > buffer|(dual-clk)

Yy

Proc. %" ta

vy

)
Q
=

valid J I_
request —I_I I_I ,_

near_full d

wa <> > wa (> e <X —
clk_source

ack clk_source

(a) (b) (c)

Figure 6.8: Three clocking source designs for the shared memodule on AsAP.

The AsAP processors operate at completely unrelated clock without an external refer-
ence clock as shown in Figure 6.7(c). Each core generates its own clock with a local ring
oscillator [18]. Thus, the clock source for memory modules becomes a design parameter.
In general, three distinct clocking strategies exist as shown in Figure 6.8.

First, the memory could be completely asynchronous, so that no clock would be re-
quired as shown in Figure 6.8(a). This solution severely limits the implementation of the
memory module, as most SRAMSs provided in standard cell libraries are synchronous.

Second, the memory can generate its own unique clock. The memory would be asyn-
chronous to all processors in the array as shown in Figure 6.8(b). Dual-clock FIFOs are re-
quired to transfer data between shared memory modules and processors. The shared mem-
ory module in the second generation ASAP uses this clocking architecture [118]. However,
FIFOs incur large area overhead and increase memory access latencies, which degrades
performance for certain latency-sensitive applications.

Finally, a memory module can derive its clock from the clock of a ASAP processor
as shown in Figure 6.8(c). The memory would then be synchronous with respect to this
processor. In this case, dual-clock FIFOs are not required and memory access latency is
much shorter than the second approach. However, this also brings the challenge to switch

live clock when a memory module is shared by several processors with unrelated clocks.

114



clka

o oko— i LT (L |
| i Q L aka— LI L LI LT L
2 I

clka clkb

clkb

clka

clkout CIkOut—l_l—I—J_l—l_l— I_

clkb glitch

@) (b)

Figure 6.9: A simple clock switch multiplexer: (a) circuit, and (b) timing diagram.
6.5 Challenges and Solutions to Switch Live Clocks

Glitches on clock signals are hazardous to synchronous systems where all actions of
circuits are coordinated by clocks. It is easy to generate hazardous glitches while switching
the source of a clock line when a chip is running. Three main approaches to switch live

clocks are discussed in the following subsections.

6.5.1 Approach 1: Simple Multiplexers

Figure 6.9 shows a simple implementation of a two-input clock switch, using either
AND-OR or OR-AND type multiplexer logic. The control signs¢l determines when to
propagateslka or clkb to the outputlkout. The problem with this simple switch is that the
switch control signal can change at arbitrary time, thus creating a potential for chopping
the clock at the output. Glitches can be generated due to an immediate switch from the
current clock source to the other clock source. The timing diagram in Figure 6.9(b) shows
how glitches are generated at the outpldbut, when theselcontrol signal changes.

In order to be glitch free, the change sl signal should be avoided at either clock’s
high state if two source clocks are unrelated. Furthermore, whesetsggnal switches at
both clock’s low state, the output clock low state can be chopped which might create setup

violations if data from the next clock arrives immediately at the first positive edge of the

115



aq0 aq1
Q

D Q D
Ik
<A D Qp "‘> Qp—
sel s quOD 3 bg1
> ab o apd clkout
clkb ’—O

sel

D Q D
clka > A |,>
L]

clkb

Ql
[s]|
T

clkout

N )
ol O
vV o
ol O
\*J

Figure 6.10: Two glitch-free clock switch circuits for unrelated clocks using (a) AND-logic
circuit, and (b) OR-logic circuit.
output clock. This can be solved by extending the output clock low state or delaying the

input data by at least one clock cycle.

6.5.2 Approach 2: Simple Multiplexers with Cross-coupled Synchro-

nizers

Cross-coupled two-stage synchronizers can be added to the simple clock switch circuit
to avoid glitches due to asynchronous select signals or feedbacks from one clock domain
to the other. Figure 6.10 shows two popular glitch-free clock switch circuits [128]. Fig-
ure 6.11 shows an example of how the AND-logic clock switch circuit suppresses glitches
during clock switches.

At the beginningselsignal goes from low to high state whelka andclkb are both at

high state. The outputs of the second-stage flip-fegpsandbql both will be at low state

116



okb— L1 | | |
dka— LI LITLT LT LT LT 1
sel
bq0
bqg1
aqo |
aq1
<_cllkoff_>

clkout ! | ! | ! e

i«— switch latency —»

clka propagation started

Figure 6.11: Timing diagram of the AND-logic glitch-free closwitch circuit.

for more than half a clock period of the next clocka, which turns off the output clock.
clka starts propagation wheaqgl turns high near the negative edgeatka. The circuit
ensures thatlkoutcan be at low state for more than one cycle before the first positive edge
of arrives.

Assume that the clock periods of current clock source and next clock sourcés are
andT,, respectively. Depending on the switch timing of s signal, the clock switch
time of the circuit falls into a range as shown in Eq. 6.1 and the worst-case switch time is
% + 2T,. The switch latency is limited by the slowest input frequency of two switched

clocks.

T, 3T,

The OR-logic operates at only positive edge of input clocks as shown in Figure 6.10(b).
The clock switch time of circuit in Figure 6.10(b) falls into a range as shown in Eq. 6.2.

The worst-case switch time ¥, + 27;,.

T,+ T, <ty <2T,+ 2T, (6.2)

117



i - metastable state

aq0

aq1

L |
L]
bq0 r/
|
|
-

kout—dI L m

clka propagation started
Figure 6.12: Metastability problem of the AND-logic clockiseh circuit.

Metastability Problem

Metastability is a fundamental problem present when interfacing asynchronous blocks.
Sinceselis fully asynchronous telka andclkb, the circuits in Figure 6.10 has potential
metastability problems. Fig 6.12 illustrates the case wbketgoes from low to high state
near the positive edge afkb, bpOcould be metastable due to setup time violation.

A useful and prevalent approximation found in the literature for modeling the average

failure rate due to metastability is shown in Eq. 6.3 [129].

et»p/T

TO fc fz

(Mean Time Between Failures) MTBE

(6.3)

The variables in Eq. 6.3 are defined as followfs.and f; are the sampling clock fre-
guency and the input data event frequency. The parameted1; are flip-flop parameters
which are usually measured through experimentss the resolution time (time since clock
edge). The resolution time @ig0in Figure 6.10 is only half cycle aflkb, which severely
decreases the MTBF wheitkb operates at a high frequency.

For more reliable clock switch, additional synchronizers can be added. Figure 6.13

118



L o >

clka X |_c> Sh—

clkb b op r> °]—°>

Figure 6.13: A 3-stage glitch-free clock switch circuit.

Ol

> 60 |'>

clkout

?I

de, | [ L Ll L1 |
gated_clka | sel clkb
clka_enable | clka_gate
ol out SO I T I B
clkb
—>
clka_enable | clkb_gate sel
—> gated_clkb T ™
— > T
gated_clkb
D Q gated_clka
D_latch
clkX_enable EN ok out
gated_clkX — Swi
AND —>» witch
Time

Window

Figure 6.14: A simple clock switch circuit with clock gating disable both clocks during
clock switching (a) circuit, (b) timing diagram. For simplicity, the duplicate proc 1 circuits
are not included.

shows a 3-stage AND-logic clock switch circuit. An additional flip-flop increases the res-
olution time by one more cycle. The circuit can be extended to have more synchronizers

in between. However, the increased reliability comes at the cost of higher clock switch

latency.

6.5.3 Approach 3: Simple Multiplexers with Clock Gating Circuits

Another solution to switch live clocks is to disable both input clocks during the transi-
tion of theselsignal. If the time is enough to disable one clock and enable the next, clocks
can be cleanly switched by simple multiplexers without glitches.

Figure 6.14(a) shows a simple 2-input clock switch circuit with input clocks gated. A

119



clk_mem

req0 : A 4 -
» req0 req0 —» =
> rel0 rel0 —i> Sync - . {gnto, gnt1}
clko ! Arbiter >
rel0 [>o enable Clock | ¢/k0_gated reql —— Sync >
& = - > 1 —ip] "
Proc 0 > gate | : © :
sync_ A '
gnto i gnto
< Sync [« H \ 4
: clkO gated—é—) clkout
clko T : - : Mux > SRAM
clk1_gated—§—>
Processor Clock Domain Memory Clock Domain

Figure 6.15: A block diagram of two processors sharing one argrmodule using a
request-grant-release-ack protocol. Since Proc. 0 and Proc. 1 are the same, only Proc. O
and the shared memory module are shown for simplicity.

clock gating circuit can be implemented by a low pass latch cascaded with an AND gate
as shown in Figure 6.14(a). This circuit is often offered as a basic macro cell in many
standard-cell libraries. ThelkX enablesignal is latched at the low state of the clock.
Figure 6.14(b) shows the timing diagram of the circuit switchstigout from clkb to clka.

The circuit first disableslkb for a period of time T1 before the transition of sigisal. The
enabling ofclkbis delayed for a period of time T2 after the sigsalchanges.

The clock enable signals and clock select signal need to be generated in a strict timing
order. Fortunately, this timing can be guaranteed if processors use a request-grant-release-
ack protocol to access a shared memory module.

Figure 6.15 shows an architecture of two processors sharing a memory module with
clock gating and simple clock switch circuit. The two processors use unrelated clocks
and the memory module also owns a local clock used for the operation of an arbiter. The
request and release signals from processors are synchronized to the memory clock domain.
The synchronizer comprises two or three flip-flops in series. The arbiter generates grant
signals which are sent back to processors. The grant signals are also used as clock select

signals for the clock switch multiplexer. At the processor side, the output clock is disabled

120



when the grant signal is low or the release signal is activl.hidnis architecture uses the
clock gating cell as shown in Figure 6.14(a).

