
Energy-efficient Fine-grained Many-core Architecture for
Video and DSP Applications

By

ZHIBIN XIAO
B.S. (Zhejiang University, Hangzhou, China), 2003
M.S. (Zhejiang University, Hangzhou, China), 2006

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Electrical and Computer Engineering

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

Davis

Approved:

Chair, Dr. Bevan M. Baas

Member, Dr. Venkatesh Akella

Member, Dr. Soheil Ghiasi

Committee in Charge
2012

– i –

c© Copyright by Zhibin Xiao 2012
All Rights Reserved

Abstract

Many-core processor architecture has become the most promising computer architec-

ture. However, how to utilize the extra system performance for real applications such as

video encoding is still challenging. This dissertation investigates architecture design, phys-

ical implementation and performance evaluation of a fine-grained many-core processor for

advanced video coding with a focus on interconnection, topology, memory system and

related parallel programming methodology.

A baseline residual encoder for H.264/AVC on a current generation fine-grained many-

core system is proposed that utilizes no application-specific hardware. The 25-processor

encoder encodes video sequences with variable frame sizes and can encode 1080p HDTV

at 30 frames per second with 293 mW average power consumption by adjusting each pro-

cessor to workload-based optimal clock frequencies and dual supply voltages—a 38.4%

power reduction compared to operation with only one clock frequency and supply voltage.

In comparison to published implementations on the TI C642 DSP platform, the design has

approximately 2.9–3.7 times higher scaled throughput, 11.2–15.0 times higher throughput

per chip area, and 4.5–5.8 times lower energy per pixel. Compared to a heterogeneous

SIMD architecture customized for H.264, the presented design has 2.8–3.6 times greater

throughput, 4.5–5.9 times higher area efficiency, and similar energy efficiency.

Next, this dissertation proposes novel processor shapes and inter-connection topolo-

gies for many-core processor arrays which result in an overall application processor that

requires fewer cores and has a lower total communication length. The proposed topologies

compared to the commonly-used 2D mesh and include two 8-neighbor topologies, two 5-

nearest-neighbor and three 6-nearest-neighbor topologies—three of which utilize 5-sided

or hexagonal processor tiles. A 1080p H.264/AVC residual video encoder and a complete

54 Mbps 802.11a/11g wireless LAN baseband receiver are mapped onto all topologies and

compared. The methodology to implement an array of hexagonal-shaped processor tiles

with industry-standard CAD tools and automatic place and route flow is described. A 16-

– ii –

bit DSP processor tile is tailored for all proposed topologies and implemented at 65 nm

CMOS technology without full-custom layout. Results show that the 6-neighbor hexago-

nal tile and the 6-neighbor rectangular tile incur a 2.9% area increase per tile compared to

the 4-neighbor 2D mesh, but their much more effective inter-processor interconnect yields

an average total application area reduction of 21% and a total application inter-processor

communication distance reduction of 19%.

Motivated by the fact that video encoding tasks normally read and write a block of

data at one time in one transaction, the third part of this dissertation proposes a novel

source synchronous bufferless shared memory to enable safe memory sharing among mul-

tiple processors with different clock domains. Compared with the previous FIFO buffered

memory design, the bufferless memory module achieves lower latency, higher throughput,

lower area overhead and lower power consumption. The bufferless memory module also

supports direct communication with far-away processors through the existing processor-

processor circuit switch interconnection network. The implementation results show that

a 16 KB bufferless memory module reduces 58% single memory access latency and has

higher burst-mode throughput (1%) compared to the 16 KB buffered memory module. The

bufferless memory module also reduces the area overhead from 63% to 17% compared

with buffered memory module, which yields a power reduction by 43%.

– iii –

Acknowledgments

Completing the PhD study is probably one of the most challenging tasks in my life.

When I look back, I would never forget the days and nights I have spent with my fellow

colleagues in the VCL lab at the Department of Electrical and Computer Engineering. The

PhD study is a long journey and finally it comes to an end. Now I would like to thank all

of the individuals who made this mission possible.

My first debt of gratitude must go to my advisor, Dr. Bevan M. Baas. He patiently

provided the vision, encouragement and advice necessary for me to proceed through the

doctorial program and complete my dissertation. I have benefited so much from his guid-

ance on critical thinking, clear writing and effective presentation. The full financial support

is also invaluable in the past economic environment. His devotion and enthusiasm on com-

puter engineering research will continue to influence me in a positive way in my future

career.

I also want to thank my qualification committee and dissertation reading committee

members including professor Venkatesh Akella, professor Soheil Ghiasi, professor Zhaojun

Bai, professor Rajeevan Amirtharajah for their useful comments and valuable feedbacks on

my research.

My special thanks go to Dean Truong and Anh Tran, my fellow colleagues and good

friends. We have spent most of the time in the lab together. I really appreciate their selfless

help on my work and I will miss our discussions on all aspects of research. Being together

with them in both study and leisure time is a great pleasure to me.

I would also like to thank previous VCL video group members, Stephen Le and Henna

Huang. Their help and contribution on the video encoding project are essential to make

this research presentable.

I want to thank previous VCL group members including Zhiyi Yu, Tinoosh Mohsenin,

Toney Jacobson, Eric Work, Wayne Cheng and Paul Vincent Mejia. It was with them that

I had a happy time when I first came to Davis. It is my pleasure to work with them.

– iv –

I also would like to thank previous and current VCL lab members:Bin, Brent, Aaron,

Jon, Jeremy, Emmanuel, Michael, Samir, Houshmand, Nima, Trevin, Lucas. I have enjoyed

many discussions with them on various topics and found that there is always something I

can learn from them.

Specially, I want to express my deep appreciation to my wife Shuting. Her constant

support has allowed me to spend days and nights on this dissertation. She also brought us

the most wonderful gift, our lovely daughter Amelia.

I want to thank my parents, my sister, my relatives and all of my friends. You might not

know the details of my research area, but the support and help I get from you all might be

more important than the pure academic help. It is because of you that I am a happy person

and can keep pursuing my dreams.

Finally, I want to gratefully acknowledge supports from ST Microelectronics, Intel Cor-

poration, UC Micro, NSF Grant 0430090 and CAREER Award 0546907, SRC GRC Grant

1598, CSR Grant 1659, Intellasys Corporation, S Machines and the support of the C2S2

Focus Center, one of six research centers funded under the Focus Center Research Program

(FCRP), a Semiconductor Research Corporation entity.

– v –

Contents

Abstract ii

Acknowledgments iv

List of Figures ix

List of Tables xii

1 Introduction 1
1.1 Challenges . 2
1.2 Contributions . 4
1.3 Organization . 6

2 Background and Research Goals 7
2.1 Research Goals . 7

2.1.1 Multimedia Application Characteristics and Approaches 8
2.1.2 Parallel Programming Model . 9
2.1.3 Next-generation Fine-grained Many-core System 9

2.2 Related Work . 10
2.2.1 Traditional DSPs and Microprocessors 11
2.2.2 Reconfigurable Computing Fabrics 11
2.2.3 Streaming Processors and Many-core Processors 12

2.3 Summary . 14

3 H.264/AVC Video Encoding Algorithms 15
3.1 Overview of H.264/AVC Video Encoding 15

3.1.1 Introduction of Video Encoding 15
3.1.2 H.264 Video Encoding/decoding Architecture 17

3.2 H.264/AVC Video Encoding Algorithms 19
3.2.1 Inter Prediction . 20
3.2.2 Intra Prediction . 27
3.2.3 Transform and Quantization . 30
3.2.4 De-block Filter . 32
3.2.5 Entropy Coding . 36

– vi –

3.3 Related Work . 36

4 A Parallel 1080p H.264 Baseline Residual Encoder 38
4.1 Introduction . 39
4.2 The AsAP Architecture and Programming Methodology 40

4.2.1 Many-core Array Architecture . 40
4.2.2 Parallel Programming Methodology 42

4.3 Residual Encoding in H.264/AVC . 43
4.3.1 CAVLC Encoding . 44

4.4 The Proposed Parallel Residual Encoder 45
4.4.1 Integer Transform and Quantization 47
4.4.2 The CAVLC Encoder . 49

4.5 Simulation Results and Comparison . 54
4.5.1 Implementation Results . 54
4.5.2 Performance Evaluation . 56
4.5.3 Power Consumption Optimization 58
4.5.4 Performance Comparison . 63

4.6 Conclusion . 67

5 Application-Driven Processor Shape and Topology Design 68
5.1 Introduction . 68
5.2 Related Work . 70
5.3 Processor Shapes and Topologies . 71

5.3.1 Processor Tile Shapes . 73
5.3.2 The Proposed Topologies . 73
5.3.3 Performance Evaluation . 77
5.3.4 Interconnect Wire Delay . 81

5.4 Application mapping . 85
5.4.1 Target Interconnect Architecture 85
5.4.2 Two Benchmark Applications . 85
5.4.3 Application Mapping Results . 89

5.5 Non-rectangular Processor Tile Physical Design 92
5.5.1 Physical Design Methodology . 92
5.5.2 Non-rectangular Processor Tile and CMP Design 93

5.6 Chip Implementation Results . 95
5.6.1 Processor Tile Implementation Results 97
5.6.2 Application Area . 98
5.6.3 Application Power . 100

5.7 Conclusion . 102

6 Efficient Distributed On-Chip Shared Memory 103
6.1 Background . 104

6.1.1 Video Application Memory Requirements 104
6.1.2 Current AsAP Memory System 105

6.2 Shared Memory Primary Architecture . 107

– vii –

6.2.1 Single Processor’s View . 107
6.2.2 Sharing Among Multiple Processors 109
6.2.3 Related and Proposed Memory Architecture 109

6.3 Shared Memory Physical Parameters . 111
6.3.1 Capacity . 111
6.3.2 Density . 112
6.3.3 Distribution . 112

6.4 Shared Memory Clocking Architecture . 113
6.5 Challenges and Solutions to Switch Live Clocks 115

6.5.1 Approach 1: Simple Multiplexers 115
6.5.2 Approach 2: Simple Multiplexers with Cross-coupled Synchronizers 116
6.5.3 Approach 3: Simple Multiplexers with Clock Gating Circuits . . . 119

6.6 Processor-Memory Interconnection Network 121
6.7 Bufferless Shared Memory Module . 124

6.7.1 Primary Architecture . 125
6.7.2 Micro-architecture . 126
6.7.3 Performance Evaluation . 127
6.7.4 Implementation Results . 135

6.8 Related work . 137

7 Conclusion and Future Work 139
7.1 Conclusion . 139
7.2 Future Work . 141

Glossary 143

Bibliography 148

– viii –

List of Figures

1.1 Power consumption of Intel microprocessors from 1970 to 2008 3

2.1 Multi-task application executing models 9

3.1 General video encoder block diagram . 16
3.2 H.264/AVC encoder block diagram . 17
3.3 H.264/AVC decoder block diagram . 18
3.4 Full Search motion estimation . 20
3.5 Multiple inter-prediction modes defined in H.264/AVC 21
3.6 Examples of integer and sub-sample prediction 22
3.7 H.264/AVC motion vector prediction . 23
3.8 H.264 encoder performance with different number of reference pictures . . 24
3.9 H.264 encoder performance with different ME search range 25
3.10 Parallel motion estimation mapping to a fine-grained many-core system . . 27
3.11 Labeling of prediction samples of a (4, 4) block 28
3.12 Nine 4x4 intra prediction modes . 28
3.13 Parallelism of H.264 intra prediction . 29
3.14 Data-flow of H.264 transformation and quantization 31
3.15 Illustration of H.264 de-block filter . 33
3.16 Determination of boundary strength Bs . 33
3.17 Examples of macroblock level parallelism of the H.264 de-block filtering . 34
3.18 De-block filter concurrent processing order 35

4.1 Architecture of targeted many-core system. 39
4.2 A 1.2 GHz fully-functional AsAP chip in 65 nm CMOS 40
4.3 A fine-grained parallel programming methodology 41
4.4 Residual data encoding procedure in an H.264/AVC encoder. 43
4.5 Scanning order of residual blocks within a macroblock. 44
4.6 Data flow diagram of the proposed H.264/AVC residual encoder. 45
4.7 Two mappings of integer transform and quantization. 46
4.8 Macroblocks in a QCIF frame. 48
4.9 A 20-processor CAVLC mapping done manually 49
4.10 A 15-processor CAVLC mapping done automatically 51
4.11 A 15-processor CAVLC mapping done manually 52

– ix –

4.12 The proposed 25-processor H.264/AVC residual encoder mapping. 53
4.13 Instruction memory usage of the proposed 25-processor encoder. 54
4.14 Data memory usage of the proposed 25-processor encoder. 55
4.15 The average cycles to encode one macroblock for various test sequences . . 57
4.16 Processor activity of the residual encoder 58
4.17 The total encoder power consumption over various supply voltages 62
4.18 Delay and energy per operation of an inverter based on PTM spice simulation 63

5.1 Example tiles of constant area with random wire endpoints 72
5.2 The baseline 2D mesh and seven proposed/shape combinations 72
5.3 A spectrum of 6-neighbor topologies with offset row house-shaped tiles . . 75
5.4 Fraction of area unavailable for processor tiles 77
5.5 The worst-case communication distance across processor arrays 78
5.6 The worst-case communication distance for two-port processor arrays . . . 81
5.7 TheΠ5 lumped RC circuit model for wire delay simulation 82
5.8 A 2D mesh processor array using five-port routers 84
5.9 A diagram of two processors in the 2D mesh array with two ports per tile . 84
5.10 Task graph of a 22-node H.264/AVC video residual encoder. 86
5.11 An H.264/AVC residual encoder mapped to4-4 Rectmesh processor array . 86
5.12 An H.264/AVC residual encoder mapped to a6-6 Hexprocessor array . . . 87
5.13 Task graph of a 22-node 802.11a/g WLAN baseband receiver 88
5.14 An 802.11a/g baseband receiver mapped on a4-4 Rectmesh processor array 88
5.15 An 802.11a/g baseband receiver mapped on a6-6 Hexprocessor array . . . 89
5.16 The number of processors for mapping two applications to seven topologies 90
5.17 The total communication link length based on non-Manhattan-style wires . 91
5.18 The estimated total communication length based on Manhattan-style wires . 91
5.19 DRC clean and LVS clean layout of a hex processor and a 6x6 CMP array . 93
5.20 The final DRC and LVS clean processor tile layouts 94
5.21 Implementation results of seven optimized processor tiles 96
5.22 The area and power of two applications on all proposed topologies 99

6.1 A full H.264 baseline encoder mapped to AsAP platform 106
6.2 The four basic data memory organizations 107
6.3 Three basic shared on-chip memory systems 108
6.4 Three related on-chip memory systems . 109
6.5 The proposed shared on-chip memory system 110
6.6 Various topologies for distribution of memories in an AsAP array 112
6.7 Three shared memory clocking architectures 113
6.8 Three clocking source designs for the shared memory module on AsAP. . . 114
6.9 The circuit and timing diagram of a simple clock switch multiplexer 115
6.10 Two glitch-free clock switch circuits for unrelated clocks 116
6.11 Timing diagram of the AND-logic glitch-free clock switch circuit. 117
6.12 Metastability problem of the AND-logic clock switch circuit. 118
6.13 A 3-stage glitch-free clock switch circuit. 119
6.14 The circuit and timing diagram of a simple clock switch with clock gating . 119

– x –

6.15 A block diagram of two processors sharing one memory module 120
6.16 A timing diagram of two processors sharing one memory 122
6.17 Two types of processor-memory interconnection networks 122
6.18 The physical links between processors and the bufferless memory module. . 123
6.19 Timing diagrams of the processor-memory interface 124
6.20 A four-port FIFO buffered shared memory module. 125
6.21 A four-port bufferless shared memory module. 126
6.22 Micro-architecture of a two-port bufferless shared memory module. 127
6.23 A mutual exclusion primitive (mutex) circuit 128
6.24 Estimated shared memory latencies of reading a block of data 129
6.25 Memory bus transactions for buffered and bufferless memory modules . . . 130
6.26 Example codes of video application running at one AsAP processor 131
6.27 The relative application performance of memory modules without sharing . 133
6.28 The relative application performance of memory modules with sharing . . . 134
6.29 Memory module layouts at 65 nm CMOS technology 135

– xi –

List of Tables

4.1 Elements of CAVLC Encoding per Block 44
4.2 Power measured at 1.3 V and 1.2 GHz. 60
4.3 Power consumption of H.264/AVC residual encoder 61
4.4 Comparison of H.264 residual encoder on software platforms and ASICs . . 65

5.1 Euclidean and Manhattan link lengths for all topologies 76
5.2 Interconnect link wire length and delay for processors with various shapes . 82

6.1 An estimate of memory requirements for DSP and video algorithms 104
6.2 Performance characteristics of SRAMs at 65 nm CMOS 111
6.3 Memory requirement and computation workloads of video encoding tasks . 131
6.4 Layout results of the 16 KB buffered and bufferless shared memory modules 136

– xii –

Chapter 1

Introduction

Due to advances in images and video algorithms as well as very large scale integra-

tion (VLSI) technology, diverse and interesting visual experiences have been brought to

our daily life. A number of international standards have contributed to the great success

of image and video coding applications such as 3D high-definition TV (3D HDTV), online

video streaming and portable video players (PVPs) [1]. The state-of-art image and video

coding applications present challenges from the perspective of both hardware and software

for embedded systems. These applications involve complex media processing tasks which

have predictable execution behaviors and high computational and memory bandwidth re-

quirements. Traditionally, there are several design approaches for multimedia applications

such as application-specific integrated circuits (ASICs), programmable digital signal pro-

cessors (DSPs) and field programmable gate arrays (FPGAs). ASICs can offer the highest

performance and energy efficiency, but they have little programming flexibility. On the

other hand, programmable DSPs are easy to program but their performance and energy

efficiency is normally 10–100 times lower than ASICs. FPGAs fall in between the above

two approaches.

An ideal platform for embedded multimedia applications should offer high computa-

tional performance, high energy efficiency and a high degree of flexibility. The flexibility

1

is a necessity to achieve high system integration in the presence of multiple standards and

to support the diverse and rapidly evolving multimedia applications. The emergingmulti-

coreor many-coresystems provide us an opportunity to achieve this goal. Normally tiled

architectures that integrate two or more independent processor cores are called multi-core

processors. Manufacturers typically integrate multi-core processors into a single integrated

circuit die (known as chip multiprocessors or CMP). CMPs that integrate tens, hundreds,

or thousands of cores per die are calledmany-corechips.

1.1 Challenges

In the past 40 years, multimedia systems evolve with the rapid development of VLSI

technology. More and more complicated image and video algorithms become feasible by

upgrading the underlying hardware using newer process technology. The realtime software

approach of advanced video encoding are possible with the performance boost of micro-

processors and introduction of multimedia extension instructions. However, two major

challenges are driving the current change towards multi-core and many-core in processor

design.

The first challenge is the so-called “power wall” problem imposed by increasing circuit

frequency and transistor density. Before the year of 2000, extensive research has been con-

ducted to increase the performance of single processors by deepening the pipeline, increas-

ing clock rate and decreasing transistor size which raises the power density to an unaccept-

able level. Figure 1.1 shows the power consumption of main Intel microprocessors from

1970 to 2008. Borkar has found that the power consumption of Intel processors follows

Moore’s law increasing from 0.3 W to 100 W from 1970 to 2000 [2]. The power density

also increased from a couple of watts per mm2 to about 100 Watts per mm2. Although Intel

tried to solve the power wall problem, the recent high-end Intel processors (from 2009 to

2012) still consume 100 to 130 Watts which is the maximum without incurring large costs

2

1970 1975 1980 1985 1990 1995 2000 2005 2010
0.1

1

10

100

1000

Po
w

er
 (W

)

Year

Figure 1.1: Power consumption of Intel microprocessor from 1970 to 2008; data from
1970 to 2000 are from [2]; data in the year of from 2003 to 2008 are from [6], [7], [8], [9]
respectively.

for cooling [3–5].

In order to resolve the power wall problem and keep increasing the performance, the

current trend of microprocessor design is to simplify each individual processor core while

increasing the number of cores on the same chip. By putting multi-cores in the same chip,

computer architects can keep improving transistor size and throughput of the processor

without increasing power densities. Individual processor performance decreases while the

number of processors increases means that more parallelism from applications should be

exploited to distribute more tasks to more cores while reducing the amount of work on each

core.

The second major challenge is the so-called “memory wall” problem imposed by multi-

core systems. According to Hennessy and Patterson, processor performance has increased

55% each year since 1980, while memory performance increase by only 7% each year [10].

For multi-core systems, this performance gap between processors and memories has widened

significantly, because more processors are integrated into the chip while the number of chip

3

pins for memory is limited. Algorithms now need to be more aware of the memory band-

width and latency. Efficient communication mechanisms are more important than before.

It is critical to optimize the memory subsystem to minimize off-chip memory bandwidth

subject to the constraint of available on-chip memory for high throughput and data inten-

sive multimedia applications. Generally, this can be accomplished by transforming and

optimizing the algorithm memory access pattern.

In summary, multi-core and many-core processors have become the most promising

computer architecture for next-generation computation. The design and implementation

of an efficient multi-core or many-core processor is challenging. Furthermore, although

parallel systems guarantee continuing increase of system performance, how to utilize the

extra system performance for real applications like advanced video coding is also challeng-

ing. Parallelizing algorithms is not an easy task. Serious challenges must be resolved in

order to implement advanced video encoding on a many-core system. This dissertation fo-

cuses on designing and applying a massively-parallel fine-grained many-core architecture

for advanced video encoding.

1.2 Contributions

This dissertation makes a couple of contributions.

• It proposes a fine-grained parallel programming methodology and successfully demon-

strates that fine-grained many-core architecture can achieve high performance and

energy efficiency for both video encoding algorithms with high data-level paral-

lelism like integer transform and quantization and serial algorithms with fine-grained

task-level parallelism like CAVLC. The proposed programming methodology yields

an H.264/AVC residual encoder capable of realtime 1080p (1920x1080) HDTV en-

coding with both higher energy efficiency and area efficiency compared with other

software approaches in common DSPs and customized hybrid multi-core architec-

4

tures. In comparison to published implementations on the TI C642 DSP platform, the

design has approximately 2.9–3.7 times higher scaled throughput, 11.2–15.0 times

higher throughput per chip area, and 4.5–5.8 times lower energy per pixel. Com-

pared to a heterogeneous SIMD architecture customized for H.264, the presented

design has 2.8–3.6 times greater throughput, 4.5–5.9 times higher area efficiency,

and similar energy efficiency.

• It proposes novel processor shapes and inter-connection topologies for many-core

processor arrays which result in an overall application processor that requires fewer

cores and has a lower total communication length. The proposed topologies com-

pared to the commonly-used 2D mesh and include two 8-neighbor topologies, two

5-nearest-neighbor and three 6-nearest-neighbor topologies—three of which utilize

5-sided or hexagonal processor tiles. A 1080p H.264/AVC residual video encoder

and a 54 Mbps 802.11a/g OFDM wireless LAN baseband receiver are mapped onto

all topologies. The 6-neighbor hexagonal tile incurs a 2.9% area increase per tile

compared to the 4-neighbor 2D mesh, but its much more effective inter-processor in-

terconnect yields an average total application area reduction of 22% and an average

application power savings of 17%.

• It demonstrates the feasibility of using commonly available commercial CAD tools

to implement tiled CMPs with all of the proposed topologies. All processor tiles were

designed using a standard cell flow up to the layout-level just before GDS extraction.

The implementation results justify the proposed topologies which have small area

overhead and little performance and energy penalties while providing much more

effective inter-processor interconnect to reduce application area and communication

link lengths.

• It proposes a novel source synchronous bufferless shared memory to enable safe

memory sharing among multiple processors with different clock domains. Compared

5

with the previous FIFO buffered memory design, the bufferless memory achieves

lower latency, higher throughput, lower area overhead and lower power consumption.

The bufferless memory also supports direct communication with far-away processors

through the existing processor-processor circuit switch interconnection network. The

implementation results show that a 16 KB bufferless memory module reduces 58%

single memory access latency and has slightly higher throughput (1%) in a burst

mode compared to the 16 KB buffered memory module. The bufferless memory

module also reduces the area overhead from 63% to 17% compared with buffered

memory module, which yields a power reduction by 43%.

1.3 Organization

This dissertation is organized as follows. After the introduction, chapter 2 gives an

overview of fine-grained many-core architecture for video encoding. Chapter 3 analyzes

H.264/AVC encoding algorithms in terms of computation complexity and memory require-

ment and discusses the parallelization methods. Chapter 4 proposes a high-performance

H.264/AVC baseline residual encoder for current many-core system. A thorough per-

formance analysis and comparison is given. Chapter 5 proposes novel processor shapes

and topologies and demonstrates their effectiveness by real-word application mapping and

physical implementation. Chapter 6 investigates the distributed shared memory systems

for fine-grained many-core architecture with detailed physical implementation and perfor-

mance evaluation. Chapter 7 presents conclusions and future work.

6

Chapter 2

Background and Research Goals

Many-core systems provide both opportunity and challenges for advanced video cod-

ing. In this chapter, section 2.1 first introduces the research goals. The general features of

basic video encoding algorithms and parallel programming approach are described. The

current and proposed fine-grained many-core system architecture is introduced. All of the

proposed features help to address the challenges described in chapter 1. In section 2.2, a

survey of related parallel architectures for multimedia applications is given. The difference

between the proposed architecture and existing architectures is also highlighted.

2.1 Research Goals

The goal of this research is to explore the capability of advanced video coding on a

fine-grained many-core system like the asynchronous array of simple processors (AsAP)

architecture, which comprises a 2-D array of reduced complexity programmable processors

with small memories interconnected by a reconfigurable mesh network [11]. This multi-

processor architecture efficiently makes use of task-level parallelism in many complex DSP

applications, and also efficiently computes many large tasks using fine-grained parallelism.

The research goal can be divided into two separate perspectives. The first part is study-

ing, parallelizing and optimizing the video encoding algorithms on the current AsAP sys-

7

tem. The second part of this research focuses on application-driven architecture design

and implementation of the next generation AsAP processor. The following subsections

illustrate the project goal specifically.

2.1.1 Multimedia Application Characteristics and Approaches

Researchers have studied the characteristics of multimedia applications in the past

decades [12–16]. According to the past researches, multimedia applications are long be-

lieved to exhibit the following features:

• Video algorithms typically repeat a small set of operations over a continuous data set.

The intensive computation for highly regular operations shows high data parallelism.

• Multimedia applications always operate on a narrow data types. an 8-bit video pixel

and a 16-bit audio sample is sufficient to encode the input range of human visions

and hearings.

• Intensive I/O or memory accesses, and data locality which represent streaming nature

of multimedia applications.

• Algorithms require a huge computation. In the area of video encoding/decoding, a

frame rate of 30 frames per second is a normal realtime throughput requirement. A

higher frame rate 60 fps or even 120 fps is common for some high-end applications.

Based on the characterization results, the past industry support for multimedia appears

in three forms: application-specific processors, multimedia extensions to general-purpose

processors, and multimedia co-processors. However, none of these methods can achieve

both high performance and flexibility for emerging standards. Furthermore, the recent

video standards like MPEG-4 and H.264 show less processing regularity and are difficult

for the long existing single-instruction-multiple-data (SIMD) approach which mainly ex-

ploits explicit data parallelism in multimedia applications.

8

Task1

Task2

Task3

A

B

C

Memory

Task1 Task2
A B C

Proc.
Proc.1 Proc.2

Task3

Proc.3

Improves performance and

potentially reduces memory size

…

… …

(a) (b)

Figure 2.1: Multi-task application execution: (a) a traditional approach on a processor-
memory system, and (b) a distributed processing approach using task level parallelism

2.1.2 Parallel Programming Model

AsAP achieves high energy-efficiency by avoiding driving global signals across a chip,

centralized memories and function units, all of which are power hungry tasks. This can be

accomplished by partitioning the target applications into different small tasks. Figure 2.1

shows a comparison of traditional shared memory model and a distributed processing ap-

proach using task level parallelism. This dissertation proposes a distributed processing

approach to parallelize video encoding algorithms by exploiting existing locality property

of video applications. The distributed processing approach can significantly reduce mem-

ory access energies because a distributed array of small local memories is far more energy

efficient than a single large shared memory.

2.1.3 Next-generation Fine-grained Many-core System

Considering the application characteristics and combined with the power wall and

memory performance gap challenges, the second project goal of this project is to design a

fine-grained many-core system with the following features:

• The proposed many-core system should keep exploiting data-level parallelism with

configurable SIMD style data-path. However, design trade-offs are required to keep

a single core as small and efficient as possible.