Figure 6.16 shows the timing diagram of the proposed simple clock switch combined
with the request-grant-release-ack protocol. At the beginning, the memory module is idle
andclkoutis disabled. Then processor 0 sends@0signal to the memory module and the
arbiter grants the access of processor 0 after three memory cyclegnidsgnal is used
to select gatedlkO which is disabled until the synchronizgdtOsignal arrives. The gated
clkO starts propagation tolkoutat the lower state aflkOwhengntOsignal is asserted. The
clock switch takes three memory cycles and two and a ¢ik@ cycles since theeqOis
asserted. During this time, the request from processor 1 is not granted since processor O
have not released the memory. Then processor 0 gel@isignal which will disableclkO
andclkout after half cycle ofclkO. The releaseelO signal results in the assertion gintl
after three memory clock cycles. It takes another two and half cyct#kaffor clkl to
propagate talkout. The timing window when both clocks are off is larger than the sum of
half clkO cycle and two and a hatfik1 cycle. It is enough foclkoutto switch fromclkO to

clk1 without glitches.

6.6 Processor-Memory Interconnection Network

The interconnection between processors and memories is another design parameter.
AsAP processors communicate with each other using source synchronous circuit-switch
network [117]. As shown in Figure 6.17, there are two types of processor-memory in-
terconnection architectures. In Figure 6.17(a), memory modules can be attached to their
nearest-neighbor processors. Non-nearest-neighbor processors need to go through proces-
sors attached to memory modules for memory access. The previous AsAP system uses
this architecture which has drawbacks : (a) additional memory ports need to be added to

the processor side, and (b) communication latency increases between non-nearest-neighbor

121



ek mem [ LT LT LT L LEL LT LTI U UL
oo J UL LEL LTy
S R I S I I I I I I
req0 I
req1 J I
rel0 I_‘ I
1 \
gnt0 T
gnt1 \\ \\ I \
dkou [ I
lkout \ 4—\—Time window ——»; \
clk0 starts when both clk1 starts
propagation clocks off propagation

Figure 6.16: A timing diagram of the clock switch circuit ugirequest-grant-release-ack
protocol.

o L o 0 e N o 3 s RN o )
T 11 1 T 1T 1]
e’ |
N o o I el RN o g o
R N LT
M
M
(a) (b)

Figure 6.17: Two types of physical links to memories (a) nsianeighbor interconnec-
tion with additional memory ports on the processor side, and (b) memory are treated as
processor tiles and share the processor-processor interconnection links.

122



Intermediate

Proc. Wires Memory
A A A
r g Y N
| | clk_proc
clk_proc > ! > ;
I I l
Buffer | | addr/data
addr/data > ; > ———
I | Mem
| | data
data « | X e
! | valid
valid : < .. |
I I
1 G e 1 ——
I

delayed_clk_proc < :
I

Figure 6.18: The physical links between processors and tfiertass memory module.
processors and memories. Figure 6.17(b) shows another design where memories are treated
as processor tiles and processor-memory communication share the processor-processor in-
terconnection links. Due to the fact that the interface signals of processor-memory inter-
connection are different from that of processor-processor interconnection, all the processor-
processor interface signals need be adjusted to match the widths of the processor-memory
interfaces.

Figure 6.18 shows a source synchronous processor-memory physical interconnection
signal datapath. The processor sepdsc_clk and addr/datato the bufferless memory
module and the bufferless memory replies wdtita, valid anddelayedproc_clk. Depend-
ing on the distance between a processor and a memory module, the latency brought by
those intermediate wires may take several clock cycles. This latency can be hidden by reg-
istering the data along the link [130]. However, due to the uncertain delays along the link,
the phase difference betweelk_proc and delayedclk_proc is unknown. This may create
timing violations as shown in Figure 6.19 if localk proc is used to sample the incom-
ing memory data. In order to guarantee the good timing as shown in Figure 6.19(a), the

following setup and hold time constraints need to be satisfied:

D+ teik—q Tt tsetup < T (64)

123



source clock _/—\_/—\_/—\_ source clock _/—\__/—\_/—\_
returned clock mm returned de/ J_\_/—\_/—\_

daiC} data C>_

Timing violation potential
good timing g P

(a) (b)

link delay

Figure 6.19: Timing diagrams of the processor-memory ia@¥f(a) correct timing, (b)
timing violation.

thotd < D + teik—q (6.5)

Here, D is the remainder of the total link wire delay divided BY ¢.x_g, tsetp and
thoa @re the clock-to-output delay, setup time and hold time of a flip-flop, respectively and
T is the source clock cycle time.

Thus, a small dual-clock FIFO is required on the processor side to ensure reliable data
transmitting. Since each AsAP processor core already has two input FIFOs and processor-
processor and processor-memory interfaces are compatible, no additional FIFO needs to be
added to the processor core. This reduces the memory port on the processor side, which is

required by the FIFO buffered memory module design.

6.7 Bufferless Shared Memory Module

Meeuwsen et al. have proposed a four-port FIFO buffered shared memory module for
AsAP [118] as shown in Figure 6.20. This architecture corresponds to the clock source
type shown in Figure 6.8(b), where memory modules operate at their own independent
clocks. This buffered memory module allows simultaneously requests from each processor
and arbitrates at very fine-grained level between different requests. The FIFO buffered
memory module achieves one word per cycle peak throughput for burst read and write

mode. However, by incorporating both input and output dual-clock FIFOs, the buffered

124



Proc. Clock
Domain

Proc. Memory
Clock Domains Clock Domain

— A

|
Proc1—|->| FIFO |
Pr002—|->|| FIFO >
MUX
Proc3—p{_FIFO
Proc4—0—>| FIFO |

|
|
| Arbitration
|

Y

A 4

SRAM

Y A4

Figure 6.20: A four-port FIFO buffered shared memory module.

memory module has very low area efficiency (37% for SRAM cells) and very high access

latency.

6.7.1 Primary Architecture

Most video encoding and decoding tasks have streaming feature that processors usually
read or write a block of data at one time. Thus, memory modules do not need to serve
the requests from processors at a fine-grained level. Instead, memory modules can be
reserved by one processor in a period of time for one streaming transaction. After the
transaction is done, the processor releases the memory module and other processors can
acquire the memory module for other transactions. Based on this transaction-level sharing
model, a shared memory design does not need to use any buffer. Figure 6.21 shows an
example of such bufferless shared memory module with four input ports. This architecture
corresponds to the clock source type shown in Figure 6.8(c). The clock is switched by
simple multiplexers using the request-grant-release-ack protocol as shown in Figure 6.15.
Four processors can request the ownership of the memory module at the same time. Once
one processor’s request is granted, the memory’s clock can be switched to the clock of
that processor. The bufferless memory architecture eliminates FIFOs inside the memory

modules and results in low latency, high area and energy efficiency.

125



Proc 1 > —> Proc 1
Proc 2 > —> Proc 2
MUX > -

Proc 3 > — Proc 3
Proc 4 > SRAM ——> Proc 4

req1

[ggg 5| Arbiter

req4 >

v

clk1 >

clk2 »( Clock

clk3 »  Switch clock

clk4 >

Figure 6.21: A four-port bufferless shared memory module.

6.7.2 Micro-architecture

As an example, Figure 6.22 shows the detailed architecture of a bufferless shared mem-
ory module with two input ports. The design can be easily extended to support more input
ports. A request-grant-release-ack protocol is used to serve multiple requests from proces-

SOrs.

Synchronization and Arbitration

The bufferless memory module integrates a small ring oscillator to provide clock to
the synchronous hardware mutex. Two-stage or three-stage D flip-flops can be used to
synchronize the control signals across the processor and memory clock domains.

A hardware mutex unit is implemented to support mutual exclusive ownership of the
memory modules as shown in Figure 6.23. The mutex design is the same as the one used
in [131]. The mutual exclusion primitives implement simple test and set locks. The lock is
either available, or held by a particular processor during any given cycle. If the priority bits
are properly set, the highest priority request is granted if multiple requests arrive at the same
time. Otherwise, a least-recently-used policy is adopted to determine which request to serve
first. Since the hardware mutex guarantees that only one processor can access the memory

at one time, it supports inter-processor synchronization primitive without additional mutex

126



clk0

I
f }— Delayed_clk0
clk1 — M———> Delayed_clk
addr0, data0, wren0, rden0 | |
| |__frdeno0 A _
addr1, data1, wren1, rden1 ™! rdent| Re —'—}data_valldo
clk0 l = 9 > data_valid1
v : granto, YY VYV 4
rel_done0 |
e T Mox || S |
req0 I > = A N |
rel0 > sync | Mutex = Y —|—>Data0
reql —4| BN Synchronous I
rell —l—) SRAM
> > Datat
| clkﬁmem |
< sync |«
| grantt, |
* rel_done1
l |
! |

Figure 6.22: Micro-architecture of a two-port source sywoctous bufferless shared mem-
ory module. For simplicity, the address generator, local ring oscillator and configuration
modules are not shown.

like the shared buffered memory module design [131].

6.7.3 Performance Evaluation
Peak Performance

The memory performance is depicted by two important metrics: throughput and la-
tency. Both bufferless and buffered memory modules achieve a peak throughput of one
memory access per cycle. The cycle is one memory cycle for buffered memory and one
processor cycle for bufferless memory. The actual throughput depends on maximum clock
frequency of the memory module. The bufferless memory module synthesis results (ST
65 nm CMOS and 16 KB single-port SRAM macro) report a maximum clock frequency
of 1.37 GHz. At this clock speed, the memory’s peak throughput is 21.9 Gbps with 16-bit
words.

The worst-case memory latency is for the memory read request. The bufferless memory

read latency includes the one-time memory request-grant latency, memory module access

127



req[3:0]

sel[3:0]

. arbiter
priority[3:0]

EN
owner_ps

i
:

rel[3:0]

o

grant[3:0]

Ol

Figure 6.23: Mutual exclusion primitive (mutex) [131]. Thestex implements an atomic
test and set lock. The current owner of the mutex is storeduiner_ps. The arbiter
manages simultaneous mutex requests.

latency, round-trip interconnection latency and the processor side FIFO write and read syn-
chronization latency. The buffered memory read latency includes the processor memory
port latency, memory module input and output FIFO read and write synchronization la-
tency, memory module latency, round-trip interconnection latency and processor pipeline
latency for memory access from non-adjacent processors.

The interconnection latency is a variable depending on the distance between processors
and memory modules. Let us assume a processor is adjacent to a memory module and there

is no request from other processors. The buffered memory latency can be expressed as:

mec = LFIFO-'u/r + LFIFO-rd + Lmem-port (66)
Lmem = LFIFO'Td + Lmem'module + LFIFO"LUT (67)
Ltotal = Lmem + Lproc (68)

The FIFO read and write latency depend on the number of pipe stages used to synchro-

128



1200

20000 | —® Bufferless memory —=— Bufferless memory
—e— Buffered memory 1000 4 L.—*—Buffered memory
15000 800
R 0
< <
Q 3]
2 10000 3 600
Y >
g 1 S 400
5} 9]
E 50004 S
| 200
04 0
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Block data size (16-bit word) Block data size (16-bit word)
(@) (b)

Figure 6.24: Estimated latencies of reading a block of data for buffered and bufferless
memory modules (a) non-burst read mode, (b) burst read mode.

nize data across the clock boundary. In this work, two-stage synchronizer is used. Thus, a
FIFO takes three cycles for both read and write side. To sum it up, single read latency of a
buffered memory is 8 processor cycles and 11 memory cycles. If memories and processors
are clocked at the same frequency, this is a minimum latency of 19 cycles. For the burst
read mode, after the initial latency of the first word, the rest of words take one cycle per
read if all the FIFOs are not full. This cycle can be expressed@as:(7, oc, Trnem)-

The bufferless memory latency can be expressed as follows:

Lreq = Lreq-sync + Lmutea: + Lgnt-sync (69)
Lrel = Lrel'sync + Lmutex + Lack'sync (610)
Lread = Lmem + LFIFO-wr + LFIFO'Td (611)

The signal synchronization uses two cycles and the mutex takes one memory cycle. The
SRAM read uses two processor cycles. Téguestandreleasetake three memory cycles
and two processor cycles. After setting up the clock source, the read latency is 8 processor
cycles per read. For the burst read mode, after the initial setup latency and the first word

read latency, the rest of words takes one processor cycle per word.

129



\ 4 A\ 4 Y Y

Shared Memory

Bufferless — A >< c >< B >< D >—
Buffered QGGQ@GEQGGQ@GEQ

Figure 6.25: Memory bus transactions for four-port buffeadl bufferless memory
modules.

Based on previous buffered and bufferless memory single read latency calculations,
Figure 6.24 shows estimated block data read latencies for buffered and bufferless memory
modules. In the non-burst read mode, a bufferless memory module shows a 58% latency
reduction compared to buffered memory modules. In the burst read mode, the bufferless
memory slightly reduces the access time compared with buffered memory modules, and
the time difference is negligible when the block data size is large.

When the memory module is shared by multiple processors, the time to read a block of
data in burst mode for bufferless and buffered memory module is close, which depends on
the available memory bandwidth. This is illustrated by Figure 6.25 where memory band-
width is shared in a fine-grained way for buffered memory modules and in a coarse-grained
way for bufferless memory modules. Since bufferless memories use clock sources from
multiple processors, one processor’'s memory access time may depend on the other proces-
sor’s transaction time if they need to wait for the memory bus. Thus, slower processors
might drag down the speed of faster processors. In reality, processors running at similar
clock frequencies can be tiled together to the same shared memory module. Processors can
also be boosted up to the highest clock frequency for memory access so that they do not

affect each other.

130



//Read one by one
Burst read setup for j =0; j<N; j++) {
for j =0;j<N;j++) { for(i=0; i<M; i++) {
for (i=0;i<M;it++) { addr =base +j * N +1;
dmem[j * N +i] = mem_read(); dmem[j * N + i] = mem_read(addr);
¥ }
¥ ¥
Computation Computation
Burst write setup /[Write one by one
for j=0;j <N;j++) { for j=0;j <N;j++) {
for (i=0;i<M;itt) { for(i=0; i < M; i++) {
mem_write() = dmem[j * N +1] ; addr =base0 +j * N +1i;
} mem_write(addr) = dmem[j * N +1];
¥ }
}
(a) (b)

Figure 6.26: Example codes of video application running @& AsAP processor with (a)
burst memory access, (b) non-burst memory access.

Table 6.3: Memory requirement and computation workload for typical video encoding
tasks in H.264/AVC and HEVC

Applications Data Input| Data Output| Workload
(words) (words) (cycles)
4x4 Integer Transform 16 16 80
8x8 Integer Transform 64 64 320
4x4 Quantization 16 16 336
4x4 Intra Prediction 24 16 708
16x16 Intra Prediction 256 288 11328
8x8 Sample Adaptive Offset 84 64 1664

Application Performance

In order to exploit task-level parallelism, most of video encoding tasks can be parti-
tioned into three phases: reading data from either input processors or shared memories,
computation and writing data to output processors or shared memories. Let's assume the
tasks use the shared memory as the main data source and destination. Applications can be
generated as shown in Figure 6.26 where video data are normally stored in memory as 2D
M by N blocks. This model allows us to estimate the effect of memory access time towards

the total application performance.

131



The application performance can be estimated by the numbepuof data, the compu-
tational workload in terms of processor cycles and the number of output data. Table 6.3 lists
the characteristics of several key tasks in H.264 and HEVC. The computational workload
of H.264 tasks is from actual AsAP2 simulations. The computational workload of Sample
Adaptive Offset is estimated from the pseudo assembly coding of SAO on AsAP2. The
intra-prediction supports three modes: vertical, horizontal and mean DC.

Let's first consider the case where all of the kernels are mapped onto one processor
with one shared memory module and we assume processors and memories run at the same
frequency. Figure 6.27 shows the relative application execution time using a bufferless
and buffered memory with either burst access mode or non-burst access mode. For burst
mode, all applications have similar execution time for buffered and bufferless memory as
shown in Figure 6.27(a). For non-burst mode, the bufferless memory reduces 35% to 52%
of the total application execution time compared with a buffered memory. The 8 x 8 intra
prediction is the most computation intensive tasks, which yields the smallest benefits of
replacing a buffered memory by a bufferless memory. There might be chances that the
buffered memory can hide some memory read latencies by issuing multiple read addresses
and reading data back at different time or inserting instructions between sending an address
and reading the data back.

Let's consider a sharing case where multiple copies of the same tasks listed in Ta-
ble 6.3 are distributed to multiple processors which share one memory module. For burst
mode, as we discuss in previous subsection, the relative execution time between buffer-
less and buffered memory stays the same as non-sharing case. For non-burst mode, the
buffered memory has an advantage over bufferless memory that the access latency from
multiple processors can overlap between each other. For example, if two processors share
one buffered memory, a single read takes 19 cycles for each processor. However, the over-
all execution time is 20 cycles for the two reads. As for bufferless memory, a single read

takes 8 cycles for each processor. However, the overall execution time is 16 cycles for the

132



Il Buffered Memory [l Bufferless Memory

Relative Execution Time

or o +7oto0 jction o ttset
A ke’ ra{:‘\ntege‘vam‘ <A Qua“‘\iiA \n\raP‘ed\ie \ntrap‘edfe Adap“veo
AN K AGX gamP
&x®
(@)
Il Buffered Memory [l Bufferless Memory
. : . , . : . : .
()
=
l_
[
Re)
5
[&]
(0]
x
w
()
=
T
[0
e
<for™ oM ation jction joion_ offset
4 \ntede’ ‘ag e T2 Q“a““;A e P 6\““2‘?@\ daptve
AX %
ox®

(b)

Figure 6.27: The relative application execution time of a bufferless memory versus a
buffered memory without sharing among processors (a) burst mode, (b) non-burst mode.

133



Il Buffered Memory [l Bufferless Memory |
. , . , . .

T T T

1.0 S

0.8
o
£
l_
c
S 06-
3
[&]
]
x
0
2 0.4 1
5
(0]
2

0.2 1

0.0 -

gt 38
sfO™ st izl o edichOl o eqicion o Offs®
er 1 o T 4 Qua m\(aP o \nxa P aapt
vl \nied & \nted AX AYd 0y 5 e A
(a)
Il Bufiered Memory [l Bufferless Memory
T T T T T T T T T

(0]
=
I—
C
R
5
[&]
(0]
X
w
(0]
=
©
O
e

1§
gicho? offse
nira P::p [Nete) aptV e
x8 2

a“sio\' Qua "\\\Za“ d\c\\

ral A\ pre
ef ¥a
pt e g \f\‘eg D g WOV

(b)

Figure 6.28: The relative application execution time of a buffered memory versus a buffer-
less memory in no-burst mode and (a) two processors, (b) four processors share one mem-
ory module.

134



SRAM

0.37 mm

(b)

Figure 6.29: The DRC and LVS clean layouts of memory modules at 65 nm CMOS tech-
nology (a) a 16 KB FIFO buffered shared memory module, (b) a 16 KB bufferless shared
memory module.

two reads. Figure 6.28 shows the relative execution time between buffered and bufferless
memory in two cases where two processors and four processors share one memory mod-
ule. When shared by two processors, the bufferless memory module still reduces 11% to
24% overall execution time compared with the buffered memory module as shown in Fig-
ure 6.28. When shared by four processors, the execution time increases from 11% to 26%
for the bufferless memory compared with the buffered memory. However, this disadvan-
tage of bufferless memory has little effect in video applications where four processors share

one memory module with a non-burst mode is rare.

6.7.4 Implementation Results

In order to compare with previous 4-port 16 KB FIFO buffered shared memory mod-
ule, we have implemented a four-port bufferless memory module with a 16 KB single-port
SRAM. The primary architecture is shown in Figure 6.21. The bufferless memory mod-
ule also includes four input ports, which utilize a small state machine to support burst and
non-burst memory access. Since the link interface to ASAP processor utilize the processor-
processor interconnection network, the link can only provide one 16-bit data per cycle.