9

• The proposed many-core system should keep exploiting task-level parallelism which

is a natural property of streaming applications. Such task-level parallelization ap-

proach has advantages over SIMD approach in that it can speed up the irregular

serial parts of current video standards, such as the entropy encoding in H.264/AVC.

• The proposed many-core system should achieve low power consumption. The cur-

rent AsAP architecture uses globally asynchronous-local synchronous (GALS) clock-

ing style where each processor owns their own oscillators and can stall if processors

are idle [17]. The dynamic voltage and frequency scaling (DVFS) can further reduce

the system power consumption [18].

• The proposed many-core system should provide a flexible low-cost topology and in-

terconnection architecture. This project explores different low complexity topologies

combined with processor shapes to further improve the throughput of current AsAP

architecture.

• The proposed many-core system should offer flexible memory system for video ap-

plications. Current AsAP architecture is not efficient when algorithms require a large

data memory. The proposed future system should contain a flexible configurable

memory system. The design of this memory system can utilize the characterization

results of H.264 video encoding algorithms.

2.2 Related Work

Researchers have developed various H.264/AVC ASICs for different applications rang-

ing from mobile to high-definition television (HDTV) [19–26]. However, real-time en-

coding of high-definition (HD) H.264 video (up to 1080p) is a challenge to most existing

programmable processors. This section surveys the related programmable approaches in-

cluding: traditional DSP processors and general-purpose processors, reconfigurable com-

10

puting fabrics and many-core streaming processors.

2.2.1 Traditional DSPs and Microprocessors

Traditional digital signal processors (DSPs) have been used for media processing tasks,

such as the Texas Instruments TMS320C6000 families [27]. Some other media processors

are proposed specially for multimedia applications such as MPACT [28] and the Philips

Trimedia architecture [29]. These media processors combine VLIW DSPs, special co-

processors, video I/O and memory resources into a video processing platform. General-

purpose microprocessors are also aware of the importance of multimedia application and

have incorporated multimedia extensions into their architectures. All these instructions ex-

ploit sub-word parallelism available in video applications [30]. Most of them include three

kinds of media instructions, data permutation and transfer instructions, SIMD ALU instruc-

tions and special instructions for specific media processing operations. Some examples of

the SIMD-like multimedia extension instructions are Intel’s MMX [31] and SSE [32], HP’s

MAX2 for the PA-RISC architecture [33], Sun Microsystem’s VIS for the SPARC architec-

ture [34], MIPS’s MDMX and Motorola’s ALTIVEC for the PowerPC architecture [35].

However, both DSP and microprocessors have not fully exploited the streaming nature of

multimedia applications because they are designed for more general-purpose applications.

They can not meet the realtime requirement in many multimedia applications and show

poor energy efficiency.

2.2.2 Reconfigurable Computing Fabrics

A different approach is based on reconfigurable computing fabrics. Since most of the

processing time in multimedia applications is spent on a small number of computation

kernels, researchers have used the hardware/software co-design approach to integrate a

general-purpose processor with reconfigurable co-processors or SIMD data-path to speed

11

up the kernel algorithms. Many research projects have explored this approach, such as

RaPiD [36], MorphoSys [37] and PACT extreme processing platform [38]. The problem of

this approach is that they can not scale well and the energy efficiency is still not high.

2.2.3 Streaming Processors and Many-core Processors

Streaming processing is proposed for applications that has - computation intensity, data

parallelism and producer-consumer locality [39]. Streaming processing is firstly introduced

as a programming model for chip multiprocessor (CMPs) and multi-core architectures.

StreamIt [40] and Smart Memories [41] are two examples of such programming models

which take advantages of the locality found in streaming applications. Based on the stream

processing idea, many programmable stream processors are proposed, such as Stanford

Imagine [39], RSVP [42] and SIMPil architecture [43]. These architectures normally use

hierarchical structures: grouping processing elements into clusters and then those clusters

are integrated into chips. A recently-fabricated streaming processor Storm-1 [44] repre-

sents the state-of-art streaming processors. Storm-1 integrates two CPU cores and a cluster

of parallel integer ALUs organized into 16 data-parallel lanes with 5-ALU VLIW per lane.

Strictly speaking, these streaming processors can be categorized into parallel processing

architectures but not multi-core systems since they have processors acting as centralized

controllers.

There exist many other many-core systems that are proposed specially for multimedia

applications.

TheCELL processor is based on a heterogeneous chip multiprocessing architecture [45].

The major goal is to improve the performance per area by reducing the size and complexity

of a single core and have more cores on a single chip. The first implementation of Cell

Broadband Engine (CBE) supports both scalar and SIMD execution equally well and pro-

vides a high-performance multi-threaded execution environment for all applications. CBE

integrates a single 64-bit power processor element (PPE) oriented for control tasks and

12

eight synergetic processor units (SPEs) optimized for data and thread-level parallelism in

a unified system architecture. One of the innovations in Cell is the Synergistic Processing

Unit (SPU) which promotes programmability by exploiting compiler technique to target the

data parallel execution primitives and also rely on statically scheduling for instruction-level

parallelism. An SPU is essentially a SIMD computation engine. However, by carefully de-

signing data alignment scheme and scalar layering, SPUs can support scalar operations

very well and also can minimize the overhead of data transfer between scalar and vector

operations. Instead of using caches inside the SPU, each SPU contains a local single-port

SRAM unit which provides the SPU execution engine with both instructions and data. The

synergetic processing drives Cell’s performance. However, the programmability of hetero-

geneous Cell processor remains a challenging problem.

The Ambric processor is a homogeneous many-core processor [46]. The massively

parallel processing array (MPPA) is composed of hundreds of 32-bit RISC processors and

a hierarchical organization is used to combine processors into different clusters which share

a large on-chip memory. Ambric MPPA model is a distributed-memory, multiple instruc-

tion, multiple data (MIMD) architecture. Ambric is similar to AsAP in the sense that both

of them use communication to synchronize between different processor cores. The pub-

lished running applications on Ambric include a motion estimation (ME) accelerator, a

deblocking filter for real-time broadcast-quality, high-definition (HD) MPEG2 and H.264

video compression. A possible problem with Ambric architecture is that they use two syn-

chronous registers called a channel to communicate between two processor objects. The

two register buffer may not be enough for applications that have unbalanced workloads and

require massive communication. AsAP also achieves higher energy efficiency than Ambric

which uses synchronous clocking style without dynamic voltage and frequency scaling.

TILE64 is a recently-proposed general-purpose 64-Core SoC Chip with mesh intercon-

nection from Tilera Inc [47]. Each core is an identical 3-issue 32-bit VLIW DSP with 8 KB

separate instruction and data cache and a unified 2-way 64 KB L2 cache. The chip uses

13

dynamic routers and 2D mesh topology for inter-processor communications. The first sili-

con chip has been reported to boot SMP linux system. TILE64 is a typical coarse-grained

many-core system with dynamic network-on-chip routers.

Fine-grained Massively Parallel Processor Based on Matrix Architectureis pro-

posed for mobile multimedia applications [48]. This design integrates 1 Mbit SRAM for

data registers and 2048 2-bit grained processing elements connected by a flexible switching

network. The target application domain in this design is image processing applications on

portable devices. The proposed architecture works as a accelerator of a RISC processor in

a real system. This processor have demonstrated that fine-grained many-core processors

can achieve both high performance and high energy efficiency.

2.3 Summary

This chapter describes the goal of this research — designing and applying a fine-grained

many-core system for advanced video coding. A survey of related parallel architectures for

multimedia applications is presented.

14

Chapter 3

H.264/AVC Video Encoding Algorithms

This chapter gives an overview and thorough analysis of the H.264/AVC video com-

pression standard. The amount of computation and memory requirement of underlying

computation-intensive tasks have been identified and analyzed. This research suggests that

video encoding composed of a transformation-based small block data-flow processing is

suitable for fine-grained many-core architecture. Finally, some related parallel video en-

coder designs are discussed and compared with our approach.

3.1 Overview of H.264/AVC Video Encoding

3.1.1 Introduction of Video Encoding

Video encoding aims to reduce the amount of information to describe video signals.

Ideally, in an lossless compression system, signals can be compressed by senders and re-

covered perfectly by receivers. Unfortunately, lossless approach can only achieve a modest

amount of compression of image and video signals. Most practical video compression tech-

niques are based on lossy compression, in which greater compression is achieved with the

penalty that decoded signals are not identical to the original, which is tolerable by human

being’s vision system.

15

Temporal

Compression

Stored

Frames

Spatial

Compression

Entropy

Encoder

Video input

Encoded output

Residual

Vectors

Coefficients

Figure 3.1: General video encoder block diagram

Figure 3.1 shows a general video encoder which has been used in most video standards

including H.264/AVC standard. Basically, a video encoder consists of three major function

units: a temporal compression unit, a spatial compression unit and an entropy encoder as

Figure 3.1 shows [49]. The input to the temporal compression module is uncompressed

video frames. The temporal compression module makes use of the similarities between

neighboring frames to reduce temporal redundancy. Predicted frames are constructed by

previous or future frames. The output of the temporal compression module is residual

data and other coding parameters including motion vectors which are used for motion es-

timation. The residual frames are sent to a spatial compression unit which attempts to

reduce the spatial redundancy by exploiting the similarities between neighboring samples.

A transformation is applied to the residual data to convert samples into frequency domain

in which they are represented by transform coefficients. The coefficients are further quan-

tized to remove insignificant values. The output of the spatial compression block is a set

of transform coefficients. The transform coefficients and the coding parameters from the

temporal compression unit are sent to an entropy encoder. The entropy encoder uses vari-

able length coding or arithmetic coding methods to remove statistical redundancy in the

data and outputs a bitstream which consists of coding parameters, residual data and header

information.

16

���

�������	

����

�
��������

�
������
��	����

�������

��

��

��	���

������	���

�������

��	��

������	���

�

��������������� ��

�����������!��

�� 	����"
�
�����	���	��

��	�� ���#�

���!�

$

�

$

$

��

� � %�	�	���!

���"

��� ������	����!�&�������
������������!�& ����
�����	���	������!�&������ '��� 	�����
�����	���	������!�

	���
������ �(�	�&� 	����
�����	���	���
������ �(�	�&�
����������!�����������	�

������	������	�!�	���

�
����	������!�����	���

�����������!�

�������	�)�	���

��	������#�

���!�

Figure 3.2: H.264/AVC encoder block diagram which includes two dataflow paths, a “for-
ward” path (left to right, shown in blue) and a “reconstruction” path (right to left, shown in
red)

3.1.2 H.264 Video Encoding/decoding Architecture

Image and video compression has been a very active research area for over 20 years. A

lot of international image and video compression standards have been developed, including

JPEG, MPEG and H.26x series standards. H.264/AVC is the latest video coding standard.

The H.264/AVC encoding follows the same video compression flow as shown in Fig-

ure 3.1. Figure 3.2 and Figure 3.3 shows the overall H.264/AVC encoding and decoding

block diagram respectively. An input frame is processed in units of macro-block (a 16 x 16

block within a frame). Some of the symbols shown in the figures are:

Fn denotes the current frame.

Fn−1 represents the reference frame.

F ′

n represents the reconstructed frame.

P denotes the prediction block.

17

��
�����������

��	�
��
����	
�

��	
�

��

������

���
����	�

��	����
����	�����

���	
�
�������

��������
����	��������
�

����� �����

�����

����� ����

�����

��

�

�

�� ��������!

�

Figure 3.3: H.264/AVC decoder block diagram with similar dataflow path to the “recon-
struction” path in an encoder

Dn represents forward residual block.

D′

n represents reconstructed residual block.

uF ′

n stands for reconstructed block not filtered.

X stands for quantized transform coefficients.

As Figure 3.2 shows, the H.264 encoder includes two data flow path, aForward Path

(from left to right) and aReconstruction Path(from right to left). TheForward Pathcon-

sists of inter-frame motion estimation and compensation, intra prediction, transformation

and quantization, and reorder and entropy coding. For each data block that belongs to input

FrameFn, the encoder first uses the previous reconstructed image samples to generate the

predicted block P through intra- or inter-frame mode, and then produces the forward resid-

ual blockDn by subtracting the predicted blockP from current block. Next, the encoder

carries out the block transformation and quantization to obtain a group of quantized trans-

form coefficientsX. Finally, the encoder applies reorder and entropy coding operations

on X. The entropy-coded coefficients together with side information (prediction modes,

quantization parameter, motion vector information, etc) form the compressed bitstreams.

TheReconstructionPath is made up of de-quantization, inverse transformation, and filter-

ing module. For each input group of quantized transform coefficientsX, the encoder first

generates the reconstructed residual blockD′

n by de-quantization, inverse transformation

18

operations, and then produces reconstructed blockuF ′

n by adding the prediction block to

the reconstructed residual blockD′

n. Next, the encoder utilizes filtering operations to re-

duce the effects of blocking distortion, and creates a reconstructed reference frameF ′

n from

a series of blocks.

The H.264/AVC decoder is basically a reconstructed path of the encoder. For the com-

pressed bit-stream, the decoder first generates a group of quantized transform coefficients

X by entropy decoding and reorder operation, and then uses the decoded side information

to produce reconstructed residual blockD′

n by de-quantization and inverse transformation.

Meanwhile, the decoder creates the prediction block P with the help of side information,

and adds it to the residual blockD′

n to produce reconstructed blockuF ′

n, which is filtered

to create each decoded blockF ′

n.

3.2 H.264/AVC Video Encoding Algorithms

H.264/AVC achieves significant video compression efficiency compared with prior stan-

dards (39%, 49% and 64% bit-rate reduction versus MPEG-4, H.263 and MPEG-2 respec-

tively) [50]. This high coding gain increase comes mainly from a combination of new

coding techniques such as inter-prediction with quarter pixel accuracy, intra-prediction,

multiple reference pictures, variable block size and context-based adaptive entropy coding.

The video visual quality is further increased by an in-loop de-blocking filter to reduce edge

effects of block-based video coding [49]. However, all of the new techniques come with

a cost of high computation complexity which makes a software approach of a real-time

high-definition video encoder almost impossible in current general-purpose processors and

DSPs. This section introduces the key coding blocks in H.264/AVC encoding with a focus

on the complexity analysis and parallelization of the coding blocks.

19

Search AreaFrame i-1

Frame i

Current Block

P

P

Reference Block

Figure 3.4: Full Search motion estimation

3.2.1 Inter Prediction

Basic Idea

Inter prediction uses block-based motion estimation and motion compensation to pre-

dict current frames based on one or more previously encoded video frames. The task of mo-

tion estimation (ME) of a macroblock is to find a 16x16-sample region in a reference frame

that closely matches the current macroblock. The reference frame is a previously encoded

frame from the sequence and may be before or after the current frame in display order. An

area in the reference frame centered on the current macroblock position (the search area) is

searched and the 16 x 16 region within the search area that minimizes a matching criterion

is chosen as the “best match”. The selected “best” matching region in the reference frame

is subtracted from the current macroblock to produce a residual macroblock (luminance

and chrominance). The residual macroblock with a motion vector describing the position

of the best matching region (relative to the current macroblock position) is encoded and

transmitted.

Figure 3.4 shows a full search motion estimation process. We can choose a search

window where the current block is in the center of the window with a maximum horizontal

20

16x16 16x8 8x16 8x8 8x4 4x8 4x4

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7

Figure 3.5: Multiple inter-prediction modes defined in H.264/AVC

and vertical displacement ofp pixels. A full search algorithm calculates a total of(2p+1)2

cost functions, usually an SAD (Sum of Absolute Differences), to find the optimal match

within the search window. Ifa(x, y) andb(x, y) are the pixels of the current and reference

blocks with coordinatesx andy, anddx,dy are the coordinates of motion vector (MV), the

SAD for aM x N -pixel block can be expressed as:

SAD(dx, dy) =
M−1
∑

x=0

N−1
∑

y=0

|a(x, y) − b(x + dx, y + dy)|, (−p ≤ dx, dy ≤ p)

In H.264/AVC, the motion estimator considers multiple reference frames (up to 16

frames) and produces minimum SADs (SADmin) and relevant MVs as the output for each

16x16 pixel block and its sub-partitions, 16x8, 8x16, 8x8, 4x8, 8x4 and 4x4 as shown in

Figure 3.5. Generally, a small partition is used for video region with more details and a

large partition is used for background with fewer details. The small partitions might in-

crease the bitrate due to the necessity of coding more motion vectors. The optimal inter

block size is determined based on the rate distortion (RD) costs.

In H.264/AVC motion estimation, motion vectors can be fractional numbers and this

type of inter-prediction is called sub-sample prediction. Figure 3.6 shows an example of

integer and sub-sample prediction. In Figure 3.6(a), a 4x4 block in the current frame can

be predicted by existing samples in a reference frame (grey dots in Figure Figure 3.6(b)) if

motion vectors are integers. If motion vectors are fractional values, the prediction values

(grey dots in Figure 3.6(c)) are generated by interpolation between adjacent samples in the

21

����������	
���
�
����
�������� ����������

����	
�����
�	���������� �
��������

����	
�����
�	����������������

�

�

Figure 3.6: Examples of inter-prediction (a) a current 4x4 block in the current frame, (b) in-
teger prediction where reference pixels are from existing samples in a reference frame, and
(c) sub-sample prediction where reference pixels are generated by interpolation between
adjacent samples in a reference frame

reference frame (white dots).

The sub-sample prediction can be further divided into 1/2, 1/4 pixel precision predic-

tion. A higher coding efficiency in terms of Peak Signal to Noise Ratio (PNSR: unit dB)

and lower bit rate is expected for a higher resolution of sub-sample prediction method.

Another complexity introduced by H.264 inter prediction is motion vector prediction.

Based on the observation that motion vectors of neighboring partitions are often highly

correlated, motion vectors of current blocks can be predicted by those of nearby previously

coded blocks and motion vector differences (MVD). Figure 3.7 shows MV prediction based

on neighboring left and top block MVs. As Figure 3.7(a) shows, E represents the current

block. If the neighboring left block A, top B and top-right C blocks have the same partition

size, the predicted MVs of E are medians of the MVs of A, B and C. Figure 3.7(b) shows

a case where A, B and C have different block sizes. The motion vector prediction brings

more dependencies between a current block and its neighboring blocks, which becomes

one of the limitations for parallelization of H.264/AVC inter prediction.

22

��

�������

�

�������

	�

�������

�������

	��������

��������

�����

��

���

�
� ���

����

���

���

���

Figure 3.7: The H.264/AVC motion vector prediction for caseswhere current and neigh-
boring partitions have (a) the same size, and (b) different sizes

Complexity and Parallelization

Intuitively, the computation time of motion estimation increases linearly if more ref-

erence frames are used or a large search range is used. As an example, implementing a

full-search ME for a 30Hz CIF video (352x288 pixels), withM = 5 reference frames and

a search range of±p = 16 pixels, requires an examination ofM × (2p + 1)2 = 5445

locations for each image block and more than 16 GOPS (SAD operations). This does not

take into account the computation of sub-sample prediction, motion vector prediction and

variable block size determination. The motion estimation is the most computation intensive

part of an H.264/AVC encoder. Many fast ME search algorithms such as three-step-search,

four-step-search, 2D log-search are proposed to replace the optimal full search algorithm

to reduce the computation complexity at a cost of coding efficiency (lower PNSR) [51].

In order to understand the complexity of the ME algorithms, we use the standard

H.264/AVC reference software JM 12.4 [52] to conduct more quantitative experiments.

A 25-frame 30 Hz QCIF (176×144) Foreman video sequence with quantization parameter

(QP = 24) is used. The rate-optimization is turned off and context-adaptive variable length

coding (CAVLC) is used. We have examined different motion estimation parameters and

their effects in terms of processing time and bit rate.

1) Number of reference frames:In this experimental setup, we set the search range

±16 pixels, use all 7 block estimation modes, and conduct an optimal full search. Fig-

23

0 1 2 3 4 5 6

2

4

6

8

10

12

M
ot

io
n

Es
tim

at
io

n
Ti

m
e

(s
)

Number of Reference Frames

(a) motion estimation time

0 1 2 3 4 5 6

215

220

225

230

235

240

245

250

Bi
tra

te
 (k

b/
s)

Number of Reference Frames

(b) bitstream bitrate

Figure 3.8: H.264 encoder performance with different number of reference pictures

ure 3.8(a) shows the motion estimation time to encode 25 frames with the number of

reference frames varying from 1 to 5. If only one reference frame is used, the encoder

spends 77.8% of its computation time on motion estimation. Figure 3.8(b) shows the bi-

trate change with different number of reference frames. Increasing the number of reference

frames from 1 to 2 results in twice the computation time with only a 7% bitrate reduction.

This test shows that one reference frame is sufficient for many applications.

2) Search range: In this experimental setup, we use one reference frame and all 7

block estimation modes as well as an optimal full search algorithm. The search range has

been varied to measure encoder performance.

Figure 3.9(a) shows the motion estimation time and encoded bitstream bitrate. The

ME time quadratically increases as the search range increases. Figure 3.9(b) shows an

interesting fact that the optimal search range with the smallest bitrate number is not always

the largest search range. In this experiment, a 16x16 search range is the optimal search

range. Many adaptive search range adjustment methods have been proposed to achieve the

smallest bitrate with less computation time [53].

3) Sub-pixel sample prediction: In this experimental setup, we use one reference

frame and all the 7 block estimation modes as well as an optimal full search algorithm. The

24

0 10 20 30 40 50 60 70

0

5

10

15

20

25

30

35

40

M
ot

io
n

es
tim

at
io

n
tim

e
(s

)

Motion Estimation Search Range

(a) motion estimation time

0 10 20 30 40 50 60 70
246.0

246.5

247.0

247.5

248.0

248.5

249.0

249.5

250.0

250.5

Bi
tra

te
 (k

b/
s)

Motion Estimation Search Range

(b) bitstream bitrate

Figure 3.9: H.264 encoder performance with different ME search range

search range is set to be±16 pixels. Our experiment shows that extra sub-pixel sample

prediction (quarter-pixel precision) takes 27% more computation and achieves a 33.6%

bitrate reduction.

4) Variable block size: In this experimental setup, we use only one reference frame,

full search and a search range of±16. Three different block size settings are used: 1. 16x16

block only; 2. 16x16, 8x16, 16x8, 8x8 modes only and 3. all 7 block modes. The setting

2 takes about 9.8% more computation time for a 10.6% bitrate reduction compared with

setting 1. A further split of partition size in setting 3 takes 8.5% more computation time

for an extra 1.3% bitrate reduction compared with setting 2. This results show that a four

block size mode is enough for many applications.

5) Full-search vs fast-search: In this experimental setup, we use one reference frame,

16x16 search range and all 7 block modes. The fast search algorithm in JM (UMHexagon

search) uses only 17.7% the computation time of a full search algorithm with a 2.7% bitrate

increase. A simplified version of UMHexagon search performs even better: with around

12% computation time and a 6.9% bitrate increase. This explains why people are interested

in exploring various fast search algorithms. In order to implement the inter prediction

motion estimation in many-core systems, fast-search algorithms are essential to reduce

25

memory access and computation complexity.

Traditionally, in order to speed-up this bottleneck of video algorithms, dedicate hard-

ware engines are used, which basically consists of (a) a parallel array of processing ele-

ments for pixel level SAD operations; (b) a local memory to exploit data reuse to reduce

the external memory access; (c) an I/O control unit.

As for programmable approach, both fine-grained and coarse-grained parallelism are

available in ME algorithms. The fine-grained parallelism exists within a macroblock. If

both a reference frame and a current block data are loaded, the macroblock can be parti-

tioned into different sub-blocks and each sub-blocks can be distributed into different pro-

cessing elements (PEs) for parallel processing. The challenge for fine-grained parallel

processing is how to distribute the inputs and collect the results from each PE and how

to reuse the local memory to reduce data redistribution. Figure 3.10 shows an illustration

of the fine-grained parallel mapping of motion estimation algorithm. The data of current

16x16 macroblock is distributed to 16 PEs and each PE operates on a 4x4 pixel block. The

corresponding macroblock in the reference frame is also distributed to each PE. After the

cost function is computed in current position, the search motion vector increments by one

in both X and Y direction. In order to reuse most of the reference block data, some PEs

can pass data to the PEs at bottom left, ie. PE (1,0) can pass its portion of reference frame

to PE (0,1). A new row and new column data can be loaded from either on-chip or external

frame buffer.

Motion estimation algorithms also have coarse-grained parallelism. At the frame level,

if multiple reference frames are used, the motion estimation can operate on each reference

frame in parallel. At the macroblock level, although motion estimations can operate in par-

allel, MVs need to be processed in raster-scan order due to the dependency introduced by

motion vector prediction. Thus, MBs within the same frame can be processed concurrently

only if their neighboring top and left MBs have already been encoded and reconstructed.

This rule also applies to some other H.264 coding units such as intra-prediction and de-

26

New Row of Data-in from

Reference SearchWindow

New

Column of

Data-in

from

Reference

Search

Window

(0,0) (1,0)

(0,1)

(0,2)

(0,3)

(2,0) (3,0)

Search MV = (1, 1)

Figure 3.10: Parallel motion estimation mapping to a fine-grained many-core system

block filtering.

Overall, the regularity of the ME algorithms makes ME an ideal application for parallel

processing both at fine-grained macro-block level and coarse-grained frame level.

3.2.2 Intra Prediction

Basic Idea

The intra prediction is a new feature introduced by H.264 for effective intra-block cod-

ing. The basic idea of intra prediction is to predict current block by the neighboring left

and top block within the same frame. The luma intra-prediction in H.264 has two predic-

tion strategies: intra 4x4 and intra 16x16. The intra 4x4 that predicts each 4x4 luma block

individually, is well suited for images with significant details. The intra 16x16 that predicts

the entire 16x16 luma block, is suitable for flat background region. The chroma uses a 8x8

prediction strategy and we call it chroma intra 8x8. There are a total of 9 modes for intra

4x4 luma block and a total of 4 modes for intra 16x16 luma block and intra 8x8 chroma

block. Since the intra 16x16 luma block and intra 8x8 chroma block prediction modes are

a subset of the 9 modes used by intra 4x4 luma block, we only illustrate the operations of

27

a

e

i

m

b

f

j

n

c

g

k

o

d

h

l

p

A B C D E F G H

I

J

K

L

M

Figure 3.11: Labeling of prediction samples of a (4, 4) block

A B C D E F G H
I
J
K
L

M

0 (vertical)

A B C D E F G H
I
J
K
L

M

2 (DC)

Mean of

A...D and

I...L

A B C D E F G H
I
J
K
L

M

1 (vertical)

A B C D E F G H
I
J
K
L

M

3 (diagonal down-left)

A B C D E F G H
I
J
K
L

M

4 (diagonal down-right)

A B C D E F G H
I
J
K
L

M

5 (vertical-right)

A B C D E F G H
I
J
K
L

M

6 (horizontal-down)

A B C D E F G H
I
J
K
L

M

7 (vertical-left)

A B C D E F G H
I
J
K
L

M

8 (horizontal-up)

Figure 3.12: Nine 4x4 intra prediction modes

the 9 different modes used by intra 4x4 luma block. Figure 3.11 shows the labeling of the

samples in a intra 4x4 block. The top 9 samples are from the three 4x4 blocks on the top of

a current block. The left 4 samples are from the neighboring left 4x4 blocks.

The 9 different modes for intra 4x4 block are shown in Figure 3.12. Mode 0, 1, 2

are very straightforward which use only neighboring left or neighboring top 4 samples for

prediction. For mode 3 to 8, the predicted samples are formed by using a weighted average

of the samples A to M.

Complexity and Parallelization

The main complexity of intra-prediction arises from the calculations of all the 9 modes

for intra 4x4) and 4 modes for intra 16x16 to determine the best prediction partition size

and mode. Researchers have proposed many fast mode decision algorithms [54]. However,

the computation of intra prediction is not as complicate as inter prediction. Besides, in a

28

Frame

Slice 0

Slice 1

1 2 3

3

Slice

Luma: Y

Chroma: Cb Chroma: Cr

4

4

5

5

5 6

6

6

7

7

7

8

8

8

9

7 8

(a) (b) (c)

Figure 3.13: Parallelism of H.264 intra prediction (a) coarse-grained slice level parallelism
(b) coarse-grained parallelism among luma and chroma encoding (c) fine-grained paral-
lelism among each macroblock

video sequence, the number of I-frame (using only intra prediction) is usually less than the

number of P or B frame (using inter prediction). We use the same experiment setup as in

previous subsection. The experiment result shows that the compression ratio of inter pre-

diction is about 5–6 times that of the intra prediction. We also examined the effectiveness

of the 9 modes of the intra 4x4 prediction. We have used three different setups with: 1) 0–2

modes 2) 0–4 modes 3) all 0–8 modes. Our experiment results show that setup 2 and 3 can

reduce 15% and 23% bitrate of Intra-coding frames compared with setup 1.

Three levels of parallelism can be exploited to speed up the intra prediction as Fig-

ure 3.13 shows. H.264 supports the partition of one frame into different slices which can

be encoded independently as shown in Figure 3.13 (a). Unlike the inter prediction, the in-

tra prediction of luma and chroma components can be predicted separately as Figure 3.13

(b) shows. Figure 3.13 shows a fine-grained parallelization at the macroblock level. The

number of the macroblocks represents the processing order of MBs within one slice. The

MBs in the same slice can be encoded at the same time. A further partition of the MBs to

smaller sub-blocks is also feasible.

29

3.2.3 Transform and Quantization

Basic Idea

Based on the fact that H.264/AVC introduces smaller 4x4 blocks, the standard uses

a 4x4 integer transform different from the 8x8 DCT (Discrete Cosine Transform (DCT))

transform adopted by previous standards. The integer transform can reduce implemen-

tation complexity and ensure drift-free property (no further noise introduced during the

reconstructed path). Another feature of H.264 transform is that multiplication scaling is

integrated in the quantization process [55]. A typical 4x4 block H.264 transform and quan-

tization process can be illustrated as follows:

1) Step 1: The forward 4x4 integer transform operates on a 4x4 blockX and produces

a 4x4 blockY .

Y =



















1 1 1 1

2

1 1

2
−1 −1

1 −1

2
−1 1

1 −1 1 −1

2



















[

X

]



















1 1 1 1

1 1

2
−1

2
−1

1 −1 −1 1

1

2
−1 1 −1

2



















2) Step 2: The previous 4x4 block Y is quantized individually by the following equa-

tion. Yij is a coefficient of the transform described above,Qstep is a quantizer step size

andZij is a quantized coefficient,PFij is a scaling factor from the transform stage.

Zij = round

(

Yij · PFij

QStep

)

In H.264, 52Qsteps are stored in a table indexed by a quantization parameterQP (0 to

51). In order to avoid division operations, the above equation can be simplified as follows:

Zij = round

(

Yij · MF
2qbits

)

30

Hadamard

Transform 4x4

Forward Integer

DCT 4x4

luma DC

Hadamard

Transform 2x2

Chroma DC

Forward Integer

DCT 4x4

DC Coefficient

Quantization

AC Coefficient

Quantization

DC Coefficient

Quantization

AC Coefficient

Quantization

Intra_16x16 luma

8x8 Chroma

Forward Integer

DCT 4x4

AC Coefficient

Quantization

others

16 bit data input

Figure 3.14: Data-flow of H.264 transformation and quantization

where
PFij

QStep
=

MF

2qbits

and

qbits = 15 + floor(QP/6)

The above equations can be further simplified in integer arithmetic:

|Zij| = (|Yij| · MF + f) ≫ qbits

sign(Zij) = sign(Yij)

For improved compression efficiency, H.264 also employs a hierarchical transform

structure, in which the DC coefficients of neighboring 4x4 transforms are grouped in 4x4

blocks and transformed again by a second-level transform if an MB uses the intra 16x16

prediction mode. Figure 3.14 shows a complete data flow of the H.264 forward transform

and quantization process, which exposes explicit task-level parallelism for our proposed

fine-grained many-core system.

31

Complexity and Parallelization

The main operations of H.264 forward transform and quantization in the forward path,

inverse transformation and de-quantization in the reconstructed path are simple shift, addi-

tion and table look-up operations. The DCT and related modules use 17% computation of

the real-time baseline encoder [56]. The memory requirement of the 4x4 transform and the

quantization table is small (only 76 16-bit word for data and look-up tables).

The regularity of the transform and quantization operations makes these coding units

ideal for parallel processing. Since all the transform is applied to a 4x4 block, all the 4x4

blocks within one MB can be processed in parallel. The chroma and luma components

within one MB can be processed in parallel. All the MBs in a frame slice can also be

processed in parallel. In fact, the parallelism available in other tasks of the H.264 en-

coder limits to what extent we can parallelize the transform and quantization from a whole

throughput point of view.

3.2.4 De-block Filter

Basic Ideas

De-block filtering is one of the key techniques for H.264 to achieve a high subjective

quality. Since H.264 uses a 4x4 block-based integer transform and variable block size mo-

tion estimation, the de-block filter is essential to reduce the introduced blocking artifact.

The de-block filter is applied to all the edges of the 4x4 blocks within one macroblock as

Figure 3.15 (a) shows. The filtering is applied in an order from left to right on the vertical

boundariesa to d; and from top to bottom on the horizontal boundaries in a macroblock.

Figure 3.15 (b) shows samples adjacent to the boundaries of two blockp and q. Each

filter operation affects up to three samples on either side of the boundary depending on

a parameter boundary strength (Bs). The filtering strength depends on the current quan-

tifier, the coding modes of adjacent blocks and the gradient of image samples across the

32

a b c d

e

f

g

h

i j

k

l

16x16 luma 8x8 chroma

p3 p2 p1 p0 q0 q1 q2 q3

p3

p2

p1

p0

q0

q1

q2

q3

Vertical boundary
Horizontal

Boundary

(a) (b)

Figure 3.15: H.264 de-block filter (a) edging filter order in a macroblock (b) samples adja-
cent to vertical and horizontal boundaries

Block p or q

intra-coded

Block boundary is

macroblock boundary

coefficient coded in

block p or q

Different

reference picture

or MV

Bs=4 Bs=3 Bs=2 Bs=1 Bs=0

Yes No

Yes No
Yes No

Yes No

Figure 3.16: Determination of boundary strength Bs

boundary. Figure 3.16 shows the boundary strength Bs determination process. As shown

in Figure 3.15, a group of samples (p2, p1, p0, q0, q1, q2) are filtered ifBs > 0 and

|p0 − q0| < α and|p1 − p0| < β and|q1 − q0| < β. α andβ are threshold values defined

in the standard. The filters forp0, p1, p2 (Bs=4) are shown as follows.

p′
0

= (p2 + 2 × p1 + 2 × p0 + 2 × q0 + q1 + 4) ≫ 3

p′
1

= (p2 + p1 + p0 + q0 + 2) ≫ 2

p′
2

= (2 × p3 + 3 × p2 + p1 + p0 + q0 + 4) ≫ 3

33

� �

���� ����

���� ����

����

� �

� �

� � � �

����

����
�������� ����

�
����	
��

�
��
������������

�������������������

�
��
������������

�������������������

��������������

�����

Figure 3.17: Examples of macroblock level parallelism of theH.264 de-block filtering
where current macroblock depends on top and top right macroblocks

Complexity and Parallelization

In H.264, de-blocking filter exists both in encoder and decoder and contributes to a

considerable amount of computation especially at the decoder side. In a baseline encoder,

around 7% of the computation time is reported for de-block filtering [56]. In the decoder,

36% of the computation goes for the deblock filtering where 40% is spent onBs calcula-

tion and 60% is spent on filtering operations [57]. The complexity of the de-block filtering

mainly comes from the conditional operations in the inner loop of the algorithm and the ir-

regular data access due to adaptive deblocking. The filter unit also requires a lot of memory

access since all the reconstructed frames need go through the filter.

The challenge of parallelizing the de-block filter is how to partition the tasks into dif-

ferent sub-tasks so that each sub-task can operate on a small set of data. Two levels of

parallel partitions are available for parallel processing. At the macroblock level, the algo-

rithms can be partitioned in the same way as the intra prediction. As Figure 3.17 shows,

34

B13 B14 B15 B16

B9 B10 B12

B8B7

B4B3B2

B6

B1

B5

E8

E7

E5

E6

E4E3E2E1

1 2 3 4

3 4 5 6

5 6 7 8

9

7 8 9

10 1211

14 1615

10

11 12 1413

15 16 1817

B11

13

Figure 3.18: A concurrent processing order of the de-block filter within one macroblock

macroblock MB00, MB01, MB11 are at the row 0 of a frame and MB10, MB11 are at

the row 1. The number below each macroblock shows a tight parallel processing order for

each macroblock. Filtering MB10 may need to wait until MB00 and MB01 are filtered.

However, since the de-block filtering processes the vertical boundaries first as Figure 3.15

shows. The vertical boundary filtering of MB10 can proceed concurrently with MB00 and

MB01 and then waits for the finish of the MB00 horizontal filtering and the MB01 1st ver-

tical boundary filtering. In this way, a maximum concurrency of the de-block filtering can

be exploited for parallel processing.

Within a macroblock, fine-grained parallelism exists at all the edges between 4x4 sub-

blocks. However, due to the fact that the edge processing has to follow the exact order as

specified in Figure 3.15(a), there are data dependencies between the edge filtering. Fig-

ure 3.18 shows one of the processing order which maximizes the concurrency between the

32 edges within one macroblock. The order shows the earliest cycle that corresponding

vertical and horizontal edges can be processed.

35

3.2.5 Entropy Coding

In H.264, each 4x4 block of quantized transform coefficients is mapped to an array

of 16 elements in zig-zag order. The data are sent to an entropy coding unit which uses

either context-adaptive variable-length coding (CAVLC) or context-adaptive binary arith-

metic coding (CABAC) depending on the encoder profiles. Generally, CABAC achieves a

9%-14% bitrate reduction with a higher computation compared with CAVLC [58]. Both

CAVLC and CABAC contain serial operations that are difficult to parallelize in existing

programmable processors. Parallelizing CABAC is more challenging than CAVLC be-

cause of its bit-serial operations. That explains why all previous CABAC architectures

are hardware-based to our best knowledge. However, we can exploit the task parallelism

among CAVLC encoder for parallel processing. A more detailed parallel implementation

and performance comparison of CAVLC on the fine-grained many-core system is intro-

duced in the next chapter.

3.3 Related Work

Many coarse-grained parallel multi-core approaches have been proposed for H.264/AVC

encoding. Most of them exploit thread-level or frame-level parallelism in video encod-

ing algorithms. Chen et al. propose a parallel H.264/AVC encoder utilizing multi-level

threading [59]. Their results show good speedups ranging from 3.74x to 4.53x over well-

optimized sequential code on a quad-core system. Roitzsch proposes a slice-balancing

technique for H.264 video decoding by modifying only the encoding stage and reports a

performance speedup of up to 4.7 [60]. Rodriguez et al. use message passing paralleliza-

tion at GOP (Group of Pictures) and frame level to speed up H.264/AVC encoding [61].

Zhao et al. present a wavefront parallelization method for H.264/AVC encoding [62]. Their

parallelization method is conducted at both frame and macroblock level. Sun et al. propose

a similar parallel algorithm based on a wavefront technique [63]. They partition one frame

36

into different macroblock regions which are processed independently. The macroblocks

within the macroblock region are then parallelized with the wavefront technique.

Stream processing has been proposed for multimedia applications that have compu-

tational intensity, data parallelism and producer-consumer localities. The stream model

was first proposed by Hoare in communicating sequential processes (CSP) [64]. With the

rapid development of IC technology, many architectures and processors supporting stream

models have emerged, such as Imagine [65] and RAW [66]. Khailany et al. use concur-

rency between stream commands, data parallelism, instruction-level parallelism and sub-

word SIMD parallelism to speedup H.264/AVC motion estimation and deblocking filter

kernels to achieve realtime 1080p HDTV encoding [67].

There is also a trend to use graphics processing units (GPUs) to accelerate video appli-

cations. Cheung et al. present an overview of video encoding and decoding using multi-

core GPUs [68]. Chen et al. implement H.264/AVC motion estimation on a GPU and report

a 12 times speedup versus general-purpose CPUs [69]. However, GPUs are more suitable

for applications with abundant explicit thread-level and data-level parallelism and are less

efficient for some serial video encoding algorithms in the H.264/AVC standard.

37

Chapter 4

A Parallel 1080p H.264 Baseline

Residual Encoder

This chapter targets energy-efficient H.264 baseline encoding from low resolution to

HD video encoding on a fine-grained many-core architecture. Our programmable approach

achieves both high performance (up to real-time 1080p) and flexibility. We focus on the par-

allelization of the H.264/AVC baseline residual encoder which utilizes integer transform,

quantization and context-adaptive variable length coding (CAVLC) to encode residual data

from intra and inter prediction procedures. The integer transform and quantization are well

suited for parallel implementation. However, many high-performance CAVLC encoders

are implemented in hardware due to its serial processing property [70, 71]. We choose

to implement this software residual encoding accelerator because it is an essential task of

H.264 baseline encoding. The configurable and programmable residual encoder can be

used as a software co-processor for a full HD encoder.

38

�����
�

�

�

�

�

�

���	
���
������������

��������

��������

����

���
����

���� ����

������

������� ������

Figure 4.1: Architecture of targeted many-core system.

4.1 Introduction

This research demonstrates our fine-grained many-core architecture can achieve high

performance and energy efficiency for both video encoding algorithms with high data-

level parallelism like integer transform and quantization and serial algorithms with fine-

grained task-level parallelism like CAVLC. We propose a distributed processing approach

to parallelize the H.264/AVC residual encoding at 4x4 block level. The proposed fine-

grained parallelization exploits the existing locality and streaming nature of H.264/AVC

residual encoding algorithms. Our work differs from previous research in that we apply a

fine-grained approach to exploit task-level parallelism in H.264/AVC encoding.

The fine-grained parallelization brings challenges for programmers in terms of memory,

mapping, throughput and power optimizations. Our programming methodology yields an

H.264/AVC residual encoder capable of realtime 1080p (1920x1080) HDTV encoding with

both higher energy efficiency and area efficiency compared with other software approaches

in common DSPs and customized hybrid multi-core architectures.

The rest of this chapter is organized as follows. Section 4.2 introduces the features of

39

� 65 nm STMicroelectronics

1.19 GHz, 1.3 V

66 MHz, 0.675 V

1.095 GHz, 1.3V

5
.9

3
9

 m
m

410 m

4
1
0

m

FFT
Vit

Mot.

Est. MemMem

5.516 mm

Mem

(a) Die microphotograph (b) Testing board

Figure 4.2: A fully-functional AsAP chip in 65 nm CMOS which runs at a maximum of
1.2 GHz and 1.3 V.

the targeted many-core system and the corresponding parallel programming methodology.

In Section 4.3, the H.264/AVC residual encoding algorithms including transform, quanti-

zation and CAVLC encoding are described and analyzed. Section 4.4 presents the approach

to parallelize the residual encoding kernel in terms of partitioning, mapping and optimiza-

tion. Section 4.5 shows the performance analysis and results. Section 4.6 concludes the

chapter.

4.2 The AsAP Architecture and Programming Methodol-

ogy

4.2.1 Many-core Array Architecture

The target AsAP (Asynchronous Array of Simple Processors) architecture is a fine-

grained many-core system which is composed of simple cores that operate at independent

clock frequencies and contain small memories for high energy efficiency [11].

The AsAP platform targets applications which can be partitioned into small tasks run-

ning separately on small and simple processors [72]. A second generation design allows

40

���������	
�

��������
�������

��������
��������

���
�����	����
��
�

������
�����	����
���
���

�

���� ���������	���������
��
��

�������

�

�����	�
���������	���������
��
�

�������

�

�������������� ����������

����� �!�"� �!��

��������
������"����
����������

!��	��
��

����
����#�$�%� �!��

��������������������!�����

� �!��%�����
�����#�$��

���

���

�����	�
��������� ����������

����� �!�"� �!��

��������
������"����
��������

!��	��
�

����
����#�$�%� �!��

�����������������������!�������

� �!��%�����
�����&�$����

�

���

����������	����������� ��'�����"�

()*+�,(������ �!��

�������

���������������������������������

()*+�)-�!�,������

��������

���

����������	������������ ��'�����"���

()*+�,(������ �!��

��������

��������������������������������

()*+�)-�!�,(�����

��������

���

������ ������

��	�
��
���������������� ��	������������������� ��	����������������������������

Figure 4.3: A fine-grained parallel programming methodologywith corresponding multi-
task application execution models and integer transform code examples.

processors to operate at independent supply voltages and contains 16 KB shared memo-

ries [73].

Figure 4.1 shows a high-level diagram of the AsAP chip which is fabricated in 65 nm

CMOS technology. Figure 4.2 shows the AsAP chip die microphotograph and test board.

The system is composed of 164 16-bit homogenous DSP processors, three dedicated ac-

celerators and three 16-KB integrated shared memories, all of which have local clock os-

cillators and are connected by a reconfigurable globally asynchronous locally synchronous

(GALS) clocking style mesh network [74]. Compared with synchronous and mesochronous

on-chip communication approach [75], the GALS simplifies the clock design, provide easy

scaling into future deep submicron technologies and increase energy efficiency.

41

Each DSP processor contains a 16-bit datapath with a 40-bit accumulator and 128 word

instruction and data memories. Although processors are not tailored specially for video

encoding, they handle residual encoding very well since most of the encoding tasks require

very small amounts of instruction and data memories. Processor tiles are connected through

configurable nearest-neighbor or long-distance links.

In our platform, each processor can run at one of two supply voltagesVddHigh and

VddLow and optimized clock frequencies. This per-core based supply voltage and frequency

configuration feature is useful for achieving maximum power efficiency in video applica-

tions with dynamic workloads as demonstrated in Section 4.5.

4.2.2 Parallel Programming Methodology

Figure 4.3 shows the parallel programming methodology for the proposed video en-

coder. The methodology is divided into three steps, which is further illustrated with corre-

sponding multi-task application execution models and examples of integer transform com-

posed of row and column transform tasks.

We first implement a sequential C program, which uses a traditional shared memory

model on a general-purpose processor as shown in Figure 4.3(a). The integer transform

tasks are implemented as C functions. The algorithm is fully verified to ensure bit-level

correctness compared with H.264/AVC JM software [76].

Then the sequential algorithm is partitioned into multiple parallel tasks which are im-

plemented with simple C programs separately as shown in Figure 4.3(b). The integer trans-

form can be divided into two tasks, row and column transforms. The two tasks can be

combined by linking their inputs and outputs using a GUI-based mapping tool. We have de-

veloped a linux-based parallel simulator based on message passing interface (MPI) library

to verify the parallel C implementation. All the partitions in this level are coarse-grained

and have no constraints on available resources including data and instruction memory.

Then coarse-grained tasks are repartitioned to fit on the resource-constrained AsAP

42

���������	�
��
��

����������

������
������

����
�����
�

�
���	�
�
������������

������

������

������� �

����
!����
���

"�"��
�����

#�����
��

�
���	�
�

Figure 4.4: Residual data encoding procedure in an H.264/AVCencoder.

processors. As shown in Figure 4.3(c), the row and column transforms are implemented

on individual AsAP processors. The final encoder is simulated on the configurable Verilog

RTL model of our platform using Cadence NCVerilog. By using the activity profile of the

processors reported by the simulator, we evaluate its throughput and power consumption.

The distributed processing approach is suitable for video and communication applications

with streaming features so that large shared memories are avoided and each processor can

work on its own piece of data.

4.3 Residual Encoding in H.264/AVC

Figure 4.4 shows the residual data encoding procedure in the H.264/AVC baseline pro-

file. First, a 4x4 Integer Transform (IT) is applied to the residual data from either intra

or inter prediction procedures. For the intra 16x16 predict ion mode, an additional 4x4

Hadamard Transforms (HT) is applied to the 16 luma DC values within one macroblock. If

the residual data are chroma DC coefficients, a 2x2 HT is applied. The CAVLC encoder en-

codes the zig-zagged 4x4 or 2x2 quantized transform coefficients and sends the bitstream

out. The integer transform and quantization has been described in previous chapter and

Figure 4.4 only describes the CAVLC encoder in detail.

43

�
�
��
��
�
�
�
�

�����
�����
�����

�
�
�
�
���
�
�
�
��

�
� ����

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

-1 16 17

18 19

20 21

22 23

24 25

Figure 4.5: Scanning order of residual blocks within a macroblock.

Table 4.1: Elements of CAVLC Encoding per Block
Elements Description

Coeff token Encodes the number of nonzero coefficient and
number of signed trailing ones - one per block

Sign trail Encodes the sign of trailing ones
one per trailing ones maximum 3 per block

Levels Encodes the remaining nonzero coefficients
one per level excluding trailing ones

Total zeros Encodes the total number of zeros
before the last coefficient - one per block

Run before Encodes the number of run zeros preceding
each nonzero levels in reverse zigzag order

4.3.1 CAVLC Encoding

The CAVLC encoder is used for encoding transformed and quantized residual coeffi-

cients of one video macroblock in the processing order as shown in Figure 4.5. A maximum

of 27 blocks must be encoded within one macroblock. Block “–1”contains 16 Luma DC

coefficients if the current macroblock is encoded in 16x16 intra mode. Blocks 16 and 17

are formed by the DC coefficients of two Chroma components.

The CAVLC encoder can be partitioned into scanning and encoding phases. In the scan-

ning phase all of the blocks are scanned in zigzag order. In the encoding phase, five different

types of statistic symbols are encoded sequentially using look-up tables as Table 4.1 shows.

44

����

��������

	��
���

��

�
���

��������

������

���������	

����
��

���	

����
��

����

������

�����

�������

������

 ��!��
�

"����#

��������

����$�

�������

���%�%�$�

�������

"����#

�������

���"����#

&���
��'�����

(�������

�����������

����
��

����	�����

����
��

����������

����
��

���������	
 ��
��

Figure 4.6: Data flow diagram of the proposed H.264/AVC residual encoder.

The complexity of CAVLC mainly comes from the context-adaptive encoding of the first

and third elements,coeff tokenand levels. Thecoeff tokenis encoded for the total number

of nonzero coefficients and trailing ones. Five different VLC tables are available forco-

eff tokenencoding and the choice of table depends on the number of nonzero coefficients

in the neighboring left and top blocks. This data dependency requires a large memory to

store the number of nonzero coefficients for high quality video encoding. Thelevelsare the

nonzero coefficients (excluding trailing ones) encoded in reverse zigzag order. Thelevels

code is made up of an all 0 prefix followed by a symbol 1 and suffix. The length of the

suffix is initialized to 0 unless there are more than 10 nonzero coefficients and less than 3

trailing ones, in which case it is initialized to 1. The length of the suffix can be adaptively

incremented if the current level magnitude is larger than a certain threshold. A maximum

of 6 bits are used for suffix encoding [77].

4.4 The Proposed Parallel Residual Encoder

Figure 4.6 shows the data flow of the proposed parallel residual encoding kernel. The

input residual data are sent to the shared 4x4 integer transform module. Then the trans-

form coefficients are forwarded to the AC quantization, Chroma DC and Luma Intra 16x16

45

4x4 AC

Quant

4x4 IT

(Integer

Trans.)

Buffer &

Chroma

DC Quant

QP Table

& Data

Receiver

4x4 AC

Quant

Buffer &

Chroma

DC HT

Intra

16x16 DC

Quant

Intra

16x16

DC HT

 data_in

 data_out
Data

receiving

4x4 AC

Quant

4x4 IT

(Integer

Trans.)

Chroma

DC HT

Quant

QP Table

& Data

Receiving

Buffer &

Data

Receiving

 data_in

 data_out

Intra 16x16

DC HT

Quant

(a) Non-optimized (b) Optimized with almost two times
 higher throughput

Figure 4.7: Two mappings of integer transform and quantization.

Hadamard Transform and quantization modules separately. All the quantized coefficients

are collected by the data receiver module and sent to the CAVLC encoder. In the CAVLC

encoder, the zigzag and CAVLC scanning block are the first phase of processing. Then cor-

responding syntaxes are distributed to five different encoding units in parallel. The packing

unit collects and packs the final codes into an output bitstream. When implementing the

encoder on the array processor, each task is first mapped to a single processor to allow

parallel execution. If either more memory or high performance is required than can be

provided by a single processor, the task is mapped to multiple processors. Code for each

processor is implemented independently, considering only its inputs and outputs. Once the

mapping and communication patterns are determined, coding for the small-memory pro-

cessing array is similar to writing codes for a sequential machine. However, an efficient

parallel mapping of this application on a fine-grained architecture still requires overcoming

some challenges in terms of memory usage, mapping and throughput optimization. The

following subsection describes our approach to these problems.

46

4.4.1 Integer Transform and Quantization

Memory and Algorithm Optimization

Since the proposed encoder works at the 4x4 block level, most of the time a 16-word

memory is required for storing streaming data. Thus, the 4x4 integer transform can be di-

rectly implemented on one AsAP processor in 97 cycles to process each 4x4 block (without

configuration overhead). As for the quantization, we use look-up tables to implement com-

putations such asQP/6, QP mod 6,2qbits/6 and2qbits/3. Another problem for quantization

is that the size of intermediate values exceeds 16 bits due to the large size of multiplication

factors. This can be solved by using the 40-bit accumulator to store the intermediate values

so that a maximal precision is preserved during the quantization procedure.

If the macroblock is in intra 16x16 prediction mode, the luma DC (block –1) are first

sent to the CAVLC encoder as shown in Figure 4.5. This processing order breaks the natural

task-level pipeline because the DC values can not be fully collected until all the luma AC

blocks within one macroblock are transformed and quantized. Thus, we need to buffer a

maximum of 256 quantized luma AC values to reorganize the block order. We can compress

two 8-bit AC values into one 16-bit word so that the buffer tasks can be implemented on

one processor. Similarly, a maximum 64 quantized chroma AC values must be buffered so

that the Chroma DC values can be sent first (block 16 and 17 in Figure 4.5).

Mapping and throughput optimization

Figure 4.7(a) shows a 6-processor direct mapping of the integer transform and quan-

tization procedures on the array processor. The two dashed lines represent long-distance

links. The chroma DC HT and quantization procedures are implemented in a single pro-

cessor. This fine-grained mapping creates an application level pipeline so that the major

transform and quantization tasks are running in parallel. Our initial evaluation shows quan-

tization is the bottleneck of this mapping. In order to support HDTV 1080p at 30 fps,

47

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

11

9

(a) Luma

0 1 0 1

2 3 2 3

0 1

2 3

0 1

2 3

11

9

(b) Chroma Cb or Cr

Figure 4.8: Macroblocks in a QCIF frame.

the 4x4 AC quantization processor needs to operate at 2.14 GHz. Figure 4.7(b) shows a

9-processor mapping. We have duplicated the4x4 AC Quantunit to double the throughput

of the quantization tasks. The transformed coefficients are sent from the4x4 ITprocessor

alternately to the two4x4 AC Quantprocessors. The chroma DC HT and quantization are

implemented in two processors which also buffer half of the Luma and Chroma AC blocks

within one MB. The intra 16x16 DC HT and quantization are running on two processors in-

dependently. The 9-processor mapping doubles the throughput with three extra processors

and simple code duplication and re-mapping.

We can further parallelize the integer transform and quantization due to the vast data

parallelism available in the transform and quantization operations. The residual encoder is

parallelized in a way similar to a software pipeline. Therefore the throughput of the encoder

depends on the slowest task. Since the integer transform and quantization are fast enough

for 1080p video encoding, we do not need to further improve this part. In the following

subsection, we focus on the parallelization of the CAVLC encoder which may be slower

than the integer transform and quantization tasks in the case that a test video sequence

contains many non-zero residual data.

48

16 KB Shared Memory
 (968 B maximum used)

Chroma

Predict

nnz

Luma

Predict

nnz

Data

Receiver

Router 1

VLC

Binary

Packer

 data_out

 data_in
CAVLC

Scanning
Zig-zag

Sign

Trailing

ones

TotalZeros

Encoding

Non-zero

Coeff Run

Encode

NumCoeff

Trailing

Ones

Router 3

Level

Encode

P1

Level

Encode

P2

Router 8

Router 7 Router 6

Router 5

Router 4

Router 2

Figure 4.9: A 20-processor CAVLC straightforward mapping done manually without long-
distance interconnection.

4.4.2 The CAVLC Encoder

Compared with integer transform and quantization, the CAVLC algorithm is intrinsi-

cally serial due to the dependencies among 4x4 blocks within one macroblock and the

neighboring macroblocks within a single video frame. However, task level parallelism can

still be exploited by distributing different tasks among processors [78].

Memory Optimization

In the CAVLC encoder, thecoeff tokensymbol (refer to Table 4.1) is encoded with a

table look-up based on the number of nonzero coefficients (TotalCoeff) and trailing±1 val-

ues (TrailingOnes). In H.264/AVC, five different look-up tables are used for this purpose

and the choice of table depends on a parameternC which is the average of the number of

nonzero coefficients of the neighboring left and upper blocks namednA andnB respec-

49

tively. Figure 4.8 shows the organization of macroblocks within one QCIF frame. The

gray and dark gray blocks are data-dependent blocks between neighboring macroblocks.