Thus, it takes two cycles to latch address and data for write operations. Four address gener-

135



Table 6.4: Layout results of the 4-port 16 KB buffered and é&léiss shared memory mod-
ules based on 65 nm CMOS at 1.3 V supply voltage and’25

Memory Area | SRAM | Max. Freq.| Power
(mm?) | Ratio (MHz) (mW)
Buffered 034 | 37% 1300 50.3
Bufferless| 0.15 | 83% 1370 28.7

ators are provided to each input port to support burst accesesn Both the bufferless and
buffered memory modules are implemented with a fully automated design flow spanning
from RTL description to layout-level verification with STMicroelectronics 65 nm CMOS
technology. The memory modules are synthesized from Verilog with Synopsys Design
Compiler and laid out with an automatic timing-driven physical design flow with Cadence
SoC Encounter. A configurable oscillator (OSC) is manually designed from standard cells
and laid out separately.

Figure 6.29(a) shows the final DRC and LVS clean layout of a 16 KB buffered shared
memory module composed of eight 32-word dual-clock FIFOs, one configurable oscillator,
a 16 KB single-port SRAM macro and other logic circuits. Figure 6.29(b) shows the pro-
posed 16 KB bufferless shared memory module with one configurable oscillator, a 16 KB
single-port SRAM macro and other logic circuits.

Table 6.4 shows the layout results of the 16 KB buffered and bufferless memory mod-
ules based on 65 nm CMOS technology at 1.3 V arfd.29 he area of bufferless memory
is less than half of the buffered memory area, with a 83% SRAM area utilization ratio. The
size of the bufferless memory is slightly smaller than a AsAP2 processor core (0.17 mm
which makes it easy to be physically integrated into the processor array. The bufferless
memory achieves a slightly higher clock frequency and increases the burst-mode through-
put by 1% compared with the buffered memory. The power consumption is estimated by
assuming both memory and processor clock run at 1070 MHz (maximum frequency of
processor core). The activity factor is assumed to be 20% for all inputs. The bufferless

memory is much more power efficient than the buffered memory design by reducing 43%

136



of total power consumption.

6.8 Related work

Besides the traditional cache hierarchies for general purpose processors, scratch-pad
memories are widely used in embedded systems [132]. The buffered and bufferless mem-
ory modules can also be considered as scratch-pad memories with specific features such
as being shared by multiple processors in a GALS environment, distributed across the chip
and interconnected through a circuit-switch network.

Many commercial multi-core processors have been released. Most of them use tradi-
tional cache hierarchies. Intel’s latest sandy-bridge processor contains up to 4 processor
cores and graphic processing unit (GPU) [107]. Each core has a dedicated two-level cache
hierarchy and a 8 MB L3 cache is shared between the cores, as in a traditional shared
memory multiprocessor system. Sandy Bridge’s ring interconnect fabric connects all the
elements of the chip, including the CPUs, the GPU and the L3 cache. The CELL processor
is a multiprocessor targeted at multimedia applications [133]. The processor contains a sin-
gle power processing element (PPE), and eight additional synergistic processing elements
(SPE). SPEs adopts a scratch-pad memory architecture which allows each SPE to execute
without concern for memory coherency among processors.

Many-core architectures attempt to address the scalability concerns of ever shrinking
feature sizes and increasing clock speeds. Tile based architectures, such as MIT's RAW
processor [134] and its commercial successor Tilera [135], consist of many uniform pro-
cessing elements. Each tile is a fully functional CPU and contains a local instruction and
data cache. In contrast to traditional systems, this cache may be software managed, or
treated as a stand alone memory. Intel presented a 48-core processor called Single-Chip
Cloud Computer (SCC) [100]. A total of 24 tiles are connected with a 4x6 2D mesh net-

work. Each tile has two processor cores, each with 16 KB instruction and 16 KB data cache

137



plus a unified 256 KB L2 cache. The tile also has a 16 KB messaggnupbuffer shared
by the two cores.

Transactional memories provide a programming interface which simplifies the paral-
lel programming by guaranteeing that transactions appear to execute atomically, consis-
tently and in isolation [136]. There are hardware and software approaches to implement
transactional memory. IBM will ship a first commercial microprocessor supporting hard-
ware transactional memory [137]. Our bufferless memory design acts like the transactional
memory. Once an exclusive ownership of the memory is acquired, memory access becomes
atomic and in isolation.

The recent development of 3D integration technology enables stacking memory mod-
ules directly on top of processors, therefore reducing memory latency and increasing mem-
ory bandwidth [138]. In 2007, Intel introduces an experimental 80-core design with stacked
memory [139]. This trend is followed by two experimental chips: 3D-MAPS [140] and
Centip3De [141] published in 2012. The 3D-MAPS is a 2-layer 3D system that contains
64 customized processor cores with 256 KBs scratch-pad stacked SRAM. The Centip3De
is a near-threshold 7-layer 3D system that contains 128 ARM Cortex-M3 cores and 256 MB
of stacked DRAM. One of the challenging problem for 3D memory stacking is how to dis-
sipate the heat building up within the stack. The research of 3D memory stacking mainly

focuses on tool development, physical design and fabrication.

138



Chapter 7

Conclusion and Future Work

7.1 Conclusion

This dissertation thoroughly analyzes the H.264 video encoding algorithms. The amount
of computation and memory requirement of underlying computation-intensive units have
been identified and analyzed. This research suggests that video encoding which is com-
posed of a transformation-based small block data-flow processing is suitable for fine-
grained message-passing style many-core architecture.

Then, the dissertation proposes a fine-grained parallel programming methodology and
successfully demonstrate fine-grained many-core architecture can achieve high performance
and energy efficiency for both video encoding algorithms with high data-level parallelism
like integer transform and quantization and serial algorithms with fine-grained task-level
parallelism like CAVLC. The proposed programming methodology yields an H.264/AVC
residual encoder capable of realtime 1080p (1920x1080) HDTV encoding with both higher
energy efficiency and area efficiency compared with other software approaches in common
DSPs and customized hybrid multi-core architectures.

Next, this dissertation proposes seven low area overhead and low design complex-

ity topologies other than the commonly-used 2D mesh for dense on-chip networks. The

139



proposed topologies include two 8-neighbor meshes, twoabeseneighbor and three
6-nearest-neighbor topologies—three of which use a novel house-shaped and hexagonal-
shaped tile. Two complete applications are mapped onto all topologies for realistic com-
parisons. Commonly available commercial CAD tools are used to implement tiled CMPs
for all proposed topologies including the two non-rectangular processor tiles. The appli-
cation mapping and chip implementation results demonstrate the effectiveness of the inter-
processor interconnect of all proposed topologies. Compared with 2D mesh, the hexagonal-
shaped 6-nearest-neighbor topology reduces 22% application area and 17% average power
consumption with a 2.9% area increase per processor tile. The rectangular-shaped 6-
nearest-neighbor topology provides the same interconnect architecture as the hexagonal-
shaped tile. Despite being less power-efficient, its simpler physical design makes it an
attractive design alternative for many-core dense on-chip networks.

Motivated by the fact that video encoding tasks normally read and write a block of
data at one time in one transaction, the third part of this dissertation proposes a novel
source synchronous bufferless shared memory to enable safe memory sharing among mul-
tiple processors with different clock domains. Compared with the previous FIFO buffered
memory design, the bufferless memory achieves lower latency, higher throughput, lower
area overhead and lower power consumption. The bufferless memory also supports direct
communication with far-away processors through the existing processor-processor circuit
switch interconnection network. The implementation results shows that a 16 KB buffer-
less memory module reduces 58% single memory access latency and has slightly higher
throughput (1%) in a burst mode compared to the 16 KB buffered memory module. The
bufferless memory module also reduces the area overhead from 63% to 17% compared

with buffered memory module, which yields a power reduction by 43%.

140



7.2 Future Work

There are quite a few interesting research topics on many-core processors for video and

DSP applications which are worthwhile for further investigation.

¢ High Efficiency Video Coding (HEVC) The High Efficiency Video Coding (HEVC)

also called H.265, is the successor of H.264/AVC. The new standard’s committee
draft is approved in February 2012. The new standards include some new features
such as variable block size (coding unit), new loop filters such as SAO (Sample
Adaptive Offset) and wider pixel bit width 10 to 12 bits. HEVC achieves over 40%
bitrate reduction compared with H.264/AVC. However, the coding efficiency comes
at the cost of higher computational complexities, which brings further challenges for
parallel programming. More research is required to explore the new possibility of

mapping HEVC to the fine-grained many-core computation platform.

e Automatic Mapping Tool As the application complexity increases, the number of
small tasks increases accordingly. The number of tasks has reached over 100 for
H.264 baseline encoder and this number may grow to hundreds or even thousands
for future video applications. The manual application mapping is not feasible in this
case. The automatic mapping tool should provide a capability to reduce the number
of processors, the total interconnection link length and power consumption. The
tool should also be aware of the heterogenous components such as shared memories
and accelerators. The automatic mapping tool should also support the non-2D-mesh

topologies such as the 6-neighbor hex topology proposed in this work.

e Reconfigurable AcceleratorsSome video encoding tasks such as CABAC and de-
block filtering are not efficient when mapped to AsAP system. The coding blocks
may vary by standards. Building accelerators for these blocks is time-consuming.

There might be new possibility to build some reconfigurable fabrics for these tasks.

141



e Memory Interconnections The proposed shared memory system uses source syn-
chronous static circuit-switch network for long-distance communication. A dedicate
link needs to be assigned for a particular transaction. This is not efficient in the case
where memory traffic is too sparse to saturate the link bandwidth. A low overhead
router with cut-through packet forwarding capability may be helpful in this case. A
hybrid architecture with both circuit-switch network and dynamic routing may be the

future direction for memory interconnections for video encoding tasks.

142



Glossary

AsAP For Asynchronous Array of simple Processaksparallel DSP processor consisting
of a 2-dimensional mesh array of very simple CPUs clocked independently with each

other.

Arbiter A circuit module which handles multiple access requests to a shared resource and
grants the access permission for one of these requests preventing them to simultane-

ously access the shared resource.