As macroblocks are processed in raster scan order, a large memory is needed to store the

number of the nonzero coefficients of those data-dependent blocks. However, as each mac-

roblock needs onlynA andnB from neighboring 4x4 blocks, the memory requirement can

be reduced by maintaining a global memory ofuppernA and left nB in one of the 16-KB

on-chip memories of AsAP array. For one 1080p HDTV frame, theuppernAcontains 960

parameters andleft nBcontains 8 parameters. As each parameter uses no more than 5 bits,

theuppernAand left nBcan be further compressed to save half of the memory.

In our proposed CAVLC encoder, an arithmetic table elimination (ATE) technique is

used to encode level information. The level encoding starts from the last nonzero coefficient

(excludes trailing ones). Two parameters,levelsandvlcnum, are sent to the encoding unit in

each iteration.Vlcnumis initialized to 0 or 1 and can be updated for the next level encoding

depending on the current level magnitude. The encoding unit encodes VLC0 and VLC1–6

separately with simple shift and addition operations. Due to the limit of the instruction

memory,levelencoding has been implemented on two processors as shown in Figure 4.9.

The P1 processor receiveslevel information, sendslevelandvlcnumto P2 and updates the

vlcnumeach time.

We use look-up tables to encode the other symbols:coeff token,total zerosandrun before.

Most of the data in the VLC tables are less than 4 bits except for some entries in theco-

eff tokenwhen the number of total nonzero coefficients is larger than 12. Moreover, the

VLC table used to encodetotal zeroshas a triangular structure, where most data are zeros.

Based on the above observations, we can divide the tables into smaller compressed tables

and then determine which table to use at run-time with little extra computation. Our ap-

proach achieves a compression ratio of 4 so that the data tables of the taskscoeff token,

total zerosand run beforefit into one processor’s 128-word 16-bit data memory.

50

��������	
���
���
�

Figure 4.10: A 15-processor CAVLC mapping performed by an automatic task mapping
tool [79].

Dataflow Mapping

As Figure 4.6 shows, the CAVLC encoder can be easily partitioned into a number of

independent serial and parallel tasks. When implementing the encoder on an array pro-

cessor, each task is firstly mapped to a single processor to allow parallel execution. Each

processor stores only a small amount of data (up to a 4x4 block data) for local computation.

It is worth mentioning that the fine-grained partition step determines the throughput of the

encoder since all of the tasks are implemented in a software pipeline style. In the following

step, we need to map the fine-grained task graphs into the 2D mesh array architecture. This

mapping step can either be conducted manually or automatically by a customized AsAP

mapping tool which aims to maximize nearest neighbor communication and insert as few

number of routing processors as possible [79].

Figure 4.9 shows a 20-processor straightforward manual mapping using only nearest-

neighbor connections. The CAVLC scanning unit sends statistical information only to the

coeff tokenencoding unit and thecoeff tokenencoding unit passes the information imme-

51

16 KB Shared Memory
 (968 B maximum used)

Chroma

Predict

nnz

Luma

Predict

nnz

Data

Receiver

CAVLC

Scanning
Zig-zag

NumCoeff

Trailing

Ones

Sign

Trailing

ones

Level

Encode

P1

Router 3

Level

Encode

P2

TotalZeros

Encoding

Non-zero

Coeff Run

Encode

VLC

Binary

Packer

Router 2Router 1

 data_out

 data_in

Figure 4.11: A 15-processor CAVLC mapping done manually with throughput identical to
the mapping shown in Figure 4.10.

diately to the nextsign trail encoding unit. This takes place for every encoding unit before

it begins to operate on its own portion of data. This approach simplifies the mapping and

will not degrade the throughput since the code produced by each unit needs to be collected

in sequential order by the VLC packing unit anyway. In Figure 4.9, thenC prediction unit

is implemented on two processors for Luma and Chroma separately. The 16 KB shared

memory supports two independent interfaces, which is ideal for this case.

The mapping in Figure 4.9 is inefficient due to the constraints of a maximum of two

input ports per processor and only nearest-neighbor processor communication. Eight rout-

ing processors are required to pass data around the graph. Figure 4.10 shows a compact

15-processor automatic mapping by the AsAP mapping tool which aims to map an algo-

rithm with the shortest interconnection links and number of routing processors. The four

long arrow lines represent long-distance links. The length of all the links are less than

one processor. A saving of five routing processors shows the efficiency of the low overhead

long-distance interconnection architecture [80]. With a little more manual optimization, we

have another similar 15-processor mapping shown in Figure 4.11, which is more regular

and uses exactly a 5 by 3 processor array plus the shared memory. As shown in the shadow

52

16 KB Shared Memory

 (968 B maximum used)

Chroma

Predict

nnz

Luma

Predict

nnz

Data

Receiver

CAVLC

Scanning

P1

Zig-zag

P1

NumCoeff

Trailing

Ones

Sign

Trailing

ones

Level

Encode

P1

Router 3

Level

Encode

P2

TotalZeros

Encoding

Non-zero

Coeff Run

Encode

VLC

Binary

Packer

Router 2Router 1

 data_out

Zig-zag

P2

CAVLC

Scanning

P2

4x4 AC

Quant

4x4 IT

(Integer

Trans.)

Buffer &

Chroma

DC Quant

QP Table

& Data

Receiver

4x4 AC

Quant

Buffer &

Chroma

DC HT

Intra

16x16 DC

Quant

Intra

16x16

DC HT

 data_in

Transform & Quantization CAVLC Encoder

 long-distance links

nearest-neighbor links

Figure 4.12: The proposed 25-processor H.264/AVC residual encoder mapping.

box of Figure 4.11, compared to the CAVLC data-flow in Fig 4.6, we added two more pro-

cessors for thennz predictionand level encodingand three routing processors which are

required because of the constraints of two input ports per processor. Overall, the parallel

mapping is very straightforward but effective once the algorithm are partitioned well.

Throughput Optimization

The throughput of the 15-processor mapping can be further optimized by characterizing

the workload of each processor and speeding up the processors in the critical data path.

The non-critical processors add only latency to the system and do not affect the overall

throughput. Since the processors stop once they finish their jobs, the processing time of

one 4x4 block approximates the processor active time during the encoding.

Our evaluation shows the critical path of the CAVLC encoding includes zigzag reorder,

CAVLC scanning, level encoding P1&P2, and VLC binary packing. Three methods are

adopted to optimize the mapping. First, the coding of these critical path processors are op-

timized by using AsAP’s instructions and features such as block repeat, automatic address

generation and data forwarding. Second, the workload of VLC packing is re-mapped onto

53

Q
P ta

bl
e

& D
at

a
R
ec

ei
ve

r

4x
4

AC
 Q

ua
nt

 P
1

Buf
fe

r &
 C

hr
om

a
D
C
 H

T

In
tra

 1
6x

16
 D

C
 H

T

4x
4

IT

4x
4

AC
 Q

ua
nt

 P
2

Buf
fe

r &
 C

hr
om

a
D
C
 Q

ua
nt

In
tra

 1
6x

16
 D

C
 Q

ua
nt

Zig
-z

ag
 P

2

Zig
-z

ag
 P

1

D
at

a
R
ec

ei
ve

r

C
hr

om
a

Pre
di
ct
 n

nz

C
AVLC

 S
ca

nn
in
g

P2

C
AVLC

 S
ca

nn
in
g

P1

N
um

C
oe

ff
Tra

ilin
gO

ne
s

Lu
m

a
Pre

di
ct
 n

nz

Sig
nT

ra
ilin

gO
ne

s

R
ou

te
r 1

Le
ve

l E
nc

od
e

P1

Tot
al
Zer

os
 E

nc
od

in
g

R
ou

te
r 2

Le
ve

l E
nc

od
e

P2

N
on

-z
er

o
C
oe

ff
R
un

R
ou

te
r 3

VLC
 B

in
ar

y
Pac

ke
r

0

16

32

48

64

80

96

112

128
 Processor IMem Used Processor IMem Unused

P
ro

c
e
s
s
o
r

In
s
tr

u
c
ti
o
n
 M

e
m

o
ry

 U
s
a
g
e
 (

W
o
rd

s
)

Figure 4.13: Instruction memory usage of the proposed 25-processor encoder.

routing processors. The codes can be packed as soon as they are produced by each encod-

ing unit. Third, we add another two processors to further parallelize zig-zag and CAVLC

scanning procedures as shown by the CAVLC encoder in Figure 4.12. These three opti-

mizations triple the average throughput of the CAVLC encoder which can encode 1080p

(1920x1080) HDTV at 30fps or higher for various video test sequences.

4.5 Simulation Results and Comparison

4.5.1 Implementation Results

Figure 4.12 shows our proposed 25-processor fine-grained mapping for the H.264/AVC

residual encoder. A total of 8 processors are used for transform and quantization and

17 processors including one 16-KB shared memory (968 bytes maximum used for 1080p

HDTV) are used for CAVLC encoding. There are eight long-distance links with a length

54

Q
P ta

bl
e

& D
at

a
R
ec

ei
ve

r

4x
4

AC
 Q

ua
nt

 P
1

Buf
fe

r &
 C

hr
om

a
D
C
 H

T

In
tra

 1
6x

16
 D

C
 H

T

4x
4

IT

4x
4

AC
 Q

ua
nt

 P
2

Buf
fe

r &
 C

hr
om

a
D
C
 Q

ua
nt

In
tra

 1
6x

16
 D

C
 Q

ua
nt

Zig
-z

ag
 P

2

Zig
-z

ag
 P

1

D
at

a
R
ec

ei
ve

r

C
hr

om
a

Pre
di
ct
 n

nz

C
AVLC

 S
ca

nn
in
g

P2

C
AVLC

 S
ca

nn
in
g

P1

N
um

C
oe

ff
Tra

ilin
gO

ne
s

Lu
m

a
Pre

di
ct
 n

nz

Sig
nT

ra
ilin

gO
ne

s

R
ou

te
r 1

Le
ve

l E
nc

od
e

P1

Tot
al
Zer

os
 E

nc
od

in
g

R
ou

te
r 2

Le
ve

l E
nc

od
e

P2

N
on

-z
er

o
C
oe

ff
R
un

R
ou

te
r 3

VLC
 B

in
ar

y
Pac

ke
r

0

16

32

48

64

80

96

112

128

P
ro

c
e
s
s
o
r

D
a
ta

 M
e
m

o
ry

 U
s
a
g
e
 (

W
o
rd

s
)

 Processor DMem Used Processor DMem Unused

Figure 4.14: Data memory usage of the proposed 25-processor encoder.

of one processor. All other processors not included in the application mapping within the

AsAP array (Figure 4.1) are turned off to save power by halting their oscillators and dis-

connected them from the power grid with their individual power transistors. We may use

the large number of unused processors to implement other workloads such as wireless com-

munication or encryption for some applications such as a wireless security video encoding

system.

Figure 4.13 and Figure 4.14 summarize the instruction and data memory usages for

each processor among the 25 processors, respectively. Our implementation shows that

128-words of instruction and 128-words of data memory are more than enough for the

H.264/AVC residual video encoding. Each processor of the 25-processor encoder uses an

average of 72 words of instruction memory, which is 56.3% of all available instruction

memory; and an average of 48 words of data memory, which is 37.2% of all available data

memory.

55

In our proposed residual encoder, the throughput of the transform and quantization takes

a maximum of 3960 cycles to encode one macroblock. The throughput of the CAVLC en-

coder is highly dependent on specific test video sequences and encoding QP value. In

H.264/AVC, the coded block patterns (CBP) are used to determine the all-zero residual

blocks which are not necessary to be encoded. Considering the CBP effects, we performed

the simulations of our residual encoder using 8 test sequences with different frame size

including QCIF foreman, CIF football, 4CIF soccer, 720p stockholm, 720p shields, 1080p

rush hour, 1080p pedestrian area and 1080p blue sky. All of these test sequences are en-

coded with four different QP values from 25 to 36.

We use the JM 12.4 reference software to encode original video sequences with a base-

line setting. We collect the intermediate residual data after the intra and inter prediction

in reference software and send them to our residual encoder as testing inputs. Simulation

results are calculated by averaging the cycles of encoding one macroblock of one I type and

one P type frame with a QP value from 25 to 36. If all the processors run at a maximum of

1.2 GHz with a supply voltage of 1.3 V, the encoder needs to encode one macroblock with

less than 4902 cycles to support 1080p HDTV encoding. Figure 4.15 shows the average

cycles to encode one macroblock for all the tests. As shown in Figure 4.15, all of the tests

use less than 4902 cycles to encode one macroblock. The QCIF foreman test sequences has

the highest computation complexity and requires 4841 cycles to encode one macroblock at

QP = 25. All of the other test sequences have a very steady encoding throughput in terms

of average cycles per macroblock within a range of 3500 to 4200 cycles per macroblock.

The results indicate that the encoder meets the real time requirement of 1080p HDTV en-

coding at 30 fps.

4.5.2 Performance Evaluation

A more detailed analysis of processor execution reveals some interesting insights into

the bottleneck of our design. Figure 4.16 illustrates average processor activity of the en-

56

QCIF
foreman

CIF
football

4CIF
soccer

720p stockholm

720p shields

1080p rush hour

1080p pedestria
n area

1080p blue sky
0

1000

2000

3000

4000

5000
 QP=25 QP=28 QP=32 QP=36

A
v
e
ra

g
e
 c

y
c
le

s
 p

e
r

m
a
c
ro

b
lo

c
k

4902 cycles for 1080p video

 @30 fps and 1.2GHz clock

Figure 4.15: The average cycles to encode one macroblock for test sequences with varying
frame sizes and QP values.

coder for encoding foreman testing video withQP = 25. The activity of each processor

(the amount of time spent executing, instead of stalling), is indicated by the black bar in

the figure. The white bar indicates the time stalled on output, while the gray bars indicate

the time spent waiting for input to arrive. Figure 4.16 shows that the two4x4 AC Quant

processors are running all the time and they are both bottlenecks of our design in this case.

The two processorsIntra 16x16 DC HTand Intra 16x16 DC Quantare stalling on input

for most of the time because the video frames are not encoded in intra 16x16 mode. The

QP Table & Data Receiverand4x4 IT processors stall on output for more than 30% of the

whole encoding time because the downstream4x4 AC quantprocessor is not fast enough to

consume their outputs. Figure 4.16 also shows that theVLC Binary Packeris busy most of

the time due to the large volume of output bitstream which causes the other upstream pro-

cessors in the CAVLC encoder to stall on output during execution. Most of the processors

stall on input which indicates that at some time the source processors are providing data at

57

Figure 4.16: Processor activity of the residual encoder while encoding QCIF foreman at
QP = 25.

a slower rate than the destination processor can consume it. The large amount of stall time

in Figure 4.16 shows a large slack for most of the processors, which provides a potential to

reduce the clock rate and supply voltage to increase energy efficiency.

4.5.3 Power Consumption Optimization

Power Estimation

One advantage of the target many-core system is that each processor its own oscillator.

The clock can be totally halted when the processor stalls for a certain amount of time either

because of input empty or output full. During a short stall, the clock can still be active which

results in more power consumption than the case of a total standby with halted clock. The

58

overall activity of processors allows us to estimate the total average power by:

PTotal =
∑

i

PExe,i +
∑

i

PStall,i +
∑

i

PStandby,i

+
∑

i

PComm,i + Psharedmemory

(4.1)

wherePExe,i, PStall,i, PStandby,i andPComm,i represent the power consumption of compu-

tation execution, stalling with active clock, standby with halted clock and communication

activities of theith processor among 25 processors, respectively.Psharedmemory is the aver-

age power of the 16-KB shared memory.PExe,i, PStall,i, PStandby,i are estimated as follows:

PExe,i = αi · PExeAvg

PStall,i = βi · PStallAvg

PStandby,i = (1 − αi − βi) · PStandbyAvg

(4.2)

wherePExeAvg, PStallAvg andPStandbyAvg are average power while the processor is 100%

active in execution, stalling and standby (leakage only);αi, βi and(1 − αi − βi) are the

percentage of execution, stall and standby activities of processori, respectively. The com-

munication power of processori can be estimated as follows:

PComm,i =
∑

j

(δij · PCommActive,Lj

+PCommStandby,Lj
)

(4.3)

whereδij is the communication active percentage of linkj; PCommActive,Lj
andPCommStandby,Lj

are the average power consumed by a link with a lengthL while the link is 100% active and

standby. Table 4.2 shows the measured average power consumption of various functions

at 1.3 V and 1.2 GHz. We have included two types of communication link power since

the length of the long-distance communication links in our application are no more than

one tile. As shown in Table 4.2, all the components consume little standby power and the

59

Table 4.2: Power measured at 1.3 V and 1.2 GHz.

Operation of
100% Active Stall Standby

(mW) (mW) (mW)

Processor 62.0 31.0 0.13
Shared Memory 4.3 NA 0.11
Nearest-neighbor comm. 5.9 NA ∼0
Long-distance comm. one tile 12.1 NA ∼0

communication circuits consume nearly zero leakage due to their simplicity.

Based on the average cycles per macroblock data as we present in Figure 4.15, Ta-

ble 4.3 lists the maximum frequencies to support realtime (30 fps) encoding of all the 8 test

sequences. The processors only need to run as low as 15 MHz to encode QCIF foreman

sequence at 30 fps. Among all the tests, the 1080p pedestrian area video sequence requires

the highest frequency of 1032 MHz for real-time encoding. Based on equations 4.1, 4.2, 4.3

and Table 4.2, we can reasonably estimate the average power consumption of our residual

encoder. We use the processor and communication activity data from the profiling of en-

coding all the 8 test sequences atQP = 25. Table 4.3 shows the power consumption of all

the tests without voltage and frequency scaling which means all of the processors run at the

same maximum frequencies and corresponding supply voltages. The QCIF foreman real-

time encoding consumes only 4 mW and the power number increase proportionally with

the frame size. The encoder consumes 115–121 mW for 720p HDTV tests at 30 fps and

433–544 mW for 1080p HDTV tests at 30 fps.

Power Optimization

The power dissipation of our encoder can be further reduced by adjusting the frequency

and voltage of each processor. Based on the processor activity number, each processor has

an optimal operating frequency so that the processors can be active as much as possible. By

running at these optimal frequencies, the power wasted by stalling and standby activities of

the processors is eliminated. As shown in Figure 4.16, in that case the twoAC 4x4 quant

60

Table 4.3: Power consumption of residual video encoding running at 30 fps with and with-
out static voltage and frequency scaling (VFS)

Max Power Power
Test Frame Freq. w/o VFS w/ VFS Power

Size (MHz) (mW) (mW) Change

Foreman QCIF 15 4.0 3.0 –25%
Football CIF 45 9.1 7.1 –22%
Soccer 4CIF 174 32 27 –16%
Stockholm 720p 425 115 78 –32%
Shields 720p 397 121 89 –26%
Rush hour 1080p 939 433 271 –37%
Pedestrian area 1080p 1032 544 347 –36%
Blue sky 1080p 905 447 260 –42%

processors must run at the highest frequencies and the other processors can run at lower

frequencies.

Our platform supports two global supply voltage gridsVddHigh andVddLow. The val-

ues ofVddHigh andVddLow are variables for different test cases. TheVddHigh is chosen to

support the maximum frequency based on the measured voltage frequency curve [74]. The

VddHigh is set to 1.15 V for all the three 1080p video tests shown in Table 4.3. Based on

our simulation, the two AC quantization processors are set to run atVddHigh for the three

1080p tests. The other processors can run atVddLow or VddHigh depending on their optimal

operating frequency. If atVddLow the processor can reach its optimal operating frequency,

the supply voltage is set toVddLow; otherwiseVddHigh is chosen. To find the optimalVddLow

we changedVddLow from VddHigh down to 0.65 V and chose theVddLow value which results

in the minimum total power consumption.

Figure 4.17 shows the total power consumption corresponding to theseVddLow values

for the Foreman video test. As shown in the figure, the optimalVddLow is 1.05 V with total

power of 582 mW for 1080p Foreman encoding at 30 fps, a reduction of 29.5% when com-

pared with the previous case in which all processors run at 1.2 GHz and 1.3 V. Similarly,

we can scale the voltage and frequency for the 720p encoder at 30 fps whereVddHigh is set

at 0.90 V and the optimalVddLow is 0.80 V, which reduces 61.3% of the power dissipation

and results in 148 mW power in total.

61

Figure 4.17: The total power consumption over various valuesof VddLow (with VddHigh

fixed at 1.3 V) while processors running at their optimal frequency and encoding Foreman
at QP=25. Each processor is set at one of these two voltages depending on its frequency.

Table 4.3 summarizes the estimated power consumption of encoding the eight video

sequences atQP = 25 with voltage frequency scaling (VFS). As shown in Table 4.3, with

VFS, the residual encoder only consumes 3 mW for QCIF foreman encoding at 30 fps. For

the two 720p video tests, the encoder consumes 78–89 mW with VFS. On average, with

VddHigh andVddLow at 0.85 V and 0.75 V, the encoder consumes 84 mW power dissipation

for 720p video encoding at 30 fps—an average reduction of 29% compared with the design

without VFS. For the three 1080p 30 fps video sequences, the encoder consumes 260–

347 mW. On average, withVddHigh andVddLow at 1.15 V and 0.9 V, the encoder is capable

of 1080p video encoding at 30 fps with 293 mW power dissipation—an average reduction

of 38.4% compared with the design without VFS. The results demonstrate the effectiveness

of voltage and frequency scaling for video applications with dynamic workloads. Another

observation is that as frame size increases, the power savings increase with voltage and

frequency scaling. This is because high-definition video encoding has more unbalanced

62

�

��

��

��

��

��

��

��

	�

�

�	� ���
� �� �� �� ��

���
� ���� ��� �����
���� ����

���
� ���� �����
� ��
���� ���� ����

 !"#

$%&'

$%('

$%)'

$%$*'

)%+')%&'

(a) Delay

,

-,,

.,,

/,,

0,,

1,,

2,,

3,,

4,,

5,,

-,,,

-4, -/, 5, 21 01 /. ..

6789:;<=> ?9=@ ABC DE@FGHIE=7 J?KL

6789:;<=> ?9=@ :8789HG DMHGE7: 9FG8 J?KL

NOPQ

R STU

NOVQ

NOWQNONXQ
NONQ

WOYQ WOPQ

(b) Energy per operation

Figure 4.18: Delay and energy per operation of an inverter driving a fanout of 4 based on
SPICE simulation using predictive technology model (PTM) [81]; the general scaling rule
assumes av/s2 reduction in delay and a1/(sv2) reduction in energy/op wheres is the
technology scaling factor andv is the voltage scaling factor [82].

workloads among the encoding tasks, which provides more power-saving potentials for

voltage and frequency scaling.

4.5.4 Performance Comparison

The H.264/AVC baseline encoder has been implemented on many DSP platforms. In

order to fairly compare with other reference designs, we estimate the loading fraction of

residual encoding in a full baseline encoder. Since this loading fraction is affected by many

different variables such as processor architecture and test video sequences, we use a range

to estimate the fraction number.

The CAVLC occupies 18.2% computation time of the full baseline encoder running

on a general-purpose computer [83]. Our parallelized IT and Quant modules take around

56.2% computation time of CAVLC encoding. Since the other reported designs use VLIW,

SIMD, or multiple-issue architectures which are very likely able to execute multiple in-

structions per cycle during the computation of IT and Quant, we estimate they double their

63

performance while computing these workloads. In this way, weestimate the IT and Quant

take about 5.1% computation time of the full encoder. Summing up the two fractions, the

residual encoder is estimated to take 23.3% computation time of a full encoder. We added

a fluctuation ranging from±3% to roughly estimate the test sequence variation which is

observed in our JM encoding tests over various test sequences from QCIF to 1080p frame

sizes. Thus, we estimate the residual encoder takes about 20.3% to 26.3% of a full baseline

encoder.

For a fair comparison, all of the reference data are scaled to 65 nm technology at a

supply voltage of 1.15 V. We use a technology scaling rule justified by SPICE simulation

of an inverter driving a fan out of 4 under different technology nodes and supply voltages

with prediction technology model (PTM) [81] as shown in Figure 4.18. We use the metrics

of throughput (Mpixel/s), throughput per area ((Mpixel/s)/mm2), energy per pixel (nJ/pixel)

to compare the throughput, hardware efficiency and energy efficiency of each design.

Based on the loading fraction and technology scaling rule, we estimate the residual en-

coder performance of published software H.264/AVC baseline encoders on two DSP plat-

forms and two hybrid multi-core architectures as shown in Table 4.4. Since the proposed

residual encoder on AsAP is configurable and programmable, we include the performance

data of our design encoding 1080p, 720p and CIF at 30 fps at different supply voltages as

shown in in Table 4.4. The energy per pixel of AsAP reduces as we reduce the frame size

and supply voltages. A reduction of 36% and 52% energy per pixel are achieved for 720p

and CIF video encoding compared to 1080p encoding.

For a fair comparison, we only compare the other designs with AsAP while encoding

1080p at 30 fps because the other results are scaled to 65 nm and 1.15 V. As shown in Ta-

ble 4.4, compared with the encoder on the TI DSP C642, the proposed residual encoder on

AsAP has 2.9–3.7 times higher throughput, 11.2–15 times higher throughput per chip area

and 4.5–5.8 times smaller energy per pixel. Compared with ADSP BF562 DSP, our de-

sign has 2.3–3.0 times higher throughput and 5.6–7.2 times smaller energy per pixel. The

64

Max Esti. Resi.a Est. Resi.a Other results scaled to 65 nm & 1.15 V
Platform Arch. Tech. Vdd Area Freq Power Throughput Throughput Energy Throughput Throughput/Area Energy

(nm) (V) (mm2) (MHz) (mW) (Mpixel/s) (nJ/pixel) (Mpixel/s) ((Mpixel/s)/mm2) (nJ/pixel)

8-way
TI C642 [84] VLIW 130 1.2 72 600 718 CIF@24fps 9.3–12.0 59.8–77.2 16.7–21.6 0.9–1.2 21.2–27.4

Dual-core
ADSP BF561 DSP 130 1.2 NA 600 1110 CIF@30fps 11.6–15.0 74–95.7 20.9–27.0 NA 26.2–33.9

[85]
CPU +

Cell [86] SIMD PE 90 1 221 3200 NA 1080p@31fps 244–317 NA 366–476 2.8–3.2 NA
SODAb CPU +

customized SIMD PE 90 1 14.29 300 68 CIF@30fps 11.6–15.0 4.5–5.9 17.4–22.5 2.3–3.0 3.9–5.2
for H.264 [87]

Dual-core
Intel P8400c CPU 45 1.1 107 2260 12,500d 1080p@12fps 25 500 13.2 0.06 437.9

[88]
ASICe[89] ASIC 130 1.2 4.0 108 36.6 720p@30fps 27.7 1.3 106.1 106.1 0.60

(ISSCC2007)
1.15/0.9 4.6 959 293 1080p@30fps 62.2 4.7 62.2 13.5 4.7

This work Array
AsAPf (25 cores)

65 0.85/0.75 4.6 411 84 720p@30fps 27.6 3.0 27.6 6.0 3.0

0.675/0.675 4.6 45 7.1 CIF@30fps 3.0 2.3 3.0 0.65 2.3
a The residual encoding throughput is estimated based on a loading factor of 20.3%–26.3% of a full baseline encoder.
b SODA is not fabricated and data are from synthesis results [87].
c Measured results by implementing the same residual encoder on Thinkpad T400 Core 2 Duo PC.
d The P8400’s typical power is not available, so 50% of TDP (25W) is used based on benchmark data of a general-purpose processor [90].
e The residual encoder is estimated to be one sixth the total chip area based on the die photo and the power is estimated to be 20% of the total power.
f The AsAP’s area includes 25 cores and one 16-KB shared memory. Three sets of supply voltages are used for 1080p, 720p and CIF video encoding separately.

Table 4.4: Comparison of residual encoder on different software platforms and ASICs; the original published data are included under
different technology nodes and supply voltages; For comparison, data are scaled to 65 nm technology with a supply voltage 1.15 V
assuming a1/s2 reduction in area; throughput and energy are scaled based on a scaling rule justified by the SPICE simulation shown in
Figure 4.18.

65

IBM cell processor is a heterogeneous multi-core architecture for high-end gaming and

multimedia processing [91]. The reference design on Cell has 5.9 to 7 times higher scaled

throughput than our design at a cost of 4.2 to 4.8 lower area efficiency than AsAP. The

Cell processor power number is not available though AsAP should have far higher energy

efficiency due to area alone. The customized SODA is specially optimized for H.264 by

introducing flexible SIMD width, diagonal memory organization and special fused opera-

tion instructions [87]. Compared to the customized SODA, our implementation achieves

2.8 to 3.6 times higher throughput and 4.5 to 5.9 times higher area efficiency. AsAP has

similar energy efficiency compared to the SODA customized for H.264. SODA has not

been fabricated and both area and power data are from synthesis results [87].

We also implemented the same residual encoder written in sequential C and compiled it

with Intel C++ Compiler 9.1 on a state-of-the-art Intel Core 2 Duo P8400 computer running

Windows XP SP2 with 3G Bytes DDR3 RAM. To be fair, we doubled the performance esti-

mation of our sequential implementation based on the fact the encoder could be potentially

parallelized at the thread-level on the dual-core processor [59]. As shown in Table 4.4, the

throughput of our design is around 4.7 times the scaled throughput of the design running on

the P8400. Our results show a state-of-the-art general-purpose processor can not meet real-

time 1080p encoding requirement with around two orders of magnitude smaller throughput

per area and around 93 times higher energy per pixel compared with our design on AsAP.

For a complete comparison, we also estimate the area and power consumption of a hard-

ware residual encoder based on a 720p H.264 baseline encoder chip fabricated at 130 nm

CMOS [89]. Based on the die photo, the area of the residual encoder is estimated to occupy

one sixth the total chip area. The power of the residual encoder is related to both work-

load (23.3%) and the chip area. Thus, a medium value (20%) is used to estimate the total

power consumption of the residual encoder. As expected, ASIC achieves higher area and

energy efficiency — 7.9 times higher area efficiency and 7.8 times higher energy efficiency.

However, the efficiency of hard-wired ASICs come at the cost of little flexibility.

66

4.6 Conclusion

We have implemented a high-performance parallel H.264/AVC baseline residual en-

coder on a fine-grained many-core system. The encoder is composed of integer transform,

quantization and CAVLC blocks. The 25-processor residual encoder is the first software

implementation on a fine-grained many-core system that supports realtime 1080p HDTV

encoding to the best of our knowledge. We exploited data and task level parallelism in

the H.264/AVC algorithms at the fine-grained block level and utilized the benefits of the

GALS architecture to reduce power dissipation based on the workload of each processor.

The design achieves higher throughput, much higher throughput per chip area, and much

lower energy per pixel than the exact same encoder implemented on a general-purpose mul-

tiprocessor. It also compares very well with published implementations on programmable

DSP processors, thus demonstrating the great promise of fine-grained many-core processor

arrays for use in video encoding.

67

Chapter 5

Application-Driven Processor Shape and

Topology Design

5.1 Introduction

For many-core processors, long inter-processor communication links dissipate signifi-

cant power that does not directly contribute to the workload processing [92]. Thus, many-

core processors that utilize scalable interconnects and aovid global wires normally can

attain higher peorformance.

Network-on-Chip (NoC) approaches are used to connect large numbers of processors

on a single-chip because they are more efficient than less scalable methods such as global

shared buses. There exist many design alternatives for NoC architectures which differ

mainly in switching policy, topology and routing algorithms. Most proposed NoC architec-

tures are based on dynamic packet switch routing and some are based on static configurable

circuit-switch interconnection which has smaller area, lower power dissipation and lower

complexity while trading off routing flexibility [93].

Network topologies define how nodes are placed and connected, affecting the latency,

throughput, area and power of a network. Due to its simplicity and the fact that processor

68

tiles are traditionally square or rectangular, the nearest-neighbor 2D mesh topology is a nat-

ural solution for both dynamic and static on-chip communication architectures. However,

efficiently mapping applications can be a challenge for cases that require communication

between processors that are not adjacent on the 2D mesh. This condition could require

processors to forward data for static interconnection architectures, and intermediate routers

for dynamic router-based NoCs. The power consumption and communication latency also

increase as the number of routing processors or routers between two communicating cores

increase. There exist other common topologies for NoCs such as 2D torus, fat tree, oc-

tagon and higher dimensional meshes and tori which provide higher routing capability and

communication bandwidth with costs of higher wire density and longer global wires [94].

Furthermore, these topologies present significant challenges for many-core physical imple-

mentations especially with the number of cores per die expected to soon reach thousands

and more.

For many applications mapped onto homogeneous chip multiprocessors, communica-

tion between processors is often largely localized [95, 96], which may result in local map-

ping congestion; an increase of local connectivity can ease such congestion. This motivates

us to propose new topologies with increased local connectivity while keeping much of the

simplicity of a mesh-based topology.

Many-core NoC topology design has a strong impact on application performance, phys-

ical design time and application mapping effort. This work proposes regular and scalable

topologies and tile shapes for dense interconnection of many-core arrays which result in an

overall application processor with fewer cores and a lower total communication length.

The main contributions of this chapter can be summarized as follows:

1. Seven NoC topologies are proposed and compared to the common 2D mesh including

two 8-neighbor topologies, two 5-neighbor topologies and three 6-neighbor topolo-

gies. Three of them utilize hexagonal-shaped or 5-sided “house-shaped” processor

tiles.

69

2. A complete functional H.264/AVC residual encoder and an 802.11a/g OFDM base-

band receiver are mapped onto all topologies for realistic comparisons.

3. Commonly available commercial CAD tools are used to implement tiled CMPs for

all proposed topologies. All seven topologies including the hexagonal and house-

shaped processor tiles are physically implemented in 65 nm CMOS using standard

cells and Manhattan-style wires without full-custom layout. The final layouts are all

DRC and LVS clean.

The remainder of this chapter is organized as follows. Section 5.2 reviews related work.

Section 5.3 describes and evaluates the proposed inter-processor communication topolo-

gies. Section 5.4 presents mapping of two applications onto a 2D mesh and all proposed

topologies. Section 5.5 describes the physical design flow and the approach to implement

the non-rectangular processor tiles. Section 5.6 presents the chip implementation results

and section 5.7 concludes this chapter.

5.2 Related Work

Many topologies have been used for on-chip inter-processor communication, such as

buses, meshes, tori, binary trees, octagons, hierarchical buses and custom topologies for

specific applications [94]. Many high radix topologies have been proposed to minimize hop

count at the cost of higher routing complexity and possibly higher energy consumption [97,

98]. The low complexity 2D mesh has been used by most fabricated many-core systems

including RAW [66], AsAP [11, 72], Intel 80-core [99], TILE64 [47], AsAP2 [73, 74] and

Intel 48-core Single-Chip Cloud Computer (SCC) [100].

Prior work has been reported using hexagonal interconnections for on-chip wire rout-

ing and off-chip multiprocessor communication. Chen et al. [101] propose Y architecture

for on-chip interconnections and show that it can increase communication throughput by

20.6% over the 2D mesh with Manhattan-style wires. Zhou et al. [102] propose hierarchi-

70

cal three-way interconnection, Y tree architecture, for hexagonal processors. These two

papers only theoretically propose hexagonal interconnection architectures and showcase

the throughput benefit only ifnon-Manhattanstyle wires are used. Shin [103] proposes

a hexagonal mesh for the interconnection of multiple processors in a system, which has

been demonstrated to have higher communication performance and robustness than other

topologies. Furthermore, Decayeux and Seme proposed a 3D hexagonal network as an

extension of 2D hexagonal networks [104]. As mentioned before, such off-chip hexago-

nal networks are used to connect computation nodes, which is different from our proposed

on-chip hexagonal-shaped processor tiling.

Becker et al. [105] developed a hexagonal Field-programmable Analog Array in a

0.13µm CMOS technology. The basic building block is a hexagonal analog circuit block

which communicates with six neighbors. Extension to a many-core processor is similar in

topology, but very different in terms of impact on tile area and total application intercon-

nect. Malony studies the two-dimensional regular processor arrays which are geometri-

cally defined based on nearest-neighbor connections and space-filling properties [106]. He

theoretically proves the hexagonal array is the most efficient topology in emulating other

topologies by analyzing the geometric characteristics.

5.3 Processor Shapes and Topologies

In this section, various topologies are proposed, where several use non-rectangular pro-

cessor shapes for compact tiling. The proposed topologies avoid long global wires and in-

crease routing capability and communication bandwidth compared with the 2D mesh. The

worst-case communication distance for four basic communication patterns and the maxi-

mum interconnect wire delay for different processor tiles are used to evaluate all topologies.

71

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

(a) Square

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

(b) Circle

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

(c) Hexagon

Figure 5.1: Example tiles of constant area with random uniformly-distributed wire
endpoints.

��� ��� ��� ���

��� ��� �	� �
�

Figure 5.2: The (a) baseline 2D mesh (4-4 Rect) and seven proposed topology/shape com-
binations: (b) 8-8 Rect, (c) 8-4 Rect, (d) 5-5 House, (e) 5-5 Rect Alt. Offset, (f) 6-6 Hex,
(g) 6-6 Rect Offset, and (h) 6-6 House Offset. (Designs are named using: the total num-
ber of interconnection links, the number of nearest-neighbor interconnection links, and the
processor’s shape.)

72

5.3.1 Processor Tile Shapes

To the best of our knowledge, all previously-fabricated VLSI processors have been of a

rectangular shape, often nearly square. As illustrated in Figure 5.1(a)(b), it stands to reason

that a circular shape would allow shorter wires for a given netlist, resulting in smaller

area and lower wire capacitance which would result in higher speeds and lower energy per

operation. A simple experiment with ideal shapes and one million randomly-placed wires

yields a 2.2% reduction in total wire length for a circular tile compared to a square tile. On

the negative side, it is clear that circles do not pack together without wasted space between

tiles. On the positive side, circles pack withsix neighbors while rectangles obviously have

only four. It is reasonable to expect a rectangular tile to have longer wires on average

compared to a square tile.

In contrast to the circle, the hexagonal shapedoespack efficiently without gaps between

tiles and it retains the 6-nearest-neighbor property. The same wiring experiment was run

for a hexagonal tile and it resulted in a 1.8% reduction in total wire length compared to the

square tile.

A reduction in total wire length yields a pure benefit in area, energy and delay for

processor tile design. The inclusion of common rectangular blocks such as memory arrays

in a processor tile increases routing congestion but is shown in Section 5.6 to be tolerable.

In addition, we demonstrate that Manhattan-style wire routing is fully compatible with

non-rectangular tile shapes.

5.3.2 The Proposed Topologies

The eight different topologies in combination with processor tile shapes are shown in

Figure 5.2. Switch fabrics are assumed to reside inside each processor tile. The well-known

2D mesh in Figure 5.2(a) is used as the baseline topology for comparison. All topologies

are named by: 1) the total number of direct interconnection links, 2) the number of nearest-

73

neighbor interconnection links, where nearest neighbors are defined as directly connected

processors that touch at the edge or the vertices. and 3) the processor’s shape. For example,

the baseline 2D mesh is named4-4 Rectwhere tiles are rect-shaped and connected by four

links, all of which are nearest-neighbor interconnect links.

The next logical extension of the 2D mesh is to include the four diagonal processors in

an 8-neighbor arrangement named8-8 Rectas shown in Figure 5.2(b) where each rect tile

can directly communicate with 8 neighbors. This approach has increased routing conges-

tion in the tile corners due to the four (uni-directional) links that pass through each corner

(the dashed lines in Figure 5.2(b)).

The third topology is an 8-neighbor mesh (8-4 Rect) as shown in Figure 5.2(c) where

the baseline 2D mesh is augmented with direct connections with processors two tiles away.

In this case, the “pass through” routes are not just in the corners, but pass through the entire

tile.

Figure 5.2(d) shows a 5 nearest-neighbor topology (5-5 House) where each tile is a

“house-shaped” pentagon. There are various house shapes and the center-to-center Eu-

clidean distances between a tile’s center and its five neighbors are not equal. However,

the center of a house-shaped tile can be chosen so that the Euclidean distances from the

center to all five vertices are equal, which yields only one type of house-shaped tile where

the rectangular shape at the bottom is square. If the square shape has an edge length of

w, the center-to-center distance for three of the five connections isw and the other two

connections have a length ofw ∗
√

(2 +
√

2)/2.

Figure 5.2(e) shows an alternative 5-neighbor topology (5-5 Rect Alt. Offset) where

every other row of rect tiles are offset. The5-5 Rect Alt. Offsethas the same interconnection

topology as the5-5 House. All processors are square-shaped with an edge length ofw. The

center-to-center Euclidean distance between two processor tiles can be eitherw (if tiles are

aligned) or
√

5/2 ∗w (if tiles are in an offset position). This topology has the advantage of

a regular processor shape while achieving the same routing capability as the house-shaped

74

Figure 5.3: A spectrum of 6-neighbor topologies with offset row house-shaped tiles which
differ in the area of the triangle roof of the house shape.

tile topology.

Our sixth proposed interconnect topology is the 6-nearest-neighbor array using hexagonal-

shaped processor tiles as shown in Figure 5.2(f). The processor center-to-center Euclidean

distance is
√

3 ∗w if the length of the hexagon edge isw. The hexagonal grid is commonly

used in mobile wireless networks due to its desirable feature of approximating circular

antenna radiation patterns and its optimal characteristic of six nearest neighbors. The sym-

metry and space-filling property make the hexagonal processor tile topology an attractive

design option for many-core processor tiles.

Figure 5.2(g) shows our seventh topology named6-6 Rect Offsetwhere every row of

tiles is offset so that each tile has 6 nearest neighbors. For tiles with heighth and width

w, the center-to-center distance in the horizontal direction is clearlyw. For adjacent tiles

in the row above and below, the center-to-center Euclidean distance is
√

w2/4 + h2. Thus,

if we setw =
√

w2/4 + h2, or h =
√

3/2 ∗ w, then all six neighbors will reside at equal

center-to-center Euclidean distances.

Figure 5.2(h) shows the eighth topology (6-6 House Offset) where every neighboring

row of house-shaped tiles are offset so that each tile has 6 neighbors. In fact, as shown

in Figure 5.3, there are a spectrum of topologies that fall into this category where the

triangle roof of the house-shaped tile can have varying area. However, there is no geomet-

rically optimal topology with six equal-Euclidean-distance neighbors. If the area of the

roof triangle is 0, it becomes the6-6 Rect Offsettopology which has the advantage of equal

center-to-center Euclidean distances for all six neighboring tiles as shown in Figure 5.2(g).

75

Table 5.1: Euclidean and Manhattan link lengths for all topologies with one unit of length
equal to the square root of the area which is one for all topologies and shapes

Topology
Nearest-neighbor Link Longer Link
Num. E. Dis. M. Dis. Num. E. Dis. M. Dis.

4-4 Rect 4 1.00 1.00 0 – –
8-8 Rect 4 1.00 1.00 4 1.41 2.00
8-4 Rect 4 1.00 1.00 4 2.00 2.00
5-5 House 3 0.95 0.95 2 1.24 1.51
5-5 Rect Alt. Offset 3 1.00 1.00 2 1.12 1.50
6-6 Hex 6(2)* 1.07 1.07 0(4)* – 1.47
6-6 Rect Offset 6(2)* 1.07 1.07 0(4)* – 1.46
* The 6-6 Hexand 6-6 Rect Offsethave six nearest-neighbor links using

Euclidean wires. However, the two topologies have two nearest-neighbor
links and four longer links using Manhattan-style wires.

Therefore, we consider only the6-6 Rect Offsetfor this type of topology in the following

sections.

The center-to-center distance can be used to represent the communication link length

between two processor tiles. Table 5.1 shows the number of different types of communi-

cation links and the corresponding link length for all topologies. For comparison purpose,

the link lengths are calculated based on both Euclidean and Manhattan rule. As shown in

Table 5.1, if Euclidean rule is used, the4-4 Rect, 6-6 Hexand6-6 Rect Offsethave only

one type of communication link due to equal center-to-center Euclidean distance. The8-8

Rect, 8-4 Rect, 5-5 Houseand5-5 Rect Offsettopologies have two types of links due to the

unequal center-to-center Euclidean distance between processor tiles. If Manhattan rule is

used, all topologies have two types of link except the4-4 Rect2D mesh. The6-6 Hexand

6-6 Rect Offsethave two short links and four long links instead.

Due to limitations of current wafer sawing technologies, chips from round wafers

are traditionally square or rectangular. In fact, the opportunities and limitations of non-

rectangular processors on a chip are analogous to non-rectangular chips on a wafer. For

the case of a rectangular chip composed of non-rectangular processors, there are areas on

the periphery of the chip in which processors cannot be placed for the topologies shown in

76

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of processors (n) on one edge of an array (n x n)

F
ra

ct
io

n
of

 a
re

a
un

av
ai

la
bl

e
fo

r
pr

oc
es

so
r

til
es

5−5 House
5−5 Rect alt. offset
6−6 Hex
6−6 Rect offset

Figure 5.4: Fraction of area unavailable for processor tilesin a non-mesh array (n × n)
for type d–g in Figure 5.2: 5-5 House, 5-5 Rect Alt. Offset, 6-6 Hex and 6-6 Rect Offset,
respectively.

Figure 5.2(d), (e), (f), (g) and (h). Figure 5.4 shows the percentage of unavailable area for

the four topologies with varying processor array sizes. If the processor array size is larger

than 30 by 30, this area overhead becomes less than 2.7% of the total chip area for the

hexagonal-shaped tile array and 2.0% for the house-shaped tile array. The overhead area

for type (e) and (g) is less than 1.7% of the total chip area. In practice, these areas could be

filled with useful chip components such as decoupling capacitors, or portions of hardware

accelerators, memory modules, I/O circuits or power conversion circuits.

5.3.3 Performance Evaluation

This section analyzes the performance of the proposed seven topologies by using the

worst-case communication distance of four basic communication patterns which include

one-to-one communication (in which two processors at opposite corners of the processor

77

0 2 4 6 8 10 12 14
0

5

10

15

20

25

30

Number of processors (n) on one edge of an array (n x n)

W
or

st
−

ca
se

 d
is

ta
nc

e
(N

um
 o

f p
ro

cs
)

4−4 Rect
8−8 Rect
8−4 Rect
5−5 House & Rect alt. offset
6−6 Hex & Rect offset

(a)

0 2 4 6 8 10 12 14
0

5

10

15

Number of processors (n) on one edge of an array (n x n)

W
or

st
−

ca
se

 d
is

ta
nc

e
(N

um
 o

f p
ro

cs
)

4−4 Rect
8−8 Rect
8−4 Rect
5−5 House & Rect alt. offset
6−6 Hex & Rect offset

(b)

Figure 5.5: Comparisons of the worst-case communication distance across a processor
array (n × n) for different topologies where the number of input ports of each processor
is equal to the number of interconnection links for four basic communication patterns:
(a) one-to-one, one-to-all and all-to-all, and (b) all-to-one.

78

array communicate with each other), one-to-all broadcast (in which one corner proces-

sor broadcasts data to all the other processors), all-to-one communication (in which all

processors communicate with the processor in the middle of the array) and all-to-all com-

munication (in which every processor communicates with all other processors). All real

application communication patterns can be a combination of these four communication

patterns.

The number of neighboring inter-processor communication links and the number of

input ports determine the local communication capability of a topology. The input port of a

processor refers to the communication interface including buffers and related circuits. The

number of input ports can be less than the number of neighboring interconnection links of

one processor.

As shown in Figure 5.2, depending on the number of interconnection links, the topolo-

gies require a different number of input ports to make maximal use of nearest-neighbor

interconnections. The baseline4-4 Rectmesh requires four input ports and the two 8-

neighbor Rect topologies require eight input ports. The house-shaped tile and hexagonal-

shaped tile topology require five ports and six ports, respectively. The increase of the

number of input ports incurs significant hardware overhead in terms of buffers and related

communication circuitry. However, the number of input ports into the local processor can

be less than the number of neighboring interconnections, in which case processors are ca-

pable of talking to all connected neighboring processors but not at the same time. The

following subsections discuss both the case with the same number of input ports as the

neighboring interconnections and the case with a limitation of two input ports for all pro-

posed topologies.

Varying number of input ports

In tiled CMPs, if processors have varying numbers of input ports, the communication

can be distributed in multiple directions. Thus, the worst-case communication distance is

79

shorter for those topologies with more input port processorsand nearest-neighbor intercon-

nections.

For one topology, the worst-case communication distance of one-to-one, one-to-all and

all-to-all communications are the same. As for different topologies, Figure 5.5(a) shows

that the4-4 Rect, 5-5 Houseand 5-5 Rect Alt. Offsethave similar worst-case commu-

nication distances which are approximately linearly proportional to the size of the array.

The worst-case communication distances of the6-6 Hexand6-6 Rect Offsettopologies are

shorter than those of the4-4 Rect, 5-5 Houseand5-5 Rect Alt. Offsettopologies. The two

8-neighbor Rect meshes have the shortest worst-case communication distances because of

more interconnection links.

Figure 5.5(b) shows the all-to-one worst-case communication distances for all seven

topologies. The performance trends are similar to the one-to-one, one-to-all and all-to-all

communication cases. The6-6 Hexand6-6 Rect Offsettopologies show very close per-

formance to the two 8-neighbor Rect meshes which have two more sets of communication

links.

Two input ports

By limiting the number of input ports of the local processor to two, all topologies have

the same one-to-one and one-to-all performance as shown in Figure 5.5(a) where varying

numbers of ports are used. This means for one-to-one and one-to-all communication, two

input ports are enough for all seven topologies and an increase of input ports does not

improve the results. For all-to-one and all-to-all communication patterns, the topologies

with more links have the same worst-case communication distance as the topologies with

fewer links if one processor has only two input ports as shown in Figure 5.6. This shows

that a reduction of input ports decreases the performance of the topologies with more links

in the case of all-to-one and all-to-all communications.

For simple single-issue processors that normally consume no more than two operands

80

0 2 4 6 8 10 12 14
0

5

10

15

20

25

30

Number of processors (n) on one edge of an array (n x n)

W
or

st
−

ca
se

 d
is

ta
nc

e
(N

um
 o

f p
ro

cs
)

All−to−one for all seven topologies
All−to−all for all seven topologies

Figure 5.6: Comparisons of the worst-case communication distance across a processor
array (n × n) with a limitation of two input ports for each processor.

per clock cycle, adding more than two input ports may not have the benefits as shown in the

worst-case analyses with varying number of input ports. Of course there may be benefits

if the processor uses complex instruction styles which process more than two operands per

cycle. For many cases, it is attractive to use two input ports for all proposed topologies,

in which case the hardware overhead is minimized without affecting the communication

performance too much. This limitation is justified by mapping two complex applications

onto the proposed topologies in Section 5.4.

5.3.4 Interconnect Wire Delay

All discussed topologies permit an easy tiling of processors for dense on-chip networks

without very long global wires. The two topologies in Figure 5.2(b) and Figure 5.2(c)

have a maximum global interconnect link length no more than the dimension of one pro-

cessor tile. There are no global wires for 2D mesh, house-shaped and hexagonal-shaped

tile topologies. The actual delay of local interconnect wires, which is proportional to the

81

��

��

���� ���� ���� ���� ����

���� ���� ���� ���� ����

���� ���� ���� ���� ����

��	��
 ��	�� ��	�� ��	�� ��	�� ��	��
 ��

����
 ���� ���� ���� ���� ����

��

��

��	��
 ��	�� ��	�� ��	�� ��	�� ��	��

����
 ���� ���� ���� ���� ����

��	��
 ��	�� ��	�� ��	�� ��	�� ��	��

�� ���

�� ���

�� ���

�

Figure 5.7: TheΠ5 lumped RC circuit model used to simulate the wire delay for different
shaped processor tiles considering crosstalk effects between the main wire transmitting
signal from A to B and two adjacent wires N1 and N2.Rw, Cg andCc are metal wire
resistances, ground capacitances and coupling capacitances from adjacent intra-layer wires,
respectively.

Table 5.2: Interconnect link wire length, delay and length and delay skew for square-
shaped, house-shaped and hexagonal-shaped processor tiles with different sizes at 32 nm
CMOS technology

Proc. tile area = 0.04 mm2 Proc. tile area = 4.0 mm2 Proc. tile area = 36 mm2

Square House Hex Square House Hex Square House Hex

Max. link
length (mm) 0.30 0.35 0.32 3.00 3.53 3.16 9.00 10.59 9.48
Max. link

length diff. (mm) 0.20 0.26 0.29 2.00 2.58 2.93 6.00 7.74 8.79
Max. link

wire delay (ps) 28.6 34.7 31.1 338.0 391.7 347.6 1014.0 1186.0 1060.0
Max. link wire
delay skew (ps) 22.9 24.9 27.5 217.8 282.6 324.8 676.0 866.6 983.2

size of processor tiles, depends on the physical position of the switch fabrics inside the

local processor tile. Table 5.2 shows estimates of the maximum interconnect link lengths

and maximum link length differences for the square-shaped, house-shaped and hexagonal-

shaped processor tiles based on three nominal processor tile sizes 0.04 mm2, 4 mm2 and

36 mm2 which approximate the scaled area of one processor tile in 32 nm CMOS for

AsAP2 [73, 74], TI C64x DSP [76] and the Intel Sandy Bridge processor [107], respec-

tively. All wire lengths are calculated based on the Manhattan-style wiring.

Figure 5.7 shows theΠ5 lumped RC model used to simulate wire delay while consid-

ering effects of crosstalk noise. As a common case, the wires are assumed to be in an inter-

mediate layer which incurs both ground and coupling capacitances depending on the metal

82

wire dimensions (space, width, thickness, length) and inter-layer dielectric [108]. The sim-

ulation is based on HSPICE utilizing the device model from 32 nm CMOS Predictable

Technology Model (PTM) [109]. The wire dimensions used for simulation are derived

from International Technology Roadmap for Semiconductors (ITRS) [110] reports. The

metal resistance, ground and coupling capacitance values (Rw, Cg andCc in Figure 5.7)

are calculated by PTM online interconnect tool. The center victim wire delay is measured

from input A to output B including the buffer composed of two FO4 inverters. Based on

the single buffered wire delay data (wire length from 0.1 mm2 to 2 mm2 with 0.1 mm2

interval), long wires can be optimally segmented, which provides a more realistic delay

estimation. As shown in Table 5.2, the delay data are based on the worst-case scenario

where the signal on the center victim wire moves in the opposite direction of its aggressor

neighbors N1 and N2.

Table 5.2 shows the interconnect wire delay and delay skew for square-shaped, house-

shaped and hexagonal-shaped processor tiles with the three sizes. For the 0.04 mm2 small

processor tile running at a 2 GHz clock frequency, the maximum interconnect wire delay for

all processor shapes ranges from 5.7% to 6.9% of one clock cycle. For the 4 mm2 medium

sized processor tile running at a 2 GHz clock frequency, the maximum interconnect wire

delay for all three shapes ranges from 67% to 78% of one clock cycle. For the 36 mm2

large processor tile running at 4 GHz, the maximum interconnect wire delay takes 4.0–

4.7 clock cycles for the three shapes. The interconnect wires for both the medium sized

and large processor tiles may be pipelined to increase throughput [111]. Compared with

square-shaped tile for all sizes, the maximum wire delay of the house-shaped tile increases

by 15.9% to 21.3% and the maximum wire delay of hexagonal-shaped tile increases by

2.8% to 8.7%.

For a fully-synchronous system, special design effort is required to balance the inter-

connect wire delay skew to increase the maximum achievable frequency. As shown in

Table 5.2, the actual max link wire delay skew is smaller than the maximum link wire

83

Figure 5.8: A 2D mesh processor array using five-port routers where one port connects to
the local processor core.

����

����

�	
��

����

����

�	
��

�������
���� �������
����

Figure 5.9: A diagram of two processor tiles in the4-4 Rectmesh processor array with four
interconnection links and two input ports per tile.

delay. For the 0.04 mm2 small processor tile and the 4 mm2 medium sized processor tile

running at a 2 GHz clock frequency, the maximum interconnect wire delay skew for all pro-

cessor shapes takes around 5% and 55% of one clock cycle, respectively. For the 36 mm2

processor tile running at 4 GHz, the maximum interconnect wire delay skew is around 3.7

clock cycles on average. Compared with square-shaped tiles for all sizes, the maximum

wire delay skew of the house-shaped tile increases by 8.7% to 29.7% and the maximum

wire delay of hexagonal-shaped tile increases by 20.1% to 49.1%. The results suggest the

placement of switch fabrics for non-rectangular tiles has higher impact on link wire delay

skew than the square tile.

84

5.4 Application mapping

5.4.1 Target Interconnect Architecture

The proposed topologies can be used for dense on-chip network with either dynamic

routers or static circuit switches. Figure 5.8 shows the inter-processor communication in a

typical 2D mesh processor array using dynamic routers. As the diagram shows, processors

are connected by 5-port routers each with five buffers and one 5 by 5 crossbar. The dynamic

routers also include hardware logic to implement different routing algorithms for different

topologies.

The static circuit-switch interconnection has smaller area, lower power dissipation and

lower complexity than dynamic router interconnection. In this work, we assume processor

tiles are connected with circuit switches which are suitable for applications with steady

communication patterns. Figure 5.9 shows the4-4 Rectmesh array using circuit switches

each with four nearest-neighbor interconnection links and two ports connecting to the pro-

cessor core. In this case, each processor is capable of taking two inputs from the four

directions and sending data to all four directions. The long distance communication is per-

formed by software in the intermediate processors. The circuitry diagram of other topolo-

gies is similar, which differs in the number of links among neighboring processor tiles.