AsAP2 The second generation of ASAP chips which also includes a few specific accel-
erators (FFT, Viterbi, Motion Estimation) and shared memory modules. It has a
reconfigurable source synchronous network supporting long-distance interconnects

for processors. Per-core DVFS is also supported for dynamic power savings.

CABAC ForContext Adaptive Binary Arithmetic Coding, an entropy encoding method in
H.264/AVC main and high profile.

CAVLC For Context Adaptive Variable Length Coding, an entropy encoding method in
H.264/AVC baseline profile.

CMP For Chip Multi-processara computer architecture which integrates multiple pro-

cessors into a single chip to improve processor performance.

CPI For Cycles-per-instructionNormally the CPI for pipelined processor is larger than 1

due to the pipeline hazard or missed Cache fetch.

143



DCT For Discrete Cosine Transform, it is used to transforms a signal or image from the

spatial domain to the frequency domain.

DRAM For Dynamic Random Access Memory. A type of memory that it need to be re-

freshed periodically. It is slower but more compact than the static RAM.

DSP Fordigital signal processing or the processors for DSP.

FFT For Fast Fourier Transform, an efficient algorithm to compute the discrete Fourier

transform and its inverse.

FIFO For FIFO First-In First-Out. A buffer queue with in-order operations: the word

which is written in to the buffer first will be read out of the queue first.

FO4 ForFanout 4.A method to define the circuit delay using the delay of an inverter with

4 inverters load.

GALS ForGlobally Asynchronous Locally Synchronous. A design methodology in which

major design blocks are synchronous, but interface to other blocks asynchronously.

GDSII For Graphic Database System W database file format which is the de facto in-

dustry standard for data exchange of integrated circuit or IC layout artwork.

H.264/AVC A standard for video compression. It is also known as MPEG-4 part 10.

HEVC An under-drafted video compression standard known as high efficiency video cod-
ing.
Mbps For Megabit per second unit of data transfer rate.

MTBF ForMean Time Between Failurea common measures of reliability.

ME ForMotion Estimationis the process of determining motion vectors that describe the

difference between one 2D image and another.

144



NoC For Network on ChipAn on-chip communication architecture which communicates

between modules in the chip using switches/routes, as in the network.

RTL Register-Transfer LevelRTL language is a hardware description language used to
model and simulate hardware modules at the gate and register level. A hardware
module modeled in the RTL level could be synthesized to a netlist of CMOS cell

gates used for chip layout. Two most-used RTL languages are Verilog and VHDL.

Scratchpad Memory An on-chip memory with independent address space for temporary

data storage.

SAD For Sum of Absolute Differences. A widely used simple algorithm for measuring the

similarity between image blocks.

SIMD For Single Instruction, Multiple Data A data parallelism technique where one

single instruction can execute multiple data in parallel.

SRAM For Static Random Access Memory. A type of memory that is faster and more
reliable than the more common DRAM (dynamic RAM). The term static is derived

from the fact that it does not need to be refreshed like dynamic RAM.

Viterbi decoder An algorithm to decode a bitstream that has been encoded using forward
error correction based on a convolutional code, developed by Andrew J. Viterbi in

1967.

VLIW ForVery long instruction word, a computer architecture which fetches multiple in-
dependent instructions at the same clock cycle to execute them in parallel, to improve

the system performance.

145



Related publications

1. Zhibin Xiao, Bevan Baas, Processor Shapes and Topologies for Compact Processor

Tiles and Dense On-Chip Networks, journal paper under review.

2. Zhibin Xiao and Bevan Baas, A Hexagonal Shaped Processor and Interconnect
Topology for Tightly-tiled Many-core Architecture, to appear in the IFIP/IEEE Inter-
national Conference on Very Large Scale Integration (VLSI-SoC) , Santa Cruz, CA,

Oct. 2012.

3. Zhibin Xiao, Bevan Baas, Processor Shapes and Topologies for Compact Processor
Tiles and Dense On-Chip Network&EE International Solid-Sate Circuit Confer-
ence (ISSCC 2012) Student Forusan Francisco, CA, Feb. 2012.

4. Zhibin Xiao, Stephen Le, Bevan Baas, A Fine-Grained Parallel Implementation of
a H.264/AVC Encoder on a 167-processor Computational PlatféEBE Asilo-
mar Conference on Signals, Systems and Computers (ACSSC), Pacific Grove, CA,

November 2011.

5. Zhibin Xiao, Bevan Baas, A 1080p H.264/AVC Baseline Residual Encoder for
a Fine-grained Many-core SystemEE Transactions on Circuit and Systems for

Video Technology, vol. 21, no. 7, pp. 890-902, July 2011.

6. Zhibin Xiao, Stephen Le, An Energy-efficient Parallel H.264/AVC Baseline Encoder
on a Fine-grained Many-core Syste8RC Technology and Talent for the 21st Cen-
tury (TECHCON) Sep. 2010.

146



10.

Dean N. Truong, Wayne H. Cheng, Tinoosh Mohsenin, Zhiyi Yoth&ny T. Jacob-
son, Gouri Landge, Michael J. Meeuwsen, Christine Watnik, Anh T. TZ&aihin
Xiao, Eric W. Work, Jeremy W. Webb, Paul V. Mejia, Bevan M. Baas, A 167-
Processor Computational Platform in 65 nm CMOBEE Journal of Solid-State
Circuits (JSSC), vol. 44, no. 4, pp. 1130-1144, April 2009.

. Zhibin Xiao, Bevan Baas, A High-Performance Parallel H.264 CAVLC Encoder on

a Fine-Grained Many-core Systeinternational Conference on Computer Design

(ICCD), Sep. 2008.

Dean Truong, Wayne Cheng, Tinoosh Mohsenin, Zhiyi Yu, Toney Jacobson, Gouri
Landge, Michael Meeuwsen, Christine Watnik, Paul Mejia, Anh Tran, Jeremy Webb,
Eric Work, Zhibin Xiao, Bevan Baas, A 167-processor Computational Array for
Highly-Efficient DSP and Embedded Application ProcessligE HotChips Sym-
posium on High-Performance Chips(HotChips 2Q@8)gust 2008.

Dean Truong, Wayne Cheng, Tinoosh Mohsenin, Zhiyi Yu, Toney Jacobson, Gouri
Landge, Michael Meeuwsen, Christine Watnik, Paul Mejia, Anh Tran, Jeremy Webb,
Eric Work, Zhibin Xiao, Bevan Baas, A 167-processor 65 nm Computational Plat-

form with Per-Processor Dynamic Supply Voltage and Dynamic Clock Frequency

Scaling, in proceedings of tigymposium on VLSI Circujtdune 2008.

147



Bibliography

[1] B. G. Haskell, P. G. Howard, et al. Image and video codingtemerging standards and
beyond.IEEE Trans. Circuits Syst. Video Techn@(7):814—-837, Nov 2006.

[2] S. Borkar. Low power design challenges for the decadsia and South Pacific
Design Automatic Conference (ASP-DA@3ages 293—-296, 2001.

[3] Rusu Stefan, Tam Simon, Muljono Harry, Stinson Jason, Ayers David, Chang
Jonathan, Varada Raj, Ratta Matt, Kottapalli Sailesh, and Vora Sujal. A 45 nm
8-core enterprise xeon processdournal of Solid-State Circuits, 45(1):7-14, Jan.
2010.

[4] Kurd Nasser A., Bhamidipati Subramani, Mozak Christopher, Miller Jeffrey L., Wil-
son Timothy M., Nemani Mahadev, and Chowdhury Muntaquim. Westmere: A fam-
ily of 32nm ia processors. IRroc. of IEEE Int. Solid-State Circuits Conf. (ISSCC)
pages 96-97, Feb. 2010.

[5] Satish Damaraju, George Varghese, Sanjeev Jahagirdar, Tanveer Khondker, Robert
Milstrey, Sanjib Sarkar, Scott Siers, Israel Stolero, and Arun Subbiah. A 22nm ia
multi-cpu and gpu system-on-chip. Rroc. of IEEE Int. Solid-State Circuits Conf.
(ISSCC) pages 56-57, Feb. 2012.

[6] J. Stinson and S. Rusu. A 1.5 GHz third generation Itanium proceHsSBE Inter-
national Solid-State Circuits Conference (ISSQ@8ges 252—-253, Feburary 2003.

[7] S. Naffziger, T. Grutkowski, and B. Stackhouse. The implementation of a 2-core
multi-threaded Itanium family processotEEE International Solid-State Circuits
Conference (ISSCCpages 182-183, Feburary 2005.

[8] S. Rusu, S. Tam, H. Muljono, D. Ayers, , and J. Chang. A 65nm dual-core multi-
threaded Xeon processor with 16MB L3 cacHeEE International Solid-State Cir-
cuits Conference (ISSC(Jages 102-103, Feburary 2006.

[9] B. Stackhouse, B. Cherkauer, M. Gowan, P. Gronowski, and C. Lyles. A 65nm 2-
billion-transistor quad-core Itanium processteEE International Solid-State Cir-
cuits Conference (ISSCHages 92-598, Feburary 2008.

[10] J. L. Hennessy and D. A. Patterso@omputer Architecture, A Quantitative Ap-
proach, chapter Memory Hierarchy Design. Morgan Kaufmann, San Francisco, CA,
third edition, 2003.

148



[11] Zhiyi Yu, Michael Meeuwsen, Ryan Apperson, Omar Sattslichael Lai, Jeremy
Webb, Eric Work, Tinoosh Mohsenin, Mandeep Singh, and Bevan M. Baas. An
asynchronous array of simple processors for DSP applicationsEHE Interna-
tional Solid-State Circuits Conference, (ISSCC (&jges 428-429, Feb. 2006.

[12] R. Bhargava, R. Radhakrishnan, B. Evans, and L. John. Characterization of MMX-
enhanced DSP and multimedia applications on a general purpose procedsor. In
gest of the Workshop on Performance Analysis and Its Impact on Design held in
conjunction with ISCA98ages 16-23, 1998.