5.4.2 Two Benchmark Applications

Parallel programming on the discussed many-core systems with dense on-chip networks

includes two steps: 1) partitioning the algorithms at a fine-grained level; 2) mapping the

tasks to the nodes of the processor array and connecting the nodes with available links

defined by the topology [112]. In order to compare all discussed topologies, two complete

applications including an H.264/AVC residual encoder and an 802.11a/g OFDM baseband

receiver are manually partitioned and mapped onto all topologies.

Figure 5.10 shows a 22-node task graph of an H.264/AVC residual baseline encoder

85

����

��

����	�

�

����	�

�

���

��	�

�

��	�

�

����

�� ���	�

�����

�����

�

�����

�

���

������

��

	� ��

!	�	"��

!	�	"���

#�

�

���

�$	��!�%�&��'

#�

����

(
)

���

(
)

$��&	

#
)

����	

#
)

����	

#*�

$��&	

#
)

+
����

��

Figure 5.10: Task graph of a 22-node H.264/AVC video residualencoder.

�����

�����	�

����
�

������

������

������

������

�����

��
��
�

�����
���

��
����

�����

�����
�

��
����

��������

��
��

� �� ����

�����

��
��

� �� ����

��

�����

�����	�

!�"#$�"

%�

��&'�

(������"�

%�

�����

��
��
�

!�"#!�"

%)

��&'�

(������"�

%)

��
����

%
������

��$

'����

%
������

��$

�����

��
��
�

*��#$�
�

���������

+�����

�����

��
��
�

����,!�
�

+�����

�����

��
��
�

'�	�,�

+������

%�

'�	�,�

+�����

%)

(�"��

�
��,��"

-��.

�����

��
��
�

*��������

�
��,��"

-��.

�����

��
��
�

&'��

����
/

%��0�

�����

��
��
�

�����

��
��
�

�����

��
��
�

(��
���1���
/

23 4�5�����������.��

�������

��������

Figure 5.11: An H.264/AVC video residual encoder mapped on a processor array with4-4
Rectmesh topology. The processors in gray are used for merging and forwarding data.

86

�������

���	
�

����	

�
�
��
�
���	��	

�����

���	��

�����

������	

�� �����

������

��

������

��

��������

��
������������

��

������
��

����
!	

"
���#

������	

��	�����

����	

�$��$	��	

%�

����	

�$��$	��	

�����

����	

�
�
��
�

������	

��
!��	��&

'���	

��
!���	

��&

��������

��

(����
))	

����������

'
�
�	�� '
�
�	��

����

*��+��!

����	

*��+��!
����	

*��+��!

���

,
)��

-'�	

,����#	

���.
�

��������

Figure 5.12: An H.264/AVC residual video encoder mapped on a processor array with6-6
Hex topology.

composed of integer transform, quantization and context-adaptive and variable length cod-

ing (CAVLC) functions [112]. The encoder also requires a shared memory module as

shown in the task graph.

Figure 5.11 shows an example mapping of the H.264/AVC residual encoder capable of

1080p HDTV encoding at 30 fps (frames per second) on the baseline4-4 Rectmesh that

uses 32 processors plus one shared memory. The4-4 Rectmesh is inefficient in handling

a complex application like H.264/AVC encoding. A total of 10 processors are used for

merging and forwarding data which accounts for 31% of the total number of processors.

Figure 5.12 shows a possible 25-processor mapping on the proposed6-6 Hextopology.

The hexagonal-shaped processors accept a maximum of two inputs from the six nearest-

neighbor processors. Compared with the design using a4-4 Rectmesh, seven processors

are saved, which accounts for a 22% reduction in the total number of processors.

Figure 5.13 shows a 22-node task graph of a complete 802.11a/g WLAN baseband

receiver which is computation-intensive requiring two dedicated hardware accelerators:

Viterbi decoder and FFT. The complete receiver includes necessary practical features such

as frame detection, timing synchronization, carrier frequency offset (CFO) estimation and

compensation, and channel estimation and equalization [113]. Figure 5.14 shows a map-

ping of the 802.11a/g baseband receiver (54 Mbps) on the baseline4-4 Rectmesh that uses

32 processors plus the Viterbi decoder and FFT accelerators with 10 processors used for

87

��

��

��

��
����	
�

�

��

���

��

���
�
����
�

�������

����	���

�� ��

�

���

��

�

��

��

��

���

��

��� ��

��

��

��

Figure 5.13: Task graph of a 22-node 802.11a/g WLAN baseband receiver

�����

������

�	�
�

�
���

�

�

�
�����

�������

�
���

�����

����

�
�����

� �����

������

����	���

������

������

�������

����
�

�����

���

�������

��������

�
���

���

������

����

���
��

���
��������

��

���

�	���

�
��������

����

�
���

�������

����

��������� !"

����

������

����

#"�$�

���

�	����

���
��

�����

�"%�"&

�����

��

����
��

�
���

�����

�"%�"&

�����

�"%�"&

�����

�"%�"&

�����

�"%�"&

�����

�"%�"&

�����

�"%�"&

�����

�"%�"&

�����

�"%�"&

�����

�"%�"&

���

���������'

�	�������

��
���

Figure 5.14: An 802.11a/g baseband receiver mapped on the processor array with baseline
4-4 Rectmesh topology.

merging and forwarding data.

Figure 5.15 shows a mapping on the hexagonal-shaped tile architecture which requires

only 24 processors plus the Viterbi decoder and FFT accelerators—25% fewer processors

than those used in the4-4 Rectmesh mapping.

88

�����

������

�	�
�

�
���

�
����

�
���

����
�

�
��

������

����

�
��

�������

����

��
�

���

�����
����

�
��
��

�
���

���
���

�
��

��������

�
���

�
�

�������

�	�����

���

���

�
�

�����

�

�
�

���
��

��
��

�
������

����

��
�

�
��
��

�	����

�
�
��

�����
��

�	���

�
�

�	���

�
�

���
��

��
��

���

�
�
��

�����
��

���

��
�

�����
��

���

���

�������� !"#

$#�%����

� � �

��#& #'

� � �

��#& #'

Figure 5.15: An 802.11a/g baseband receiver mapped on the processor array with6-6 Hex
topology.

5.4.3 Application Mapping Results

Total number of used processors

All six proposed topologies (type (b)–(g) in Figure 5.2) are much more efficient than

the4-4 Rectmesh (type (a) in Figure 5.2), resulting in processor count reductions of 16%

to 22% for the H.264 encoder and 19% to 25% for the 802.11a/g baseband receiver as

shown in Figure 5.16. The results are the same for the5-5 Houseand5-5 Rect Alt. Offset

architecture due to essentially the same topology property. Similarly, the6-6 Hexhas the

same result as the6-6 Rect Offsetarchitecture. The number of used processors of the

8-8 Rectand 8-4 Rectmeshes is smaller than the5-5 Houseand 5-5 Rect Alt. Offset

topologies because of more communication links between processors. However, the two

8-neighbor Rect meshes require a slightly larger number of processors than the two 6-

neighbor topologies which yield the largest processor number reduction (24%) compared

to the4-4 Rectmesh. This is because the communication patterns of the two applications

are mostly localized. Thus, topologies with more nearest-neighbor links yield more benefits

than topologies with fewer nearest-neighbor links.

89

32

26 26
27 27

25 25

32

24
26 26 26

24 24

4-4 Rect
8-8 Rect

8-4 Rect

5-5 House

5-5 Rect alt. o
ffset

6-6 Hex

6-6 Rect offset
0

5

10

15

20

25

30

N
um

er
 o

f p
ro

ce
ss

or
s

 H.264 residual encoder
 802.11a receiver

Figure 5.16: The number of processors used for mapping two applications to the seven
topologies (type (a)–(g) in Figure 5.2).

Total communication link length

The total communication link length for the two applications can be calculated based

on either Euclidean or Manhattan link length as shown in Table 5.1 and the application

mapping diagrams.

Figure 5.17 shows the total communication length based on non-Manhattan-style wires.

The8-8 Rectand8-4 Recthave an average of 3% and 9% longer communication lengths

than the4-4 Rectmesh because they use more long communication links. The6-6 Hexand

6-6 Rect Offsetare the most efficient topologies, yielding the largest reduction (19%) in

average total communication link length compared to the baseline4-4 Rectmesh.

Figure 5.18 shows the total communication link length based on Manhattan-style wires.

All proposed topologies result in a slight increase of the total link length ranging from 1%

to 5% compared to the baseline4-4 Rectmesh. This small link length increase because of

Manhattan wires has little influence in application performance, area and power consump-

tion, which will be demonstrated by the following physical implementation results.

90

45
47

49

43 43

38 38
41 42

45

40 40

36 36

4-4 Rect
8-8 Rect

8-4 Rect

5-5 House

5-5 Rect alt. o
ffset

6-6 Hex

6-6 Rect offset
0

10

20

30

40

50

Th
e

to
ta

l c
om

m
un

ic
at

io
n

le
ng

th

 H.264 residual encoder
 802.11a receiver

Figure 5.17: The total communication length based on non-Manhattan-style wires (Eu-
clidean link length) for the two applications mapped on the seven topologies (type (a)-(g)
in Figure 5.2). The link length is estimated based on the assumption that the area of each
processor tile is equal to one square unit of the length.

41

48
45

47 48

44 44
41 42 42 41

43 43 43

4-4 Rect
8-8 Rect

8-4 Rect

5-5 House

5-5 Rect alt. o
ffset

6-6 Hex

6-6 Rect offfset
0

10

20

30

40

50

Th
e

to
ta

l c
om

m
un

ic
at

io
n

le
ng

th
 (M

an
ha

tta
n

w
iri

ng
)

 H.264 residual encoder
 802.11a receiver

Figure 5.18: The estimated total communication length basedon Manhattan-style wires for
the two applications mapped on the seven topologies (type (a)–(g) in Figure 5.2). The link
length is estimated based on the assumption that the area of each processor tile is equal to
one square unit of the length.

91

5.5 Non-rectangular Processor Tile Physical Design

This section presents the design methodology of implementing a fully functional pro-

cessor and corresponding CMPs based on the proposed seven topologies.

5.5.1 Physical Design Methodology

For performance evaluation, a small processor with configurable circuit-switch inter-

connection is used for all physical designs. The processor contains a 16-bit datapath with a

40-bit accumulator and 560-Byte instruction and 256-Byte data memories. Each processor

also contains a configurable clock oscillator and two 128-Byte FIFOs for data buffering

and synchronization between two processors [73, 74]. Each inter-processor link is com-

posed of 19 signals including a clock, 16-bit data and 2 flow-control signals [93]. This

processor is tailored for all topologies under test with a different number of neighboring

interconnections ranging from 4 to 8. The internal switch fabrics are changed accordingly.

The hardware overhead is minimal for 5-neighbor, 6-neighbor and 8-neighbor processors

with only 0.5%, 0.7% and 2.0% hardware overhead based on synthesis results. The two

8-neighbor topologies add more complexity because processors communicate with two

far-away processors via dedicated links as shown in Figure 5.2. In order to make CMP

integration simpler, four additional sets of pins are inserted into the processor netlist after

synthesis and are directly connected with bypass wires. This adds routing congestion in

the corner for the topology shown in Figure 5.2(b) and across the processor tile for the

topology in Figure 5.2(c).

All processors are implemented with a fully automated design flow spanning from RTL

description to layout-level verification with STMicroelectronics 65nm CMOS technology.

The processors are synthesized from Verilog with Synopsys Design Compiler and laid out

with an automatic timing-driven physical design flow with Cadence SoC Encounter. Tim-

ing is optimized after each step of the physical design flow: floorplan, power planning, cell

92

���������	

����

��	����

397 �m

3
4
3
 �

m

Figure 5.19: DRC clean and LVS clean layout of a hexagonal processor and a 6 by 6
multiprocessor array.

placement, clock tree insertion and detailed routing. A configurable oscillator (OSC) is

manually designed from standard cells and laid out separately.

5.5.2 Non-rectangular Processor Tile and CMP Design

The house-shaped tile and hexagonal-shaped tile bring challenges for physical imple-

mentation. The first challenge to design the hexagonal processor is how to create a hexag-

onal shape at the floorplan stage. Rectangular placement and routing blockage in SoC

Encounter are used to create approximate triangle corner blockages with each rectangular

blockage differing by one unit in width and height. All rectangular blockages are piled

together to create an approximate triangle in the four corners of the rectangular floorplan.

A proper placement of pin positions can help to achieve efficient global routing and easy

CMP integration. At the floorplan stage, four sets of pins are put along the diagonal edge

of the corner and two set of pins are placed in the horizontal top and bottom edge. Since all

macroblocks have rectangular shapes (OSC, IMEM, DMEM and two FIFOs), this presents

93

��� ���

��� ���

��� ���

3
1
6
 �

m

316 �m

3
2
5
 �

m

325 �m

3
2

5
 �

m

325 �m

3
6

6
 �

m

303 �m

3
1
8
 �

m

318 �m 344 �m

2
9
7

 �
m

Figure 5.20: The final DRC and LVS clean processor tile layoutscorresponding to topolo-
gies (a) 4-4 Rect, (b) 8-8 Rect, (c) 8-4 Rect, (d) 5-5 House, (e) 5-5 Rect Alt. Offset, and
(f) 6-6 Rect Offset. The hexagonal tile (6-6 Hex) shown in Figure 5.19 is not included. All
tiles have cell utilizations from 81% to 83%.

94

a challenge to place the macroblocks. In this design, the macroblocks are placed along the

edge and the oscillator and IMEM are placed in the left and right corners, respectively as

shown in Figure 5.19.

Metal 6 and metal 7 are used to distribute power over the chip and the automatically-

created power stripes can stop at the created triangle edge in the corner. The power pins are

created on the top and bottom horizontal edges. When integrating the hexagonal processor

together, the power nets along the triangle edge can be connected automatically or manually

by simple abutment.

Once a hexagonal processor tile is laid out, a script is used to generate the RTL files

of the multiprocessor. The CMP array can be synthesized with empty processor tiles in-

side. Another script places the hexagonal tiles with the blockage area overlap with nearest-

neighbor processors along the triangle edge of each hexagonal tile. SoC Encounter can

connect all pins automatically although there are overlaps between LEF (library exchange

format) files. The final GDSII files are read into Cadence icfb for design rule check (DRC).

Figure 5.19 shows the final layout of a hexagonal-shaped processor tile and a 6 by 6

hexagonal-tiled multiprocessor array.

5.6 Chip Implementation Results

All discussed topologies enable an easy integration of processors by abutment without

global wires in the physical design phase. For all topologies, there is no long-distance

inter-communication link across more than two processors and processors are pipelined in

a way that the critical path is not in the interconnection links. Therefore, the maximum

achievable frequency of an array is the same as an individual core, which is one of the key

advantages of our proposed dense on-chip networks.

95

1 2 3 4 5 6 7
0

20000

40000

60000

80000

100000

A
re

a
 (

µ
m

2
�

(a) Area

1 2 3 4 5 6 7
0

1

2

3

4

5

6

A
re

a
 I

n
c
re

m
e

n
t

(%
)

(b) Incremental area

1 2 3 4 5 6 7
0

200

400

600

800

1000

1200

M
a
x
 f
re

q
u
e
n
c
y
 (

M
H

z
)

(c) Max clock freq.

1 2 3 4 5 6 7
-4

-2

0

2

4

6

F
re

q
u
e
n
c
y
 d

if
fe

re
n
c
e
 (

%
)

(d) Incremental clock
freq.

1 2 3 4 5 6 7
0

20

40

60

80

100

E
n

e
rg

y
 p

e
r

o
p

e
ra

ti
o

n
 (

p
J
)

(e) Energy per operation

1 2 3 4 5 6 7
0

2

4

6

8

E
n
e
rg

y
 i
n
c
re

m
e
n
t
(%

)

(f) Incremental energy
per operation

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

C
lo

c
k
 s

k
e

w
 (

p
s
)

(g) Clock skew

1 2 3 4 5 6 7

-60

-40

-20

0

20

40

C
lo

c
k
 s

k
e

w
 i
n

c
re

m
e

n
t

(%
)

(h) Incremental clock
skew

Figure 5.21: Comparison of seven optimized processor tiles showing (a) absolute area; (b)
incremental area relative to the4-4 Recttile; (c) absolute maximum clock frequency; (d)
incremental clock frequency relative to the4-4 Recttile; (e) absolute energy per operation;
(f) incremental energy per operation relative to the4-4 Recttile; (g) absolute clock skew;
(h) incremental clock skew relative to the4-4 Recttile. The processor types 1 to 7 corre-
spond to the topologies shown in Figure 5.2 (a) to (g) which are4-4 Rect, 8-8 Rect, 8-4
Rect, 5-5 House,5-5 Rect Alt. Offset, 6-6 Hexand6-6 Rect Offset.

96

5.6.1 Processor Tile Implementation Results

Seven tile types are implemented from RTL to GDSII layout to get reliable estimates of

how the topologies affect the system performance in nanoscale chip design. All floorplans

use the same power distribution design and the I/O pins and macroblocks are placed along

edges reasonably depending on the topology.

In standard-cell design, the cell utilization ratio has a strong impact on the implemen-

tation result. A higher cell utilization can both save area and increase system performance

if the design is routable. In order to get a minimum chip area for all tiles, we start with

a relatively large tile area which results in a small cell utilization ratio. Then the tiles are

repeatedly laid out while maintaining the aspect ratio and reducing the area by 5% in each

iteration with minor pin and macroblock position adjustments in the floorplaning phase.

Once a minimum area within 5% has been reached, the area change is reduced to 2.5%.

The layout tool is pushed until it is not able to generate an error-free GDSII layout for all

tiles. Figure 5.20 shows the final layouts of the other six processor tiles besides the hexag-

onal tile shown in Figure 5.19. Our methodology results in high cell utilizations for all tiles

ranging from 81% to 83%.

Figure 5.21(a) shows the absolute area of the seven processors and Figure 5.21 (b)

shows the area increments compared to the baseline4-4 Recttile which has the smallest

area and the highest cell utilization of 83%. The hardware overhead of all processor tiles

is very small. For the other six designs, the relative area increment is proportional to the

number of nearest-neighbor connections. Compared with the baseline4-4 Recttile, an

area increase of 1.3%, 2.9% and 5.9% are required for the 5-neighbor, 6-neighbor and

8-neighbor tile designs, respectively. All six designs have a cell utilization of 81%.

Figure 5.21(c) depicts the maximum clock frequency of all seven designs and Fig-

ure 5.21 (d) shows the frequency increment relative to the baseline4-4 Recttile which can

operate at a maximum of 1065 MHz at 1.3 V. Due to an increase of area, the two 8-neighbor

mesh tiles can operate at 1.9% and 2.9% higher frequency. The5-5 Rect Alt. Offsetand6-6

97

Hex tiles have noticeably higher frequencies than other designs which achieve a frequency

increase of 6.1% and 5.8%, respectively. The5-5 Housetile has the same processor logic

design and area as the5-5 Rect Alt. Offsettile, while it has a frequency increment of only

1.5%. This is probably because the required aspect ratio for the house-shaped tile is not a

good fit for this particular physical implementation. This can also explain why the6-6 Rect

Offsettile has the lowest frequency, a reduction of 3.0% in maximum frequency compared

to the baseline4-4 Recttile.

Figure 5.21(e) shows the energy per operation and Figure 5.21 (f) shows the incremental

energy per operation compared to the4-4 Recttile. The energy is estimated based on a

20% activity factor for all internal nodes. All six proposed tiles have a higher energy per

operation ranging from 3.7% to 8.4% because of the extra circuits for interconnections.

Like the area increment, the average energy increments are proportional to the number of

neighboring interconnections as shown in Figure 5.21 (f).

Figure 5.21(g) shows the worst-case clock skew for all seven processor tiles and Fig-

ure 5.21(h) shows the clock skew increments compared to the4-4 Recttile. The8-8 Rect

tile shows a 29% higher clock skew probably because routing congestion in the corners

affects the clock tree synthesis. The more circle-like shape helps the layout tool to generate

a clock tree with smaller clock skew. As expected, the house-shaped tile and hexagonal-

shaped tile have the lowest clock skew with a reduction of 54% compared to the baseline

4-4 Recttile.

5.6.2 Application Area

Application area depends solely on the number of used processors and the processor

tile sizes if processors are compactly tiled. Figure 5.22 shows the normalized application

area of two benchmark applications for all seven topologies. Compared with4-4 Rect, the

six proposed topologies reduce application area by 14% to 22%. Corresponding to the

largest reduction of the number of used processors,6-6 Hexand6-6 Rect Offsetachieves

98

H.264 residual encoder 802.11a receiver
0.0

0.2

0.4

0.6

0.8

1.0

-23%-23%-18%
-18%-14%

-21%
-20%

-20%-15%-15%-14%

N
or

m
al

iz
ed

 A
pp

lic
at

io
n

Ar
ea

 4-4 Rect 8-8 Rect 8-4 Rect 5-5 House
 5-5 Rect Alt. Offset 6-6 Hex 6-6 Rect Offset

-14%

(a)

H.264 residual encoder 802.11a receiver
0.0

0.2

0.4

0.6

0.8

1.0
-13%

-18%-16%-12%-9%
-16%-9%

-15%-13%-8%-8%
-10%

 4-4 Rect 8-8 Rect 8-4 Rect 5-5 House
 5-5 Rect Alt. Offset 6-6 Hex 6-6 Rect Offset

N
or

m
al

iz
ed

 A
pp

lic
at

io
n

Po
w

er

(b)

Figure 5.22: The final mapping results of the H.264 residual encoder capable of HD 1080p
encoding at 30 fps and 802.11a/g baseband receiver in 54 Non-rectangular Processor Tiles
Design and CMP IntegrationMbps mode (a) normalized application area, and (b) normal-
ized power consumption.

99

the largest application area savings, a 22% reduction compared to the4-4 Rect.

5.6.3 Application Power

For applications mapped to the many-core processor array, the average power can be

estimated by:

PTotal =
∑

i

PCore,i +
∑

i

PComm,i + Pother (5.1)

wherePCore,i andPComm,i represent the power consumption of processor core and commu-

nication circuits of theith processor.Pother is the average power of other chip components

such as memory modules or accelerators. The power consumption of processor core can

be estimated as:

PCore,i = αi · PCoreActive + (1 − αi) · PCoreStall (5.2)

whereαi is the processor activity factor;PCoreActive andPCoreStall are the average proces-

sor power consumption while the processor core is 100% actively executing instructions

and stalling (executing no-ops). Simulation results show thatPCoreRunning ≈ 2 ∗ PCoreStall

for all topologies. The two applications are simulated based on the4-4 Recttopology to

collect the computational processor activity factors and their output link activity factors.

Due to a minimal workload change on computational processors across different topolo-

gies, the computational processor activity factors of all topologies are almost the same.

Simulation results show that the average computational processor activity factors are 58%

for H.264/AVC residual encoder and 49% for 802.11a/g baseband receiver, respectively.

The activity factors of routing processors are estimated based on the number of input links

and the corresponding link activity factors. The routing processor activity factors are 9.0%

and 18.2% for H.264/AVC residual encoder and 802.11a/g baseband receiver, respectively.

100

The communication power of processori can be estimated as follows:

PComm,i =
∑

j

(δij · PCommActive,Lj
+ PCommIdle,Lj

) (5.3)

whereδij is the communication active percentage of linkj;

PCommActive,Lj
andPCommIdle,Lj

are the average power consumed by a link with a length

L while the link is 100% active and idle. The communication link power is estimated

based on simulation which is in a range of 5% to 10% of the processor power consumption.

The link idle power (mainly leakage power) is nearly zero due to the simplicity of the

communication circuits.

The voltage and frequency scaling are considered for more accurate power estimation.

In order to meet the throughput requirement for the two mapped applications, processors

need to run at 959 MHz at a supply voltage of 1.15 V for H.264 residual encoder and

594 MHz at a supply voltage of 0.92 V for 802.11a/g baseband receiver. All processors run

at the same clock frequency and supply voltages.

Based on the above equations as well as the processor power consumption numbers,

application mapping diagrams, the required clock frequencies and supply voltages for pro-

cessors, Figure 5.22(b) shows the normalized average power consumption of the H.264

residual encoder (encoding 1080p video at 30 fps) and the 802.11a/g baseband receiver (54

Mbps) for all seven topologies.

Compared to4-4 Rect, the six proposed topologies reduce application power by 9% to

17%. The6-6 Hexachieves the largest average application power savings, a 17% reduc-

tion compared to4-4 Rect. The 5-5 Rect Alt. Offset is the second most power-efficient

topology, yielding 15% average power consumption compared to4-4 Rect. Although the

6-6 Rect Offsethas essentially the same topology property as6-6 Hex, it reduces only 11%

application power compared to4-4 Rect.

101

5.7 Conclusion

This chapter presents seven low area overhead and low design complexity topologies

other than the commonly-used 2D mesh for dense on-chip networks. The proposed topolo-

gies include two 8-neighbor meshes, two 5-nearest-neighbor and three 6-nearest-neighbor

topologies—three of which use a novel house-shaped and hexagonal-shaped tile. Two com-

plete applications are mapped onto all topologies for realistic comparisons. Commonly

available commercial CAD tools are used to implement tiled CMPs for all proposed topolo-

gies including the two non-rectangular processor tiles. The application mapping and chip

implementation results demonstrate the effectiveness of the inter-processor interconnect

of all proposed topologies. Compared with 2D mesh, the hexagonal-shaped 6-nearest-

neighbor topology reduces 22% application area and 17% average power consumption

with a 2.9% area increase per processor tile. The rectangular-shaped 6-nearest-neighbor

topology provides the same interconnect architecture as the hexagonal-shaped tile. De-

spite being less power-efficient, its simpler physical design makes it an attractive design

alternative for many-core dense on-chip networks.

102

Chapter 6

Efficient Distributed On-Chip Shared

Memory for Video Applications

The memory wall problem has long existed due to the fact that the bandwidth and

latency of main memory have not kept pace with CPU performance [114,115]. This speed

disparity has widened significantly for many-core systems which have limited memory

pins and hundreds or even thousands of memory-hungry cores. The primary solution to

the memory gap has been the implementation of multi-level memory cache hierarchies.

However, the cache consistency and coherency problems emerge for many-core systems,

which require significant hardware or software overhead to enable data sharing between

multiple processors.

For multimedia applications, typically the workload has regular memory access patterns

and small memory requirements, which makes alternative architectures attractive. The goal

of this research is to explore the design of a distributed shared on-chip memory system

for fine-grained many-core architecture where each processor operates independently and

asynchronously.

103

Table 6.1: An estimate of memory requirements for DSP and video algorithms
Applications Memory Size (Bytes)
64-point FFT 256
1024-point FFT 4096
8x8 DCT 64
Motion Estimation (48 x 48 search range) 2304
16x16 Intra Prediction 416
1080p CAVLC 1684
1080p deblocking filter 456
Adaptive Loop Filter (HEVC) 1562
Sample Adaptive Offset (HEVC) 640

6.1 Background

6.1.1 Video Application Memory Requirements

The memory requirements of DSP and multimedia algorithms depend on the coding

approach and the amount of parallelism exploited. A theoretical lower bound of data mem-

ory is the minimum memory size required by an algorithm to work efficiently without data

swapping. For most algorithms, this lower bound can be easily determined. For example,

a double-buffered 1024-point complex FFT requires approximately 4096 words of mem-

ory storage [116]. Table 6.1 lists an estimate of memory requirements of several DSP and

video algorithms including two filter algorithms for the next generation high efficiency

video coding standard (HEVC). The estimation is based on either C implementations such

as Motion Estimation, Deblock Filter and the two HEVC filter algorithms, or assembly im-

plementations on the current AsAP system such as FFT, 8x8 DCT, 16x16 Intra Prediction

and 1080p CAVLC. The memory requirements of these tasks range from several hundred

bytes to several KBs. Some of the algorithms require additional line buffer for system-level

integration such as deblock filter, adaptive loop filter and sample adaptive offset. The line

buffer sizes are in the range of several KBs to a dozen KBs.

104

6.1.2 Current AsAP Memory System

Motivation of Small Memory Processors

Modern processors typically spend a significant percentage of die area for memories

which might occupy over half of the chip area [117]. Large memories reduce the area avail-

able for computation units, consume significant power, and require longer memory access

latencies. Based on the observation of small memory requirement of DSP and multimedia

tasks, the first generation AsAP processor uses 26% area for memories per core with 64-

word 32-bit instruction and 128-word 16-bit data memory [117]. The second generation

of AsAP chip spends 18% die area on memories per core with 128-word 35-bit instruction

memory and 128-word 16-bit data memory [18]. In order to support applications requiring

large memories, the current AsAP system also includes three 16-KB on-chip shared mem-

ories supporting connections with up to four programmable processors, and each contains

a single-port SRAM that can range up to 64 KWords or 128 KB [118]. The shared memory

can reach a peak throughput of one read or write per cycle. In addition, each port supports

least-recently-serviced priority arbitration during times of simultaneous access by multiple

processors. In order to integrate the memories into the GALS array, each port contains an

input and output FIFO, and the block contains a local clock oscillator.

Memory Limitations for Mapping Video Applications

The current AsAP memory system is efficient for mapping: 1) DSP and multimedia

kernels, and 2) applications with high task-level parallelism and small local memory re-

quirement. However, there exist some limitations: 1) there is no capacity hierarchy and a

large capacity gap between the local 128-word data memory and 16-KB shared memory, 2)

the latency to access the large shared memory is high due to the cost of synchronization FI-

FOs, 3) the large shared memory is accessible only from processors that are adjacent to the

memory, which results in a waste of top or bottom processors used as memory controllers,

105

Mem Mem

Figure 6.1: A full H.264 baseline encoder mapped to AsAP platform [119].

and 4) the area efficiency of the shared memory is low with only 37% area spent on SRAM

itself.

The current memory system is not efficient in handling video applications requiring

larger local memories due to data dependencies. We have mapped a full H.264/AVC en-

coder to the second generation AsAP system as shown in Figure 6.1. Three memory in-

tensive tasks in the H.264 encoding are the current/reference frame management, motion

vector management and non-zero coefficient management in entropy encoding. They arise

from the fact that the encoding is based not only on the current macro-block but also on

previously encoded macro-blocks. The encoder uses 115 AsAP processors, two shared

memories and the motion estimation accelerator [120]. A total of 33 processors are used

solely for storing temporary data, which incurs high area and power overhead.

In order to alleviate the memory system limitation, we have proposed a bufferless

shared memory modules to bridge the gap between the large buffered shared memory mod-

106

����

���������

����

������	��

����

������
��

����

���������

Figure 6.2: The four basic data memory organizations: (a) single address space, (b) separate
address space, (c) cache, and (d) software-managed memory.

ules and small local memory. The novel source synchronous bufferless shared memory can

enable safe memory sharing across different clock domains with low access latency and

high throughput.

6.2 Shared Memory Primary Architecture

There are a variety of design options for adding a larger amount of data memory to a

GALS many-core architecture like AsAP. This section first discusses the available primary

architectures which determine the relationship between processor’s local memory and on-

chip shared memory and the programmer’s view of the shared memory system.

6.2.1 Single Processor’s View

Figure 6.2 shows four basic data memory organizations from the viewpoint of one pro-

cessor. These organizations differ in the relationship between local memories (LM) and

on-chip external memories (EM). The processor in type (a) has a single address space for

107

�����

�����

��	
��
��
�

����

����
��
�����

�����
�
����

��
�����

����	��

��
�

����

�����

�����

��� ���

����
��
�����

�����
�
����

��
�����

����	��

��
�

����
�����

�����

����	��

��
�

����

���

Figure 6.3: Three basic organizations of on-chip shared memory systems with (a) one
multi-port memory, (b) one single-port memory and (c) multiple single-port memories.

LM and EM. EM can be considered as an extension of the memory space to the LM. Type

(b) has separate address spaces for LM and EM. The two memories independently interact

with the processor core. Type (c) is a traditional cache architecture where LM contains a

subset of data in the EM. Thus, there are duplicate data in the memory system. In type (d)

organization, LM and EM have separate address space. However, processors only operate

on data from LM and software manages the movement of data from EM to LM. Type (d) is

like a software-management cache without duplicate data in the system.

Type (d) also has the merit that the design of the shared memory module has very

little impact on processing elements. The shared memories in previous generation AsAP

use type (d) organization which is efficient for handling streaming applications like video

encoding. This work continues to use this organization for the proposed bufferless shared

memory module.

108

�������� �	��
���
������� �����������������������

Figure 6.4: Three related on-chip memory systems: (a) Intelligent RAM (IRAM) [121],
(b) Stanford Smart Memory [122], and (c) Processor-in-Memory (PIM) architecture such
as FlexRAM [123] and the distributed PIM for motion estimation [124]

6.2.2 Sharing Among Multiple Processors

Depending on the memory organizations, Figure 6.3 shows three types of shared mem-

ory architecture. Type (a) allows processors to access the memory simultaneously through

independent memory ports. Processors in type (b) share a single-port memory through an

arbitration and permutation network. Processors in type (c) share a group of single-port

memories through an arbitration and permutation network. Multi-port memories are ex-

pensive in terms of area compared with single-port memories. The previous generation

AsAP uses type (b) architecture where four processors share one single-port memory.

6.2.3 Related and Proposed Memory Architecture

Figure 6.4 shows three related on-chip memory systems. Figure 6.4(a) shows the Intel-

ligent RAM (IRAM) architecture which integrates a vector processor with wide datapath

and multiple DRAMs onto a single die [121]. The IRAM has one memory address space

and memories are not shared among processors.

Figure 6.4(b) shows the Stanford Smart Memory system which is a modular reconfig-

urable architecture targeting at reconfigurable computing applications [122, 125]. Smart

Memories are composed of SRAM cells and configurable fabrics, which allows on-chip

109

�������

�	
��

���
�
	��

�
	��

����
�

�	������	��

����	
�

�
���
���	���

��
������	��

����	
�

�������

�	
��

��

�
���
���	���

��
������	��

����	
�

Figure 6.5: The proposed shared on-chip memory system allowing multiple processors to
access multiple single-port memories via an interconnection network and an arbitration and
permutation network.

SRAM resources to be configured as caches, buffers, or scratch-pad memories. Smart

Memories can be configured to have a unified address space for both processors or separate

address spaces for each processor. The flexibility of the Smart Memories system results

in a 32% area overhead, and 23% power overhead for a 16-KB SRAM capacity [126] at

0.18-µm CMOS.

Figure 6.4(c) shows the processor-in-memory (PIM) architecture where hardware logic

and memories are tightly integrated into a single tile which communicates with each other

through an on-chip network. There is no direct memory module sharing and each proces-

sor utilizes separate memory address spaces. Examples of processor-in-memory architec-

ture are the FlexRAM [123] where the hardware logic is a general-purpose processor, and

the distributed PIM for motion estimation where the hardware logic is motion estimation

ALUs [124].

Figure 6.5 shows the proposed on-chip memory architecture where multiple processors

are capable of accessing multiple single-port memories via the interconnection network.

Each single-port memory supports a small number of input requests with the help of the

arbitration and permutation network. Each memory module may have different address

space for one processor or they can be configured to share a unified address space for one

processor.

110

Table 6.2: Area, access time and power consumption of various-sized SRAMs at 65 nm
CMOS technology and 1.1 V supply voltage

Sizes Area % of AsAP Access Time Read Dynamic Leakage
(KB) (mm2) Core Area (ns) Power (mW) (mW)

1 0.015 9.0% 0.439 13.1 0.8
2 0.022 12.8% 0.479 11.0 1.5
4 0.037 21.9% 0.515 17.2 3.0
8 0.088 51.9% 0.545 20.4 5.9
16 0.147 86.4% 0.617 25.5 11.4
32 0.280 164.4% 0.702 40.7 20.8

6.3 Shared Memory Physical Parameters

The physical design parameters, such as memory capacity and density, ports and phys-

ical distribution, affect how the memory is integrated into a processor array.

6.3.1 Capacity

The capacity is the size of each single-port SRAM within a memory module. Table 6.2

lists the statistics of a single read/write port SRAM (area, access time and power consump-

tion) of various-sized SRAMs at 65 nm CMOS technology and 1.1 V supply voltages. The

data is estimated by CACTI memory model tool [127].

The area scales closely with the size of the SRAMs and the area of an 8 KB single-port

SRAM is about half size of an AsAP processor core. As the SRAM capacity increases, the

access delay and dynamic power per read operation also increases. The 8 KB single-port

SRAM runs 24.1% slower and consumes 56% more power than the 1 KB SRAM. The

leakage power also scales closely with the size of the SRAM. The 8 KB single-port SRAM

consumes 6.4 times more leakage power than the 1 KB SRAM. The SRAM statistics sug-

gest that a moderate size of shared memory module with moderate power and access time

is suitable for the video applications which require up to several KB memories per task as

shown in Table 6.1.

111

��� ��� ��� ���

Figure 6.6: Various topologies for distribution of memoriesin an AsAP array: (a) memories
at the top and bottom of the array, (b) memories at the left and right edge of the array, (c)
processor tiles are replaced by memory tiles, and (d) memories at the left and right empty
space of an array with6-6 Rect Offsettopology.

6.3.2 Density

The density of the memory modules refers to the number of shared memory modules

integrated into the AsAP system of a particular size. This parameter depends on available

die area for memory, memory capacity and application requirements. As an example, the

previous generation AsAP processor spends 18% area on local memories. A 16 KB shared

memory module is twice the size of one AsAP processor. If the budget of the die area

for memory is 25% of the total chip area, the 164-core system can integrate around eight

16 KB memory modules. With more memory modules, application data can be potentially

partitioned among multiple memory modules to expose more parallelism.

6.3.3 Distribution

The distribution of memory modules within the array can take many forms and has a

strong impact on application mapping. The memory modules can be placed at the four

edges of the 2D mesh processor array as shown in Figure 6.6(a)(b). The processor tiles can

be replaced by memory tiles as shown in Figure 6.6(c) where nearest-neighbor connections

of some processors are lost. The memory modules can also be added to the empty space of

certain topologies such as the 6-6 Rect Offset array as shown in Figure 6.6(d). The memory

distribution can be a combination of the presented four forms depending on the area budget.

112

�������

��	
������

����
� ����
�

�����	����	�

����
� ����
�

����

��	��

�
�
����

���

����

��
�

�	������

�
�
�	������

(a)

�������

��	
������

����
�

�����	����	�

����
� ����
�

����

��	��

��
�

��� ���

���

���

���

����
�
���

�	������

(b)

������

������ ������

	
�����
�����

�����

�
��
������

(c)

Figure 6.7: Shared memory clocking architectures use (a) related, (b) partially related, and
(c) fully unrelated clocks.

6.4 Shared Memory Clocking Architecture

The clock architecture has the strongest impact on the shared memory module design.

Figure 6.7(a)(b) shows two commonly used clock architectures for multi-core processors

and their on-chip shared memory systems. Usually, four cores share a single L2/L3 cache

and an external crystal oscillator is used to generate a low frequency reference clock. PLLs

can be used to generate desired clocks for processors, interconnect and shared memories.

All these chip components can operate either at related derived clocks from one PLL or at

partially related clocks from multiple PLLs. A simple case of Figure 6.7(a) is that proces-

sors and memories use the same derived clock, which yields a fully synchronous system. A

recent Intel 8-core Xeon processor adopts the latter clocking architecture, which contains

16 PLLs, 8 DLLs, and independent clock domains for each of the cores, caches, system

interface and I/O regions [3].

113

����� �����	

��

��
����

���

����

��
����

����

����� �����	

��

�����

���������

����

�����

���������

����

�������
�������������������

�������������

����� �����	

��

�������

����������

����

����������

Figure 6.8: Three clocking source designs for the shared memory module on AsAP.

The AsAP processors operate at completely unrelated clock without an external refer-

ence clock as shown in Figure 6.7(c). Each core generates its own clock with a local ring

oscillator [18]. Thus, the clock source for memory modules becomes a design parameter.

In general, three distinct clocking strategies exist as shown in Figure 6.8.

First, the memory could be completely asynchronous, so that no clock would be re-

quired as shown in Figure 6.8(a). This solution severely limits the implementation of the

memory module, as most SRAMs provided in standard cell libraries are synchronous.

Second, the memory can generate its own unique clock. The memory would be asyn-

chronous to all processors in the array as shown in Figure 6.8(b). Dual-clock FIFOs are re-

quired to transfer data between shared memory modules and processors. The shared mem-

ory module in the second generation AsAP uses this clocking architecture [118]. However,

FIFOs incur large area overhead and increase memory access latencies, which degrades

performance for certain latency-sensitive applications.

Finally, a memory module can derive its clock from the clock of a AsAP processor

as shown in Figure 6.8(c). The memory would then be synchronous with respect to this

processor. In this case, dual-clock FIFOs are not required and memory access latency is

much shorter than the second approach. However, this also brings the challenge to switch

live clock when a memory module is shared by several processors with unrelated clocks.

114

������
���

���	

���

���

���	

���

�

�

������

���

���	

���

������

(a)

����

����

���

����	

���
�

(b)

Figure 6.9: A simple clock switch multiplexer: (a) circuit, and (b) timing diagram.

6.5 Challenges and Solutions to Switch Live Clocks

Glitches on clock signals are hazardous to synchronous systems where all actions of

circuits are coordinated by clocks. It is easy to generate hazardous glitches while switching

the source of a clock line when a chip is running. Three main approaches to switch live

clocks are discussed in the following subsections.

6.5.1 Approach 1: Simple Multiplexers

Figure 6.9 shows a simple implementation of a two-input clock switch, using either

AND-OR or OR-AND type multiplexer logic. The control signalseldetermines when to

propagateclkaor clkb to the outputclkout. The problem with this simple switch is that the

switch control signal can change at arbitrary time, thus creating a potential for chopping

the clock at the output. Glitches can be generated due to an immediate switch from the

current clock source to the other clock source. The timing diagram in Figure 6.9(b) shows

how glitches are generated at the outputclkout, when theselcontrol signal changes.

In order to be glitch free, the change ofsel signal should be avoided at either clock’s

high state if two source clocks are unrelated. Furthermore, when theselsignal switches at

both clock’s low state, the output clock low state can be chopped which might create setup

violations if data from the next clock arrives immediately at the first positive edge of the

115

���

�

�

�

�

����

� �

� �

�

��

�

���	
���
��

�
� �
�

	
�	
�

(a)

sel

D

D

D

D

clka

clkout

Q Q

Q Q

Q

QQ

Q

clkb

(b)

Figure 6.10: Two glitch-free clock switch circuits for unrelated clocks using (a) AND-logic
circuit, and (b) OR-logic circuit.

output clock. This can be solved by extending the output clock low state or delaying the

input data by at least one clock cycle.

6.5.2 Approach 2: Simple Multiplexers with Cross-coupled Synchro-

nizers

Cross-coupled two-stage synchronizers can be added to the simple clock switch circuit

to avoid glitches due to asynchronous select signals or feedbacks from one clock domain

to the other. Figure 6.10 shows two popular glitch-free clock switch circuits [128]. Fig-

ure 6.11 shows an example of how the AND-logic clock switch circuit suppresses glitches

during clock switches.

At the beginning,selsignal goes from low to high state whenclka andclkb are both at

high state. The outputs of the second-stage flip-flopsaq1andbq1both will be at low state

116

����

����

���

����	

������
�����
�����
�

��

���
�����
����

���

���

���

���
��������

���

Figure 6.11: Timing diagram of the AND-logic glitch-free clock switch circuit.

for more than half a clock period of the next clockclka, which turns off the output clock.

clka starts propagation whenaq1 turns high near the negative edge ofclka. The circuit

ensures thatclkoutcan be at low state for more than one cycle before the first positive edge

of arrives.

Assume that the clock periods of current clock source and next clock sources areTa

andTb, respectively. Depending on the switch timing of thesel signal, the clock switch

time of the circuit falls into a range as shown in Eq. 6.1 and the worst-case switch time is

3Ta

2
+ 2Tb. The switch latency is limited by the slowest input frequency of two switched

clocks.
Ta

2
+ Tb ≤ t1 ≤

3Ta

2
+ 2Tb (6.1)

The OR-logic operates at only positive edge of input clocks as shown in Figure 6.10(b).

The clock switch time of circuit in Figure 6.10(b) falls into a range as shown in Eq. 6.2.

The worst-case switch time is2Ta + 2Tb.

Ta + Tb ≤ t2 ≤ 2Ta + 2Tb (6.2)

117

����

����

���

����	

������
�����
�����
�

��

���

���

���

���

��
��
������
�
�

Figure 6.12: Metastability problem of the AND-logic clock switch circuit.

Metastability Problem

Metastability is a fundamental problem present when interfacing asynchronous blocks.

Sincesel is fully asynchronous toclka andclkb, the circuits in Figure 6.10 has potential

metastability problems. Fig 6.12 illustrates the case whereselgoes from low to high state

near the positive edge ofclkb,bp0could be metastable due to setup time violation.

A useful and prevalent approximation found in the literature for modeling the average

failure rate due to metastability is shown in Eq. 6.3 [129].

(Mean Time Between Failures) MTBF=
etr/τ

T0 fc fi

(6.3)

The variables in Eq. 6.3 are defined as follows.fc andfi are the sampling clock fre-

quency and the input data event frequency. The parameterτ andT0 are flip-flop parameters

which are usually measured through experiments.tr is the resolution time (time since clock

edge). The resolution time ofbq0 in Figure 6.10 is only half cycle ofclkb, which severely

decreases the MTBF whenclkboperates at a high frequency.

For more reliable clock switch, additional synchronizers can be added. Figure 6.13

118

���

�

�

�

�

����

� �

� �

�

��

�

���	

���
��

� �

�

� �

�

Figure 6.13: A 3-stage glitch-free clock switch circuit.

���������

���	�����

����

������
�	��

������
�	��

���	

�
�
�

���

�����
�

�

��

�

���

����

������
�	��
����������

����������

���������	

Figure 6.14: A simple clock switch circuit with clock gating to disable both clocks during
clock switching (a) circuit, (b) timing diagram. For simplicity, the duplicate proc 1 circuits
are not included.

shows a 3-stage AND-logic clock switch circuit. An additional flip-flop increases the res-

olution time by one more cycle. The circuit can be extended to have more synchronizers

in between. However, the increased reliability comes at the cost of higher clock switch

latency.

6.5.3 Approach 3: Simple Multiplexers with Clock Gating Circuits

Another solution to switch live clocks is to disable both input clocks during the transi-

tion of theselsignal. If the time is enough to disable one clock and enable the next, clocks

can be cleanly switched by simple multiplexers without glitches.

Figure 6.14(a) shows a simple 2-input clock switch circuit with input clocks gated. A

119

����

����	
�

����
�

�
��

���	��
��	���
��

����
��	�

����

�

�
��
������

��	

�����

����

�
��

�������	
�

�����

��	�

���

�������	
�

�������	
�

�����	

����

����

�
��

�
��

�
��

�
��

����
����
�����
!� ��� �
 ���
�����
!� ���

�"��

Figure 6.15: A block diagram of two processors sharing one memory module using a
request-grant-release-ack protocol. Since Proc. 0 and Proc. 1 are the same, only Proc. 0
and the shared memory module are shown for simplicity.

clock gating circuit can be implemented by a low pass latch cascaded with an AND gate

as shown in Figure 6.14(a). This circuit is often offered as a basic macro cell in many

standard-cell libraries. TheclkX enablesignal is latched at the low state of the clock.

Figure 6.14(b) shows the timing diagram of the circuit switchingclkout from clkb to clka.

The circuit first disablesclkb for a period of time T1 before the transition of signalsel. The

enabling ofclkb is delayed for a period of time T2 after the signalselchanges.

The clock enable signals and clock select signal need to be generated in a strict timing

order. Fortunately, this timing can be guaranteed if processors use a request-grant-release-

ack protocol to access a shared memory module.

Figure 6.15 shows an architecture of two processors sharing a memory module with

clock gating and simple clock switch circuit. The two processors use unrelated clocks

and the memory module also owns a local clock used for the operation of an arbiter. The

request and release signals from processors are synchronized to the memory clock domain.

The synchronizer comprises two or three flip-flops in series. The arbiter generates grant

signals which are sent back to processors. The grant signals are also used as clock select

signals for the clock switch multiplexer. At the processor side, the output clock is disabled

120

when the grant signal is low or the release signal is active high. This architecture uses the

clock gating cell as shown in Figure 6.14(a).

Figure 6.16 shows the timing diagram of the proposed simple clock switch combined

with the request-grant-release-ack protocol. At the beginning, the memory module is idle

andclkout is disabled. Then processor 0 sends areq0signal to the memory module and the

arbiter grants the access of processor 0 after three memory cycles. Thegnt0signal is used

to select gatedclk0 which is disabled until the synchronizedgnt0signal arrives. The gated

clk0starts propagation toclkoutat the lower state ofclk0whengnt0signal is asserted. The

clock switch takes three memory cycles and two and a halfclk0 cycles since thereq0 is

asserted. During this time, the request from processor 1 is not granted since processor 0

have not released the memory. Then processor 0 sendsrel0 signal which will disableclk0

andclkoutafter half cycle ofclk0. The releaserel0 signal results in the assertion ofgrnt1

after three memory clock cycles. It takes another two and half cycle ofclk1 for clk1 to

propagate toclkout. The timing window when both clocks are off is larger than the sum of

half clk0cycle and two and a halfclk1cycle. It is enough forclkout to switch fromclk0 to

clk1without glitches.

6.6 Processor-Memory Interconnection Network

The interconnection between processors and memories is another design parameter.

AsAP processors communicate with each other using source synchronous circuit-switch

network [117]. As shown in Figure 6.17, there are two types of processor-memory in-

terconnection architectures. In Figure 6.17(a), memory modules can be attached to their

nearest-neighbor processors. Non-nearest-neighbor processors need to go through proces-

sors attached to memory modules for memory access. The previous AsAP system uses

this architecture which has drawbacks : (a) additional memory ports need to be added to

the processor side, and (b) communication latency increases between non-nearest-neighbor

121

Figure 6.16: A timing diagram of the clock switch circuit using request-grant-release-ack
protocol.

�

�

� �

�� �

�� �

�� �

�

��� ���

Figure 6.17: Two types of physical links to memories (a) nearest-neighbor interconnec-
tion with additional memory ports on the processor side, and (b) memory are treated as
processor tiles and share the processor-processor interconnection links.

122

�����

����	���

�����

������

����	���

�����

�

�

������

��
������

��

�����

�
���

���

�
���

���
��������	���

Figure 6.18: The physical links between processors and the bufferless memory module.

processors and memories. Figure 6.17(b) shows another design where memories are treated

as processor tiles and processor-memory communication share the processor-processor in-

terconnection links. Due to the fact that the interface signals of processor-memory inter-

connection are different from that of processor-processor interconnection, all the processor-

processor interface signals need be adjusted to match the widths of the processor-memory

interfaces.

Figure 6.18 shows a source synchronous processor-memory physical interconnection

signal datapath. The processor sendsproc clk and addr/data to the bufferless memory

module and the bufferless memory replies withdata,valid anddelayedproc clk. Depend-

ing on the distance between a processor and a memory module, the latency brought by

those intermediate wires may take several clock cycles. This latency can be hidden by reg-

istering the data along the link [130]. However, due to the uncertain delays along the link,

the phase difference betweenclk proc and delayedclk proc is unknown. This may create

timing violations as shown in Figure 6.19 if localclk proc is used to sample the incom-

ing memory data. In order to guarantee the good timing as shown in Figure 6.19(a), the

following setup and hold time constraints need to be satisfied:

D + tclk−q + tsetup < T (6.4)

123

�����������	

��
����������	

�
�	�������

�����������	

��
����������	

�
�	�������
��
�� ��
��

�����

�
��
�
�
����
���

�����
��

��

��� ���

Figure 6.19: Timing diagrams of the processor-memory interface (a) correct timing, (b)
timing violation.

thold < D + tclk−q (6.5)

Here,D is the remainder of the total link wire delay divided byT . tclk−q, tsetup and

thold are the clock-to-output delay, setup time and hold time of a flip-flop, respectively and

T is the source clock cycle time.

Thus, a small dual-clock FIFO is required on the processor side to ensure reliable data

transmitting. Since each AsAP processor core already has two input FIFOs and processor-

processor and processor-memory interfaces are compatible, no additional FIFO needs to be

added to the processor core. This reduces the memory port on the processor side, which is

required by the FIFO buffered memory module design.

6.7 Bufferless Shared Memory Module

Meeuwsen et al. have proposed a four-port FIFO buffered shared memory module for

AsAP [118] as shown in Figure 6.20. This architecture corresponds to the clock source

type shown in Figure 6.8(b), where memory modules operate at their own independent

clocks. This buffered memory module allows simultaneously requests from each processor

and arbitrates at very fine-grained level between different requests. The FIFO buffered

memory module achieves one word per cycle peak throughput for burst read and write

mode. However, by incorporating both input and output dual-clock FIFOs, the buffered

124

����

����

����

����

�����	

�����

������

������

����

����

����

����

�����������

	
��

��

����

�������������
������

������������

����
�������

������

�����	

�����

������

������

Figure 6.20: A four-port FIFO buffered shared memory module.

memory module has very low area efficiency (37% for SRAM cells) and very high access

latency.

6.7.1 Primary Architecture

Most video encoding and decoding tasks have streaming feature that processors usually

read or write a block of data at one time. Thus, memory modules do not need to serve

the requests from processors at a fine-grained level. Instead, memory modules can be

reserved by one processor in a period of time for one streaming transaction. After the

transaction is done, the processor releases the memory module and other processors can

acquire the memory module for other transactions. Based on this transaction-level sharing

model, a shared memory design does not need to use any buffer. Figure 6.21 shows an

example of such bufferless shared memory module with four input ports. This architecture

corresponds to the clock source type shown in Figure 6.8(c). The clock is switched by

simple multiplexers using the request-grant-release-ack protocol as shown in Figure 6.15.

Four processors can request the ownership of the memory module at the same time. Once

one processor’s request is granted, the memory’s clock can be switched to the clock of

that processor. The bufferless memory architecture eliminates FIFOs inside the memory

modules and results in low latency, high area and energy efficiency.

125

����

���

������

������

������

�����	

��	
�

��
�
� �
���

������

������

������

�����	

���
���

�
��
�
��
�
�	
�
��

��
�
��
�
��
	
��
�

Figure 6.21: A four-port bufferless shared memory module.

6.7.2 Micro-architecture

As an example, Figure 6.22 shows the detailed architecture of a bufferless shared mem-

ory module with two input ports. The design can be easily extended to support more input

ports. A request-grant-release-ack protocol is used to serve multiple requests from proces-

sors.

Synchronization and Arbitration

The bufferless memory module integrates a small ring oscillator to provide clock to

the synchronous hardware mutex. Two-stage or three-stage D flip-flops can be used to

synchronize the control signals across the processor and memory clock domains.

A hardware mutex unit is implemented to support mutual exclusive ownership of the

memory modules as shown in Figure 6.23. The mutex design is the same as the one used

in [131]. The mutual exclusion primitives implement simple test and set locks. The lock is

either available, or held by a particular processor during any given cycle. If the priority bits

are properly set, the highest priority request is granted if multiple requests arrive at the same

time. Otherwise, a least-recently-used policy is adopted to determine which request to serve

first. Since the hardware mutex guarantees that only one processor can access the memory

at one time, it supports inter-processor synchronization primitive without additional mutex

126

����

����

�	
����
�
��

����

�	
�
����

����

����

�
���

����

�	
�

�	
�

���
����

������
��

���
����

������
��

�
�

�����������������
������
�

�����������������
������
�

������

������

���
�����������

�����������

�����

���
�

���
�
����

����

���� �

�����

����	�������

����	�������

Figure 6.22: Micro-architecture of a two-port source synchronous bufferless shared mem-
ory module. For simplicity, the address generator, local ring oscillator and configuration
modules are not shown.

like the shared buffered memory module design [131].

6.7.3 Performance Evaluation

Peak Performance

The memory performance is depicted by two important metrics: throughput and la-

tency. Both bufferless and buffered memory modules achieve a peak throughput of one

memory access per cycle. The cycle is one memory cycle for buffered memory and one

processor cycle for bufferless memory. The actual throughput depends on maximum clock

frequency of the memory module. The bufferless memory module synthesis results (ST

65 nm CMOS and 16 KB single-port SRAM macro) report a maximum clock frequency

of 1.37 GHz. At this clock speed, the memory’s peak throughput is 21.9 Gbps with 16-bit

words.

The worst-case memory latency is for the memory read request. The bufferless memory

read latency includes the one-time memory request-grant latency, memory module access

127

arbiter

EN

owner_ps

Q

Q
SET

CLR

D

rel[3:0]

grant[3:0]

priority[3:0]

req[3:0]

sel[3:0]

request

priority

grant

Figure 6.23: Mutual exclusion primitive (mutex) [131]. The mutex implements an atomic
test and set lock. The current owner of the mutex is stored inowner ps. The arbiter
manages simultaneous mutex requests.

latency, round-trip interconnection latency and the processor side FIFO write and read syn-

chronization latency. The buffered memory read latency includes the processor memory

port latency, memory module input and output FIFO read and write synchronization la-

tency, memory module latency, round-trip interconnection latency and processor pipeline

latency for memory access from non-adjacent processors.