[13] R. Bhargava et al. Evaluating MMX technology using DSP and multimedia applica-
tions. IEEE Micro, pages 37-46, Dec. 1998.

[14] J. Fritts, W. Wolf, and B. Liu. Understanding multimedia application characteris-
tics for designing programmable media processorsSRiE Photonics West, Media
Processors’99,pages 2-13, San Jose, CA, Jan. 1999.

[15] J. Fritts et al. Performance of image and video processing with general-purpose
and media ISA extensions. International Symposium on Computer Architecture
pages 124-135, May 1999.

[16] H. Nguyen and L. K. John. Exploiting SIMD parallelism in DSP and multimedia
algorithm using the AltiVec technology. limternational Conference on Supercom-
puting, pages 11-20, May 1999.

[17] Zhiyi Yu. High Performance and Energy Efficient Multi-core Systems for DSP Ap-
plications. PhD thesis, University of California Davis, Davis,CA, Sep. 2007.

[18] D. N. Truong, W. H. Cheng, T. Mohsenin, Z. Yu, A. T. Jacobson, G. Landge, M. J.
Meeuwsen, A. T. Tran, Z. Xiao, E. W. Work, J. W. Webb, P. Mejia, and B. M. Baas.
A 167-processor computational platform in 65 nm CMQBEE Journal of Solid-
State Circuits (JSSC), 44(4):1130-1144, April 2009.

[19] Y. W. Huang etal. A 1.3TOPS H.264/AVC single-chip encoder for hdtv applications.
In IEEE International Solid-State Circuits Conference, (ISSCC '06), pages 128-130,
Feb. 2006.

[20] C. C. Lin et al. A 160kgate 4.5kb SRAM H.264 video decoder for HDTV appli-
cations. INIEEE International Solid-State Circuits Conference, (ISSCC '06), pages
406-407, Feb. 2006.

[21] Hsiu-Cheng Chang et al. A 7mw-to-183mw dynamic quality-scalable H.264 video
encoder chip. IHEEE International Solid-State Circuits Conference, (ISSCC '07),
pages 280-281, Feb. 2007.

[22] Yu-Kun Lin et al. A 242mw 10mrh1080p H.264/AVC high-profile encoder chip.
In IEEE International Solid-State Circuits Conference, (ISSCC '08), pages 314-615,
Feb. 2008.

149



[23] Zhenyu Liu et al. A 1.41w h.264/avc real-time encoder gmrchdtv1080p. In
Symposium on VLSI Circuits, (VLSI 'Qdune 2007.

[24] Tung-Chien Chen et al. 2.8 to 67.2mw low-power and power-aware h.264 encoder
for mobile applications. I ymposium on VLSI Circuits, (VLSI 'Qdune 2007.

[25] Koyo Nitta et al. An h.264/avc high422 profile and mpeg-2 422 profile encoder Isi
for hdtv broadcasting infrastructures. 8ymposium on VLSI Circuits, (VLSI 'Q8)
June 2008.

[26] Kenichi Iwata et al. A 256mw full-hd h.264 high-profile codec featuring dual
macroblock-pipeline architecture in 65nm cmos. Symposium on VLSI Circuits,
(VLSI '08), June 2008.

[27] DSP Products,C6x Information, Texas Instrumehised- and Floating-Point DSP-
StOne Architecture), 1998.

[28] P. Kalapathy. Hardware-software interactions on mpdEEE Micro, 17:20-26,
1997.

[29] S. Rathnam and G. Slavenburg. An architectural overview of the programmable
multimedia processor, tm-1. Froc. Compconpages 319-326, 1996.

[30] Ruby Lee. Accelerating multimedia with enhanced microprocessgisE Micro,
15:22-32, 1995.

[31] Alex Peleg and Uri Weiser. Mmx technology extension to the intel architecture.
IEEE Micro, 16(4):42-50, 1996.

[32] S. K. Raman, V. Pentkovski, and J. Keshava. Implementing streaming simd exten-
sions on the pentium iii processdEEE Micro, 20(4):28-39, 2000.

[33] R.B. Lee. Subword parallelism with max-EEEE Micro, 16(4):51-59, 1996.

[34] M. Tremblay, J.M. OConnor, V. Narayanan, and L. He. Vis speeds new media pro-
cessing.IEEE Micro, 16(4):10-20, 1996.

[35] M. Phillip et al. Altivec technology: Accelerating media processing across the spec-
trum. InProc. HOTCHIPS10Aug. 1998.

[36] D. Cronquist, C. Fisher, M. Figueroa, P. Franklin, and C. Ebeling. Architecture
design of reconfigurable pipelined datapaths.Ptoc. 20th Anniversary Conf. Ad-
vanced Research in VL3lages 23-40, Feb. 1997.

[37] H. Singh et al. Morphosys: An integrated reconfigurable architecturePradi.
NATO Symp. Systems Concepts and Integrakieb. 1998.

[38] V. Baumgarte et al. Pact xppta self-reconfigurable data processing architecture. In
Proc. Eng. of Reconfigurable Systems and Algorithms,(ERSA2001), Feb. 1998.

150



[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Scott Rixner, William J. Dally, Ujval J. Kapasi, Brucekhiilany, Abelardo Lpez-
lagunas, Peter R. Mattson, and John D. Owens. A bandwidth-efficient architecture
for media processing. lin 31st International Symposium on Microarchitecture
pages 3—-13, 1998.

Matthew Drake, Henry Hoffman, Rodric Rabbah, and Saman Amarasinghe. Mpeg-
2 decoding in a stream programming languagelnlinternational Symposium on
Computer Architecture (ipdps), Rhodes Island, Greece, Apr. 2006.

K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz. Smart mem-
ories: A modular reconfigurable architecture. Iminternational Symposium on
Computer Architecture (ISCApages 161-171, June 2000.

S. Ciricescu, R. Essick, B. Lucas, P. May, K. Moat, J. Norris, M. Schuette, , and
A. Saidi. The reconfigurable streaming vector processor {f§yp In Proc. Int.
Symp. Microarchitecturgpages 141-150, Feb. 2003.

Antonio Gentile and D. Scott Wills. Portable video supercomputlad-E Trasac-
tion on Computers, 53(8):960-973, Aug. 2004.

Brucek Khailany et al. A programmable 512 GOPS stream processor for signal,
image, and video processing.IBEE International Solid-State Circuits Conference,
(ISSCC '07) pages 272-273, Feb. 2007.

B. Flachs, S. Asano, S. H. Dhong, P. Hofstee, G. Gervais, R. Kim, T. Le, P. Liu,
J. Liberty, B. Michael, H. Oh, S. M. Mueller, O. Takahashi, A. Hatakeyama,
Y. Watanabe, and N. Yano. A streaming processing unit for a CELL processor. In
IEEE International Solid-State Circuits Conference, (ISSCC '05), pages 134-135,
Feb. 2005.

Mike Butts. Synchronization through communication in a massively parallel pro-
cessor arraylEEE Micro, 27(5):32-40, 2007.

S. Bell et al. TILE64™ processor: A 64-core soc with mesh interconnectEIRE
International Solid-State Circuits Conference, (ISSCC,@8ges 88-89, Feb. 2008.

M. Nakajima et al. A 40 GOPS 250 mw massively parallel processor based on
matrix architecture. INEEE International Solid-State Circuits Conference, (ISSCC
'06), pages 410-411, Feb. 2006.

T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra. Overview of the h.264/avc
video coding standardlEEE Trans. Circuits Syst. Video Techndl3(7):560-576,
2003.

A. Joch et al. Performance comparison of video coding standards using lagrangian
coder control. IrProc. IEEE Int. Conf. on Image Processjmages 501-504, 2002.

151



[51] Lai-Man Po and Wing-Chung Ma. A novel four-step searcloatm for fast block
motion estimation.|lEEE Transactions on Circuits and Systems for Video Technol-
ogy, 6(3):313-317, jun 1996.

[52] JVT. H.264/AVC reference software version jm 12.4.

[53] Chung-Cheng Lou, Szu-Wei Lee, and C.-C.J. Kuo. Adaptive motion search range
prediction for video encodindEEE Transactions on Circuits and Systems for Video
Technology, 20(12):1903-1908, Dec. 2010.

[54] Jia-Ching Wang, Jhing-Fa Wang, Jar-Ferr Yang, and Jang-Ting Chen. A fast mode
decision algorithm and its visi design for h.264/avc intra-predicti&EE Transac-
tion on Circuits and Systems for Video Technology, 17(10):1414-1422, 2007.

[55] Henrique S. Malvar, Antti Hallapuro, Marta Karczewicz, and Louis Kerofsky. Low-
complexity transform and quantization in H.264/AVIEEE Transaction on Circuits
and Systems for Video Technology, 13(7):598-603, 2003.

[56] Dongming Zhang et al. Complexity controllable dct for real-time h.264 encoder.
Journal of Visual Communication and Image Representati@(l):59-67, 2007.

[57] Chung-Ming Chen and Chung-Ho Chen. Complexity controllable dct for real-time
h.264 encodelEICE Trans. on Inf. and SysE90-D(1):99-107, 2007.

[58] Detlev Marpe, Heiko Schwarz, and Thomas Wiegand. Context-based adaptive bi-
nary arithmetic coding in the h.264/avc video compression stanttalE Transac-
tions On Circuits and Systems for Video Technology, 13(7):620-636, 2003.

[59] Yen-Kuang Chen et al. Towards efficient multi-level threading of h.264 encoder on
intel hyper-threading architectures. Rroc. of the 18th International Parallel and
Distributed Processing Symposium (IPDPS;Q2)04.

[60] Michael Roitzsch. Slice-balancing H.264 video encoding for improved scalability
of multicore decoding. IfProc. of the 7th ACM and IEEE International Conference
on Embedded softwarpages 269-278, 2007.

[61] A. Rodriguez* et al. Hierarchical parallelization of an h.264/avc video encoder. In
Proc. of the International Symposium on Parallel Computing in Electrical Engineer-
ing (PARELEC’06)2006.

[62] Zhuo Zhao and Ping Liang. Performance comparison of video coding standards us-
ing lagrangian coder control. IRAroc. of IEEE International Conference on Acous-
tics, Speech and Signal Processipgges V 489-492, 2006.

[63] Shuwei Sun, Dong Wang, and Shuming Chen. A highly efficient parallel algorithm
for h.264 encoder based on macro-block region partiti@cture Notes In Computer
Science, pages 577-585, 2007.

152



[64] T. Hoare. "communicating sequential processe€omm. ACM, 8(21):666-677,
1978.

[65] Ujval Kapasi, William J. Dally, Scott Rixner, John D. Owens, and Brucek Khailany.
The Imagine stream processor.Rroceedings 2002 IEEE International Conference
on Computer Design, pages 282—-288, Sep. 2002.

[66] M. Taylor et al. A 16-issue multiple-program-counter microprocessor with point-to-
point scalar operand network. IBEE International Solid-State Circuits Conference
(ISSCC) pages 170-171, Feb. 2003.

[67] B.K. Khailany, T. Williams, J. Lin, E.P. Long, M. Rygh, D.W. Tovey, and W.J. Dally.
A programmable 512 GOPS stream processor for signal, image, and video process-
ing. IEEE Journal of Solid-State Circuitg3(1):202—-213, Jan. 2008.

[68] Nagai-Man Cheung, Xiaopeng Fan, Oscar C. Au, and Man-Cheung Kung. Video
coding on multicore graphics processorsEEE Signal Processing Magazine
27(2):79-89, Mar. 2010.

[69] Wei-Nien Chen and Hsueh-Ming Hang. H.264/AVC motion estimation implmenta-
tion on compute unified device architecture (CUDA)IBEE International Confer-
ence on Multimedia and Exppages 697-70, April 2008.

[70] C. D. Chien et al. A high performance CAVLC encoder design for MPEG-4
AVC/H.264 video coding applications. BEEE Int. Sym. on Circuits and Systems
(ISCAS) pages 3838-3841, May 2006.

[71] Choudhury A. Rahman and Wael Badawy. CAVLC encoder design for real-time
mobile video applicationslEEE Transactions on Circuits and Systems Il: Express
Briefs, 64(10):873—-877, Oct. 2007.

[72] Zhiyi Yu, M.J. Meeuwsen, R.W. Apperson, O. Sattari, M. Lai, J.W. Webb, E.W.
Work, D. Truong, T. Mohsenin, and B.M. Baas. AsAP: An asynchronous array of
simple processorsEEE Journal of Solid-State Circuitd43(3):695—-705, Mar. 2008.

[73] Dean Truong, Wayne Cheng, Tinoosh Mohsenin, Zhiyi Yu, Toney Jacobson, Gouri
Landge, Michael Meeuwsen, Christine Watnik, Paul Mejia, Anh Tran, Jeremy Webb,
Eric Work, Zhibin Xiao, and Bevan M. Baas. A 167-processor 65 nm computational
platform with per-processor dynamic supply voltage and dynamic clock frequency
scaling. InSymposium on VLSI Circuits, (VLSI '08une 2008.

[74] D. N. Truong, W. H. Cheng, T. Mohsenin, Z. Yu, A. T. Jacobson, G. Landge, M. J.
Meeuwsen, A. T. Tran, Z. Xiao, E. W. Work, J. W. Webb, P. Mejia, and B. M. Baas.
A 167-processor computational platform in 65 nm cmd®8EE Journal of Solid-
State Circuits (JSSC), 44(4):1130-1144, April 2009.

153



[75] Francesco Vitullo, Nicola E., Esa Petri, Sergio Sapan&uca Fanucci, Michele
Casula, Riccardo Locatelli, and Marcello Coppola. Low-complexity link microar-
chitecture for mesochronous communication in Networks-on-ChiEE TRANS-
ACTIONS ON COMPUTERS7(9):1196-1201, Sep. 2008.

[76] Sanjive Agarwala et al. A 600-MHz VLIW DSPIEEE Journal of Solid-State
Circuits, 37(11):1532-1544, Nov 2002.

[77] G.Bjontegaard and K.Lillevold. Context-adaptive VLC(CVLC) coding of coeffi-
cients. Doc.JVT C028rl.doc, May 2002.

[78] Zhibin Xiao and Bevan M. Baas. A high-performance parallel CAVLC encoder on
a fine-grained many-core system.liiernational Conference on Computer Design,
(ICCD '08), pages 248-254, October 2008.

[79] Eric W. Work. Algorithms and software tools for mapping arbitrarily connected
tasks onto an asynchronous array of simple processors. Master’s thesis, University
of California, Davis, CA, USA, September 200%.t p: / / wwww. ece. ucdavi s.
edu/ vcl / pubs/t heses/ 2007- 4.

[80] Zhiyi Yu and Bevan M. Baas. A low-area interconnect architecture for chip mul-
tiprocessors. INEEE International Symposium on Circuits and Systems (ISCAS)
pages 2857-2860, May 2008.

[81] Wei Zhao and Yu Cao. New generation of predictive technology model for sub-45nm
design exploration. ISQED ’'06: Proceedings of the 7th International Symposium
on Quality Electronic Desigrpages 585-590, Mar. 2006.

[82] J.M.Rabaey.Digital Integrated Circuits — A Design Perspectiverentice-Hall In-
ternational, Inc, second edition, 2003.

[83] W.I.Choi et al. Fast motion estimation with modified diamond search for variable
motion block sizeslEEE Trans. on Image Processing371-374, Sep. 2003.

[84] Li Zhuo, Qiang Wang, et al. Optimization and implementation of H.264 encoder on
DSP platform. INEEE Int. Conf. on Multimedia and Expo (ICMH)ages 232-235,
July 2007.

[85] Shashi Kant et al. Real time H.264 video encoder implementation on a pro-
grammable DSP processor for videophone applicationgntirConf. on Consumer
Electronics (ICCE)pages 93-94, Jan. 2006.

[86] Xun He, Xiangzhong Fang, Ci Wang, and S. Goto. Parallel HD encoding on CELL.
In IEEE International Symposium on Circuits and Systems (ISCAS 09), pages 1065—
1068, May 2009.

[87] S. Seo, M. Woh, S. Mahlke, T. Mudge, S. Vijay, and C. Chakrabarti. Customiz-
ing wide-SIMD architectures for H.264. IBAMOS’09: Proceedings of the 9th
international conference on Systems, architectures, modeling and simulation, pages
172-179, 2009.

154



[88] Intel official website. Intel processor specificatio®@xGt. 2010. htt p: // ar k.
i ntel.conl Product. aspx?i d=35569.

[89] Hsiu-Cheng Chang, Jia-Wei Chen, Ching-Lung Su, Yao-Chang Yang, Yao Li, Chun-
Hao Chang, Ze-Min Chen, Wei-Sen Yang, Chien-Chang Lin, Ching-Wen Chen,
Jinn-Shan Wang, and Jiun-In Quo. A 7mw-to-183mw dynamic quality-scalable
h.264 video encoder chip. IEEE International Solid-State Circuits Conference
pages 280—-603, Feb. 2007.

[90] Mike Butler. AMD Bulldozer Core - a new approach to multithreaded compute
performance for maximum efficiency and throughputtH&E HotChips Symposium
on High-Performance Chips (HotChips 2018ug. 2010.

[91] M. Taylor et al. The design and implementation of a first-generation CELL proces-
sor. InIEEE International Solid-State Circuits Conference (ISS@@pes 184-185,
Feb. 2005.

[92] M. Horowitz R. Ho, K. Mai. The future of wiresProc. of IEEE 89:490-504, Apr.
2001.

[93] Zhiyi Yu and B.M. Baas. A low-area multi-link interconnect architecture for GALS
chip multiprocessors.|EEE Transactions on Very Large Scale Integration (VLSI)
Systems, 18(5):750-762, may. 2010.

[94] Erno Salminen, Ari Kulala, and Timo D. dndldinen. Survey of Network-on-
Chip proposals.Open Core Protocol International Partnership (OCP-IP): White
Paper, p.1, 2008. [online] Available: htt p://wwv. ocpi p. or g/ socket/
whi t epapers.

[95] Hui Zhang, Marlene Wan, V. George, and J. Rabaey. Interconnect architecture ex-
ploration for low-energy reconfigurable single-chip dspsPtac. IEEE Computer
Society Workshop On VLSI, pages 2—-8, 1999.

[96] P.P.Pande, C. Grecu, M. Jones, A. Ilvanov, and R. Saleh. Effect of traffic localization
on energy dissipation in NoC-based interconnecPioc. IEEE Int. Symp. Circuits
and Systems (ISCA)ages 1774-1777, 2005.

[97] J. Kim, J. Balfour, and W.J. Dally. Flattened butterfly topology for on-chip networks.
Computer Architecture Letters, 6(2):37—-40, Feb. 2007.

[98] J. Balfour and W.J. Dally. Design tradeoffs for tiled cmp on-chip network®rén
ceedings of the 20th Annual International Conference on Super Computing, pages
187-198, 2006.

[99] Vangal S. et al. An 80-Tile 1.28TFLOPS network-on-chip in 65nm CMO3SEEE
International Solid-State Circuits Conference (ISSQtaiges 100-101, Feb. 2007.

155



[100] J. Howard, S. Dighe, S.R. Vangal, G. Ruhl, N. Borkar, &nJV. Erraguntla,
M. Konow, M. Riepen, M. Gries, G. Droege, T. Lund-Larsen, S. Steibl, S. Borkar,
V.K. De, and R. Van Der Wijngaart. A 48-core ia-32 processor in 45 nm cmos using
on-die message-passing and dvfs for performance and power sd&lifig.Journal
of Solid-State Circuits, 46(1):173 —183, Jan. 2011.

[101] Hongyu Chen et al. The y architecture for on-chip interconnect: analysis and
methodology. IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, 24(4):588-599, April 2005.

[102] Feng Zhou, Esther Y. Cheng, Bo Yao, Chung-Kuan Cheng, and Ronald Graham. A
hierarchical three-way interconnect architecture for hexagonal processds.IRn
'03: Proceedings of the 2003 international workshop on System-level interconnect
prediction, pages 133-139, 2003.

[103] Kang G. Shin. Harts: A distributed real-time architecturédEEE Computer
24(5):25-35, 1991.

[104] Catherine Decayeux and Davis Seme. 3d hexagonal network: modeling, topologi-
cal properties, addressing scheme, and optimal routing algoritRBEE Trans. on
Parallel and Distributed System$6(9):875-884, Sep. 2005.

[105] J. Becker, F. Henrici, S. Trendelenburg, M. Ortmanns, and Y. Manoli. A continuous-
time hexagonal field-programmable analog array in 0.13um CMOS with 186MHz
GBW. InIEEE International Solid-State Circuits Conference, (ISSCC '08), pages
70-71, Feb. 2008.

[106] Allen D. Malony. Regular processor arrays.the 2nd Symposium on the Frontiers
of Massively Parallel Computatiopages 499-502, 1988.

[107] M. Yuffe, E. Knoll, M. Mehalel, J. Shor, and T. Kurts. A fully integrated multi-CPU,
GPU and memory controller 32nm processor. IHEE International Solid-State
Circuits Conference (ISSC(ages 264—-266, Feb. 2011.

[108] S. Wong et al. Modeling of interconnect capacitance, delay, and crosstalk in VLSI.
IEEE Trans. Semiconduct. Manufadt3:108-111, February 2000.

[109] PTM. Predictable technology model, interconnect section. Online.
http://www.eas.asu.edu/ptm/.

[110] ITRS. International technology roadmap for semiconductors, 2010 update, intercon-
nect section. Online. http://www.itrs.net/reports.html.

[111] Yulei Zhang, James F. Buckwalter, and Chung-Kuan Cheng. Performance predic-
tion of throughput-centric pipelined global interconnects with voltage scaling. In
Proceedings of the 12th ACM/IEEE international workshop on System level inter-
connect prediction, SLIP 10, pages 69-76, 2010.

156



[112] Zhibin Xiao and Bevan Baas. A 1080p H.264/AVC baselesdual encoder for a
fine-grained many-core systelEEE Transaction on Circuits and Systems for Video
Technology, 21(7):890-902, 2011.

[113] Anh T. Tran, Dean N. Truong, and Bevan M. Baas. A complete real-time 802.11a
baseband receiver implemented on an array of programmable processAssloin
mar Conference on Signals, Systems and Computers (ACSSC), pages 165-170, Oct.
2008.

[114] Wm. A. Wulf and Sally A. Mckee. Hitting the memory wall: Implications of the
obvious.Computer Architecture New23:20-24, 1995.

[115] S. McKee and Sally A. Reflections on the memory wallPhaceedings of the 1st
conference on Computing frontiers, pages 162—-167, New York, NY, USA, 2004.

[116] O. Sattari. Fast fourier transforms on a distributed digital signal processor. Master’s
thesis, University of California, Davis, Davis, CA, USA, 2004.

[117] Zhiyi Yu. High Performance and Energy Efficient Multi-core Systems for DSP Ap-
plications. PhD thesis, University of California, Davis, CA, USA, October 2007.
http://ww. ece. ucdavi s. edu/ vcl / pubs/t heses/ 2007- 5.

[118] Michael Meeuwsen, Zhiyi Yu, and Bevan M. Baas. A shared memory module
for asynchronous arrays of processoiSURASIP Journal on Embedded Systems
2007:Article ID 86273, 13 pages, 2007.

[119] Stephen T. Le. A fine grained many-core h.264 video encoder. Master’s thesis,
University of California, Davis, CA, USA, March 2010ht t p: / / www. ece.
ucdavi s. edu/ vcl / pubs/t heses/ 2010- 03.

[120] Z. Xiao, S. Le, and B. M. Baas. A fine-grained parallel implementation of a
H.264/AVC encoder on a 167-processor computational platforfEEE Asilomar
Conference on Signals, Systems and Computers, Nov. 2011.

[121] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, and C. Kozyrakis. A
case for intelligent RAMIEEE Micro, 17(2):34-44, March-April 1997.

[122] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. A. Horowitz. Smart
Memories: a modular reconfigurable architecture.lnternational Symposium on
Computer Architecture (ISCApages 161-171, June 2000.

[123] YiKang, Wei Huang, Seung-Moon Yoo, D. Keen, Zhenzhou Ge, V. Lam, P. Pattnaik,
and J. Torrellas. FlexRAM: toward an advanced intelligent memory system. In
International Conference on omputer Design (ICCD '98ages 192-201, 1999.

[124] Jung-Yup Kang, S. Gupta, and J.-L. Gaudiot. An efficient data-distribution mech-
anism in a Processor-In-Memory (PIM) architecture applied to motion estimation.
IEEE Transactions on Computes7(3):375-388, march 2008.

157



[125] Firoozshahian Amin, Solomatnikov Alex, Shacham Ofggar Zain, Richardson
Stephen, Kozyrakis Christos, and Horowitz Mark. A memory system design frame-
work: creating smart memories. Rroceedings of the 36th annual international
symposium on Computer architecture, pages 406—417, 2009.

[126] K. Mai, R. Ho, E. Alon, D. Liu, Y. Kim, D. Patil, and M. A. Horowitz. Architec-
ture and circuit techniques for a 1.1-GHz 16-kb reconfigurable memory in;0n18-
CMOS. IEEE Journal of Solid-State Circuits (JSS@P(1):261-275, January 2005.

[127] Shyamkumar Thoziyoor, Jung Ho Ahn, Matteo Monchiero, Jay B. Brockman, and
Norman P. Jouppi. A comprehensive memory modeling tool and its application to
the design and analysis of future memory hierarchiesPrsceedings of the 35th
Annual International Symposium on Computer ArchiteGtis€A '08, pages 51—

62, Washington, DC, USA, 2008.

[128] R. Mahmud. Techinigues to make clock switching glitch free. [online] Available:
http://ww. eeti nes. com

[129] Chris J. Myers Asynchronous Circuit Design. John Wiley & Sons, Inc., 2001.

[130] A.T. Tran, D.N. Truong, and B.M. Baas. A low-cost high-speed source-synchronous
interconnection technique for GALS chip multiprocessorsCimcuits and Systems,
2009. ISCAS 2009. IEEE International Symposiunpaiges 996—999, May. 2009.

[131] Michael J. Meeuwsen. A shared memory module for an asynchronous array of
simple processors. Master’s thesis, University of California, Davis, CA, USA, April
2005. http://http://ww. ece. ucdavi s. edu/ cerl /techreports/

2005- 2/ .

[132] R. Banakar, S. Steinke, Bosik Lee, M. Balakrishnan, and P. Marwedel. Scratchpad
memory: a design alternative for cache on-chip memory in embedded systems. In
Symposium on Hardware/Software Codesign, pages 73-38, May 2002.

[133] B. Flachs, S. Asano, S. H. Dhong, P. Hofstee, G. Gervais, R. Kim, T. Le,
P Liu, J. Leenstra, J. Liberty, B. Michael, H. Oh, S. M. Mueller, O. Takahashi,
A. Hatakeyama, Y. Watanabe, and N. Yano. A streaming processing unit fora CELL
processor. INEEE International Solid-State Circuits Conference (ISSG@pruary
2005.

[134] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, f. Ghodrat, B. Greenwald, H. Hoffman,
P. Johnson, J. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumpen,
M. Frank, S. Amarasinghe, and A. Agarwal. The raw microprocessor. A compu-
tational fabric for software circuits and general-purpose progratBEE Micro,
22(2):25-35, March-April 2002.

[135] S. Bell, B. Edwards, et al. TILE64 processor: A 64-core SoC with mesh intercon-
nect. InlEEE International Solid-State Circuits Conference (ISSGfapges 88-89,
February 2008.

158



[136]

[137]
[138]

[139]

[140]

[141]

Maurice Herlihy and J. Eliot B. Moss. Transactional nogyn architectural support
for lock-free data structureSIGARCH Comput. Archit. New21(2):289-300, May
1993.

ChipRuud Haring. The blue Gene/Q compute chipH&tChips 23, Aug. 2011.

Gabriel H. Loh. 3d-stacked memory architectures for multi-core procesBoos.
ceedings of the 35th Annual International Symposium on Computer Architecture,
36(3):453-464, June 2008.

S.R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan,
A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts, Y. Hoskote, N. Borkar, and
S. Borkar. An 80-tile Sub-100-W TeraFLOPS processor in 65-nm CMEEE
Journal of Solid-State Circuits, 3(1):29-41, Jan. 2008.

Dae Hyun Kim, K. Athikulwongse, M. Healy, M. Hossain, Moongon Jung,

I. Khorosh, G. Kumar, Young-Joon Lee, D. Lewis, Tzu-Wei Lin, Chang Liu,

S. Panth, M. Pathak, Minzhen Ren, Guanhao Shen, Taigon Song, Dong Hyuk Woo,
Xin Zhao, Joungho Kim, Ho Choi, G. Loh, Hsien-Hsin Lee, and Sung Kyu Lim. 3D-
MAPS: 3D massively parallel processor with stacked memutf£E International
Solid-State Circuits Conference (ISSC@ages 188-189, Feburary 2012.

David Fick, Ronald G. Dreslinski, Bharan Giridhar, Gyouho Kim, Sangwon Seo,
Sudhir Satpathy Matthew Fojtik, Yoonmyung Lee, Daeyeon Kim, Nurrachman Liu,
Michael Wieckowski, Gregory Chen, Trevor Mudge, Dennis Sylvester, and David
Blaauw. Centip3De: A 3930 DMIPS/W configurable near-threshold 3d stacked sys-
tem with 64 arm cortex-m3 coresEEE International Solid-State Circuits Confer-
ence (ISSCGC)yages 190-191, Feburary 2012.

159