The interconnection latency is a variable depending on the distance between processors

and memory modules. Let us assume a processor is adjacent to a memory module and there

is no request from other processors. The buffered memory latency can be expressed as:

Lproc = LFIFO-wr + LFIFO-rd + Lmem-port (6.6)

Lmem = LFIFO-rd + Lmem-module + LFIFO-wr (6.7)

Ltotal = Lmem + Lproc (6.8)

The FIFO read and write latency depend on the number of pipe stages used to synchro-

128

0 200 400 600 800 1000 1200

0

5000

10000

15000

20000

La
te

nc
y

(c
yc

le
s)

Block data size (16-bit word)

 Bufferless memory
 Buffered memory

(a)

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

1200

La
te

nc
y

(c
yc

le
s)

Block data size (16-bit word)

 Bufferless memory
 Buffered memory

(b)

Figure 6.24: Estimated latencies of reading a block of data for buffered and bufferless
memory modules (a) non-burst read mode, (b) burst read mode.

nize data across the clock boundary. In this work, two-stage synchronizer is used. Thus, a

FIFO takes three cycles for both read and write side. To sum it up, single read latency of a

buffered memory is 8 processor cycles and 11 memory cycles. If memories and processors

are clocked at the same frequency, this is a minimum latency of 19 cycles. For the burst

read mode, after the initial latency of the first word, the rest of words take one cycle per

read if all the FIFOs are not full. This cycle can be expressed as:max(Tproc, Tmem).

The bufferless memory latency can be expressed as follows:

Lreq = Lreq-sync + Lmutex + Lgnt-sync (6.9)

Lrel = Lrel-sync + Lmutex + Lack-sync (6.10)

Lread = Lmem + LFIFO-wr + LFIFO-rd (6.11)

The signal synchronization uses two cycles and the mutex takes one memory cycle. The

SRAM read uses two processor cycles. Therequestandreleasetake three memory cycles

and two processor cycles. After setting up the clock source, the read latency is 8 processor

cycles per read. For the burst read mode, after the initial setup latency and the first word

read latency, the rest of words takes one processor cycle per word.

129

� � � �

����	
��	
���

� � � �

�

� � � � � � � � � � � �

� � �

Figure 6.25: Memory bus transactions for four-port bufferedand bufferless memory
modules.

Based on previous buffered and bufferless memory single read latency calculations,

Figure 6.24 shows estimated block data read latencies for buffered and bufferless memory

modules. In the non-burst read mode, a bufferless memory module shows a 58% latency

reduction compared to buffered memory modules. In the burst read mode, the bufferless

memory slightly reduces the access time compared with buffered memory modules, and

the time difference is negligible when the block data size is large.

When the memory module is shared by multiple processors, the time to read a block of

data in burst mode for bufferless and buffered memory module is close, which depends on

the available memory bandwidth. This is illustrated by Figure 6.25 where memory band-

width is shared in a fine-grained way for buffered memory modules and in a coarse-grained

way for bufferless memory modules. Since bufferless memories use clock sources from

multiple processors, one processor’s memory access time may depend on the other proces-

sor’s transaction time if they need to wait for the memory bus. Thus, slower processors

might drag down the speed of faster processors. In reality, processors running at similar

clock frequencies can be tiled together to the same shared memory module. Processors can

also be boosted up to the highest clock frequency for memory access so that they do not

affect each other.

130

���������	�����

����������	���
��	����
���

����������	���
��	����
����

���������������������������
	

��

�

��

�������

����������������

����������	���
��	����
����

����������	���
��	����
����

����������
�������������������	

�

��

�����	�����������

����������	��
��	����
���

�������	��
�	����
���

�����������������������	����

�������������������������������
	

�

��

��

�������

������������������

����������	���
��	����
���

�������	���
��	����
���

�������������������������	

��������������
�������������������	

��

�

��� ���

Figure 6.26: Example codes of video application running at one AsAP processor with (a)
burst memory access, (b) non-burst memory access.

Table 6.3: Memory requirement and computation workload for typical video encoding
tasks in H.264/AVC and HEVC

Applications Data Input Data Output Workload
(words) (words) (cycles)

4x4 Integer Transform 16 16 80
8x8 Integer Transform 64 64 320
4x4 Quantization 16 16 336
4x4 Intra Prediction 24 16 708
16x16 Intra Prediction 256 288 11328
8x8 Sample Adaptive Offset 84 64 1664

Application Performance

In order to exploit task-level parallelism, most of video encoding tasks can be parti-

tioned into three phases: reading data from either input processors or shared memories,

computation and writing data to output processors or shared memories. Let’s assume the

tasks use the shared memory as the main data source and destination. Applications can be

generated as shown in Figure 6.26 where video data are normally stored in memory as 2D

M by N blocks. This model allows us to estimate the effect of memory access time towards

the total application performance.

131

The application performance can be estimated by the number ofinput data, the compu-

tational workload in terms of processor cycles and the number of output data. Table 6.3 lists

the characteristics of several key tasks in H.264 and HEVC. The computational workload

of H.264 tasks is from actual AsAP2 simulations. The computational workload of Sample

Adaptive Offset is estimated from the pseudo assembly coding of SAO on AsAP2. The

intra-prediction supports three modes: vertical, horizontal and mean DC.

Let’s first consider the case where all of the kernels are mapped onto one processor

with one shared memory module and we assume processors and memories run at the same

frequency. Figure 6.27 shows the relative application execution time using a bufferless

and buffered memory with either burst access mode or non-burst access mode. For burst

mode, all applications have similar execution time for buffered and bufferless memory as

shown in Figure 6.27(a). For non-burst mode, the bufferless memory reduces 35% to 52%

of the total application execution time compared with a buffered memory. The 8 x 8 intra

prediction is the most computation intensive tasks, which yields the smallest benefits of

replacing a buffered memory by a bufferless memory. There might be chances that the

buffered memory can hide some memory read latencies by issuing multiple read addresses

and reading data back at different time or inserting instructions between sending an address

and reading the data back.

Let’s consider a sharing case where multiple copies of the same tasks listed in Ta-

ble 6.3 are distributed to multiple processors which share one memory module. For burst

mode, as we discuss in previous subsection, the relative execution time between buffer-

less and buffered memory stays the same as non-sharing case. For non-burst mode, the

buffered memory has an advantage over bufferless memory that the access latency from

multiple processors can overlap between each other. For example, if two processors share

one buffered memory, a single read takes 19 cycles for each processor. However, the over-

all execution time is 20 cycles for the two reads. As for bufferless memory, a single read

takes 8 cycles for each processor. However, the overall execution time is 16 cycles for the

132

4x4 Integer Transform

8x8 Integer Transform
4x4 Quantization

4x4 Intra Prediction

16x16 Intra Prediction

8x8 Sample Adaptive Offset
0.0

0.2

0.4

0.6

0.8

1.0

 Buffered Memory Bufferless Memory

R
el

at
iv

e
Ex

ec
ut

io
n

Ti
m

e

(a)

4x4 Integer Transform

8x8 Integer Transform
4x4 Quantization

4x4 Intra Prediction

16x16 Intra Prediction

8x8 Sample Adaptive Offset
0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
Ex

ec
ut

io
n

Ti
m

e

 Buffered Memory Bufferless Memory

(b)

Figure 6.27: The relative application execution time of a bufferless memory versus a
buffered memory without sharing among processors (a) burst mode, (b) non-burst mode.

133

4x4 Integer Transform

8x8 Integer Transform
4x4 Quantization

4x4 Intra Prediction

16x16 Intra Prediction

8x8 Sample Adaptive Offset
0.0

0.2

0.4

0.6

0.8

1.0

 Buffered Memory Bufferless Memory

R
el

at
iv

e
Ex

ec
ut

io
n

Ti
m

e

(a)

4x4 Integer Transform

8x8 Integer Transform
4x4 Quantization

4x4 Intra Prediction

16x16 Intra Prediction

8x8 Sample Adaptive Offset
0.0

0.2

0.4

0.6

0.8

1.0

1.2

 Buffered Memory Bufferless Memory

R
el

at
iv

e
Ex

ec
ut

io
n

Ti
m

e

(b)

Figure 6.28: The relative application execution time of a buffered memory versus a buffer-
less memory in no-burst mode and (a) two processors, (b) four processors share one mem-
ory module.

134

���

����
�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

	
��
��

	

�
�

�

�

(a)

���

����

��	�
��

�
��

�

�

(b)

Figure 6.29: The DRC and LVS clean layouts of memory modules at 65 nm CMOS tech-
nology (a) a 16 KB FIFO buffered shared memory module, (b) a 16 KB bufferless shared
memory module.

two reads. Figure 6.28 shows the relative execution time between buffered and bufferless

memory in two cases where two processors and four processors share one memory mod-

ule. When shared by two processors, the bufferless memory module still reduces 11% to

24% overall execution time compared with the buffered memory module as shown in Fig-

ure 6.28. When shared by four processors, the execution time increases from 11% to 26%

for the bufferless memory compared with the buffered memory. However, this disadvan-

tage of bufferless memory has little effect in video applications where four processors share

one memory module with a non-burst mode is rare.

6.7.4 Implementation Results

In order to compare with previous 4-port 16 KB FIFO buffered shared memory mod-

ule, we have implemented a four-port bufferless memory module with a 16 KB single-port

SRAM. The primary architecture is shown in Figure 6.21. The bufferless memory mod-

ule also includes four input ports, which utilize a small state machine to support burst and

non-burst memory access. Since the link interface to AsAP processor utilize the processor-

processor interconnection network, the link can only provide one 16-bit data per cycle.

Thus, it takes two cycles to latch address and data for write operations. Four address gener-

135

Table 6.4: Layout results of the 4-port 16 KB buffered and bufferless shared memory mod-
ules based on 65 nm CMOS at 1.3 V supply voltage and 25◦C

Memory Area SRAM Max. Freq. Power
(mm2) Ratio (MHz) (mW)

Buffered 0.34 37% 1300 50.3
Bufferless 0.15 83% 1370 28.7

ators are provided to each input port to support burst access modes. Both the bufferless and

buffered memory modules are implemented with a fully automated design flow spanning

from RTL description to layout-level verification with STMicroelectronics 65 nm CMOS

technology. The memory modules are synthesized from Verilog with Synopsys Design

Compiler and laid out with an automatic timing-driven physical design flow with Cadence

SoC Encounter. A configurable oscillator (OSC) is manually designed from standard cells

and laid out separately.

Figure 6.29(a) shows the final DRC and LVS clean layout of a 16 KB buffered shared

memory module composed of eight 32-word dual-clock FIFOs, one configurable oscillator,

a 16 KB single-port SRAM macro and other logic circuits. Figure 6.29(b) shows the pro-

posed 16 KB bufferless shared memory module with one configurable oscillator, a 16 KB

single-port SRAM macro and other logic circuits.

Table 6.4 shows the layout results of the 16 KB buffered and bufferless memory mod-

ules based on 65 nm CMOS technology at 1.3 V and 25◦C. The area of bufferless memory

is less than half of the buffered memory area, with a 83% SRAM area utilization ratio. The

size of the bufferless memory is slightly smaller than a AsAP2 processor core (0.17 mm2)

which makes it easy to be physically integrated into the processor array. The bufferless

memory achieves a slightly higher clock frequency and increases the burst-mode through-

put by 1% compared with the buffered memory. The power consumption is estimated by

assuming both memory and processor clock run at 1070 MHz (maximum frequency of

processor core). The activity factor is assumed to be 20% for all inputs. The bufferless

memory is much more power efficient than the buffered memory design by reducing 43%

136

of total power consumption.

6.8 Related work

Besides the traditional cache hierarchies for general purpose processors, scratch-pad

memories are widely used in embedded systems [132]. The buffered and bufferless mem-

ory modules can also be considered as scratch-pad memories with specific features such

as being shared by multiple processors in a GALS environment, distributed across the chip

and interconnected through a circuit-switch network.

Many commercial multi-core processors have been released. Most of them use tradi-

tional cache hierarchies. Intel’s latest sandy-bridge processor contains up to 4 processor

cores and graphic processing unit (GPU) [107]. Each core has a dedicated two-level cache

hierarchy and a 8 MB L3 cache is shared between the cores, as in a traditional shared

memory multiprocessor system. Sandy Bridge’s ring interconnect fabric connects all the

elements of the chip, including the CPUs, the GPU and the L3 cache. The CELL processor

is a multiprocessor targeted at multimedia applications [133]. The processor contains a sin-

gle power processing element (PPE), and eight additional synergistic processing elements

(SPE). SPEs adopts a scratch-pad memory architecture which allows each SPE to execute

without concern for memory coherency among processors.

Many-core architectures attempt to address the scalability concerns of ever shrinking

feature sizes and increasing clock speeds. Tile based architectures, such as MIT’s RAW

processor [134] and its commercial successor Tilera [135], consist of many uniform pro-

cessing elements. Each tile is a fully functional CPU and contains a local instruction and

data cache. In contrast to traditional systems, this cache may be software managed, or

treated as a stand alone memory. Intel presented a 48-core processor called Single-Chip

Cloud Computer (SCC) [100]. A total of 24 tiles are connected with a 4x6 2D mesh net-

work. Each tile has two processor cores, each with 16 KB instruction and 16 KB data cache

137

plus a unified 256 KB L2 cache. The tile also has a 16 KB message passing buffer shared

by the two cores.

Transactional memories provide a programming interface which simplifies the paral-

lel programming by guaranteeing that transactions appear to execute atomically, consis-

tently and in isolation [136]. There are hardware and software approaches to implement

transactional memory. IBM will ship a first commercial microprocessor supporting hard-

ware transactional memory [137]. Our bufferless memory design acts like the transactional

memory. Once an exclusive ownership of the memory is acquired, memory access becomes

atomic and in isolation.

The recent development of 3D integration technology enables stacking memory mod-

ules directly on top of processors, therefore reducing memory latency and increasing mem-

ory bandwidth [138]. In 2007, Intel introduces an experimental 80-core design with stacked

memory [139]. This trend is followed by two experimental chips: 3D-MAPS [140] and

Centip3De [141] published in 2012. The 3D-MAPS is a 2-layer 3D system that contains

64 customized processor cores with 256 KBs scratch-pad stacked SRAM. The Centip3De

is a near-threshold 7-layer 3D system that contains 128 ARM Cortex-M3 cores and 256 MB

of stacked DRAM. One of the challenging problem for 3D memory stacking is how to dis-

sipate the heat building up within the stack. The research of 3D memory stacking mainly

focuses on tool development, physical design and fabrication.

138

Chapter 7

Conclusion and Future Work

7.1 Conclusion

This dissertation thoroughly analyzes the H.264 video encoding algorithms. The amount

of computation and memory requirement of underlying computation-intensive units have

been identified and analyzed. This research suggests that video encoding which is com-

posed of a transformation-based small block data-flow processing is suitable for fine-

grained message-passing style many-core architecture.

Then, the dissertation proposes a fine-grained parallel programming methodology and

successfully demonstrate fine-grained many-core architecture can achieve high performance

and energy efficiency for both video encoding algorithms with high data-level parallelism

like integer transform and quantization and serial algorithms with fine-grained task-level

parallelism like CAVLC. The proposed programming methodology yields an H.264/AVC

residual encoder capable of realtime 1080p (1920x1080) HDTV encoding with both higher

energy efficiency and area efficiency compared with other software approaches in common

DSPs and customized hybrid multi-core architectures.

Next, this dissertation proposes seven low area overhead and low design complex-

ity topologies other than the commonly-used 2D mesh for dense on-chip networks. The

139

proposed topologies include two 8-neighbor meshes, two 5-nearest-neighbor and three

6-nearest-neighbor topologies—three of which use a novel house-shaped and hexagonal-

shaped tile. Two complete applications are mapped onto all topologies for realistic com-

parisons. Commonly available commercial CAD tools are used to implement tiled CMPs

for all proposed topologies including the two non-rectangular processor tiles. The appli-

cation mapping and chip implementation results demonstrate the effectiveness of the inter-

processor interconnect of all proposed topologies. Compared with 2D mesh, the hexagonal-

shaped 6-nearest-neighbor topology reduces 22% application area and 17% average power

consumption with a 2.9% area increase per processor tile. The rectangular-shaped 6-

nearest-neighbor topology provides the same interconnect architecture as the hexagonal-

shaped tile. Despite being less power-efficient, its simpler physical design makes it an

attractive design alternative for many-core dense on-chip networks.

Motivated by the fact that video encoding tasks normally read and write a block of

data at one time in one transaction, the third part of this dissertation proposes a novel

source synchronous bufferless shared memory to enable safe memory sharing among mul-

tiple processors with different clock domains. Compared with the previous FIFO buffered

memory design, the bufferless memory achieves lower latency, higher throughput, lower

area overhead and lower power consumption. The bufferless memory also supports direct

communication with far-away processors through the existing processor-processor circuit

switch interconnection network. The implementation results shows that a 16 KB buffer-

less memory module reduces 58% single memory access latency and has slightly higher

throughput (1%) in a burst mode compared to the 16 KB buffered memory module. The

bufferless memory module also reduces the area overhead from 63% to 17% compared

with buffered memory module, which yields a power reduction by 43%.

140

7.2 Future Work

There are quite a few interesting research topics on many-core processors for video and

DSP applications which are worthwhile for further investigation.

• High Efficiency Video Coding (HEVC) The High Efficiency Video Coding (HEVC)

also called H.265, is the successor of H.264/AVC. The new standard’s committee

draft is approved in February 2012. The new standards include some new features

such as variable block size (coding unit), new loop filters such as SAO (Sample

Adaptive Offset) and wider pixel bit width 10 to 12 bits. HEVC achieves over 40%

bitrate reduction compared with H.264/AVC. However, the coding efficiency comes

at the cost of higher computational complexities, which brings further challenges for

parallel programming. More research is required to explore the new possibility of

mapping HEVC to the fine-grained many-core computation platform.

• Automatic Mapping Tool As the application complexity increases, the number of

small tasks increases accordingly. The number of tasks has reached over 100 for

H.264 baseline encoder and this number may grow to hundreds or even thousands

for future video applications. The manual application mapping is not feasible in this

case. The automatic mapping tool should provide a capability to reduce the number

of processors, the total interconnection link length and power consumption. The

tool should also be aware of the heterogenous components such as shared memories

and accelerators. The automatic mapping tool should also support the non-2D-mesh

topologies such as the 6-neighbor hex topology proposed in this work.

• Reconfigurable AcceleratorsSome video encoding tasks such as CABAC and de-

block filtering are not efficient when mapped to AsAP system. The coding blocks

may vary by standards. Building accelerators for these blocks is time-consuming.

There might be new possibility to build some reconfigurable fabrics for these tasks.

141

• Memory InterconnectionsThe proposed shared memory system uses source syn-

chronous static circuit-switch network for long-distance communication. A dedicate

link needs to be assigned for a particular transaction. This is not efficient in the case

where memory traffic is too sparse to saturate the link bandwidth. A low overhead

router with cut-through packet forwarding capability may be helpful in this case. A

hybrid architecture with both circuit-switch network and dynamic routing may be the

future direction for memory interconnections for video encoding tasks.

142

Glossary

AsAP ForAsynchronous Array of simple Processors.A parallel DSP processor consisting

of a 2-dimensional mesh array of very simple CPUs clocked independently with each

other.

Arbiter A circuit module which handles multiple access requests to a shared resource and

grants the access permission for one of these requests preventing them to simultane-

ously access the shared resource.

AsAP2 The second generation of AsAP chips which also includes a few specific accel-

erators (FFT, Viterbi, Motion Estimation) and shared memory modules. It has a

reconfigurable source synchronous network supporting long-distance interconnects

for processors. Per-core DVFS is also supported for dynamic power savings.

CABAC For Context Adaptive Binary Arithmetic Coding, an entropy encoding method in

H.264/AVC main and high profile.

CAVLC For Context Adaptive Variable Length Coding, an entropy encoding method in

H.264/AVC baseline profile.

CMP For Chip Multi-processor, a computer architecture which integrates multiple pro-

cessors into a single chip to improve processor performance.

CPI ForCycles-per-instruction.Normally the CPI for pipelined processor is larger than 1

due to the pipeline hazard or missed Cache fetch.

143

DCT For Discrete Cosine Transform, it is used to transforms a signal or image from the

spatial domain to the frequency domain.

DRAM For Dynamic Random Access Memory. A type of memory that it need to be re-

freshed periodically. It is slower but more compact than the static RAM.

DSP Fordigital signal processing or the processors for DSP.

FFT For Fast Fourier Transform, an efficient algorithm to compute the discrete Fourier

transform and its inverse.

FIFO For FIFO First-In First-Out. A buffer queue with in-order operations: the word

which is written in to the buffer first will be read out of the queue first.

FO4 ForFanout 4.A method to define the circuit delay using the delay of an inverter with

4 inverters load.

GALS ForGlobally Asynchronous Locally Synchronous. A design methodology in which

major design blocks are synchronous, but interface to other blocks asynchronously.

GDSII For Graphic Database System II. A database file format which is the de facto in-

dustry standard for data exchange of integrated circuit or IC layout artwork.

H.264/AVC A standard for video compression. It is also known as MPEG-4 part 10.

HEVC An under-drafted video compression standard known as high efficiency video cod-

ing.

Mbps ForMegabit per second, a unit of data transfer rate.

MTBF ForMean Time Between Failures, a common measures of reliability.

ME ForMotion Estimation, is the process of determining motion vectors that describe the

difference between one 2D image and another.

144

NoC For Network on Chip. An on-chip communication architecture which communicates

between modules in the chip using switches/routes, as in the network.

RTL Register-Transfer Level. RTL language is a hardware description language used to

model and simulate hardware modules at the gate and register level. A hardware

module modeled in the RTL level could be synthesized to a netlist of CMOS cell

gates used for chip layout. Two most-used RTL languages are Verilog and VHDL.

Scratchpad Memory An on-chip memory with independent address space for temporary

data storage.

SAD For Sum of Absolute Differences. A widely used simple algorithm for measuring the

similarity between image blocks.

SIMD For Single Instruction, Multiple Data. A data parallelism technique where one

single instruction can execute multiple data in parallel.

SRAM For Static Random Access Memory. A type of memory that is faster and more

reliable than the more common DRAM (dynamic RAM). The term static is derived

from the fact that it does not need to be refreshed like dynamic RAM.

Viterbi decoder An algorithm to decode a bitstream that has been encoded using forward

error correction based on a convolutional code, developed by Andrew J. Viterbi in

1967.

VLIW ForVery long instruction word, a computer architecture which fetches multiple in-

dependent instructions at the same clock cycle to execute them in parallel, to improve

the system performance.

145

Related publications

1. Zhibin Xiao, Bevan Baas, Processor Shapes and Topologies for Compact Processor

Tiles and Dense On-Chip Networks, journal paper under review.

2. Zhibin Xiao and Bevan Baas, A Hexagonal Shaped Processor and Interconnect

Topology for Tightly-tiled Many-core Architecture, to appear in the IFIP/IEEE Inter-

national Conference on Very Large Scale Integration (VLSI-SoC) , Santa Cruz, CA,

Oct. 2012.

3. Zhibin Xiao, Bevan Baas, Processor Shapes and Topologies for Compact Processor

Tiles and Dense On-Chip Networks,IEEE International Solid-Sate Circuit Confer-

ence (ISSCC 2012) Student Forum, San Francisco, CA, Feb. 2012.

4. Zhibin Xiao, Stephen Le, Bevan Baas, A Fine-Grained Parallel Implementation of

a H.264/AVC Encoder on a 167-processor Computational Platform,IEEE Asilo-

mar Conference on Signals, Systems and Computers (ACSSC), Pacific Grove, CA,

November 2011.

5. Zhibin Xiao, Bevan Baas, A 1080p H.264/AVC Baseline Residual Encoder for

a Fine-grained Many-core System,IEEE Transactions on Circuit and Systems for

Video Technology, vol. 21, no. 7, pp. 890–902, July 2011.

6. Zhibin Xiao, Stephen Le, An Energy-efficient Parallel H.264/AVC Baseline Encoder

on a Fine-grained Many-core System,SRC Technology and Talent for the 21st Cen-

tury (TECHCON), Sep. 2010.

146

7. Dean N. Truong, Wayne H. Cheng, Tinoosh Mohsenin, Zhiyi Yu, Anthony T. Jacob-

son, Gouri Landge, Michael J. Meeuwsen, Christine Watnik, Anh T. Tran,Zhibin

Xiao, Eric W. Work, Jeremy W. Webb, Paul V. Mejia, Bevan M. Baas, A 167-

Processor Computational Platform in 65 nm CMOS,IEEE Journal of Solid-State

Circuits (JSSC), vol. 44, no. 4, pp. 1130–1144, April 2009.

8. Zhibin Xiao, Bevan Baas, A High-Performance Parallel H.264 CAVLC Encoder on

a Fine-Grained Many-core System,International Conference on Computer Design

(ICCD), Sep. 2008.

9. Dean Truong, Wayne Cheng, Tinoosh Mohsenin, Zhiyi Yu, Toney Jacobson, Gouri

Landge, Michael Meeuwsen, Christine Watnik, Paul Mejia, Anh Tran, Jeremy Webb,

Eric Work, Zhibin Xiao, Bevan Baas, A 167-processor Computational Array for

Highly-Efficient DSP and Embedded Application Processing,IEEE HotChips Sym-

posium on High-Performance Chips(HotChips 2008), August 2008.

10. Dean Truong, Wayne Cheng, Tinoosh Mohsenin, Zhiyi Yu, Toney Jacobson, Gouri

Landge, Michael Meeuwsen, Christine Watnik, Paul Mejia, Anh Tran, Jeremy Webb,

Eric Work, Zhibin Xiao, Bevan Baas, A 167-processor 65 nm Computational Plat-

form with Per-Processor Dynamic Supply Voltage and Dynamic Clock Frequency

Scaling, in proceedings of theSymposium on VLSI Circuits, June 2008.

147

Bibliography

[1] B. G. Haskell, P. G. Howard, et al. Image and video codingłemerging standards and
beyond.IEEE Trans. Circuits Syst. Video Technol., 8(7):814–837, Nov 2006.

[2] S. Borkar. Low power design challenges for the decade.Asia and South Pacific
Design Automatic Conference (ASP-DAC), pages 293–296, 2001.

[3] Rusu Stefan, Tam Simon, Muljono Harry, Stinson Jason, Ayers David, Chang
Jonathan, Varada Raj, Ratta Matt, Kottapalli Sailesh, and Vora Sujal. A 45 nm
8-core enterprise xeon processor.Journal of Solid-State Circuits, 45(1):7–14, Jan.
2010.

[4] Kurd Nasser A., Bhamidipati Subramani, Mozak Christopher, Miller Jeffrey L., Wil-
son Timothy M., Nemani Mahadev, and Chowdhury Muntaquim. Westmere: A fam-
ily of 32nm ia processors. InProc. of IEEE Int. Solid-State Circuits Conf. (ISSCC),
pages 96–97, Feb. 2010.

[5] Satish Damaraju, George Varghese, Sanjeev Jahagirdar, Tanveer Khondker, Robert
Milstrey, Sanjib Sarkar, Scott Siers, Israel Stolero, and Arun Subbiah. A 22nm ia
multi-cpu and gpu system-on-chip. InProc. of IEEE Int. Solid-State Circuits Conf.
(ISSCC), pages 56–57, Feb. 2012.

[6] J. Stinson and S. Rusu. A 1.5 GHz third generation Itanium processor.IEEE Inter-
national Solid-State Circuits Conference (ISSCC), pages 252–253, Feburary 2003.

[7] S. Naffziger, T. Grutkowski, and B. Stackhouse. The implementation of a 2-core
multi-threaded Itanium family processor.IEEE International Solid-State Circuits
Conference (ISSCC), pages 182–183, Feburary 2005.

[8] S. Rusu, S. Tam, H. Muljono, D. Ayers, , and J. Chang. A 65nm dual-core multi-
threaded Xeon processor with 16MB L3 cache.IEEE International Solid-State Cir-
cuits Conference (ISSCC), pages 102–103, Feburary 2006.

[9] B. Stackhouse, B. Cherkauer, M. Gowan, P. Gronowski, and C. Lyles. A 65nm 2-
billion-transistor quad-core Itanium processor.IEEE International Solid-State Cir-
cuits Conference (ISSCC), pages 92–598, Feburary 2008.

[10] J. L. Hennessy and D. A. Patterson.Computer Architecture, A Quantitative Ap-
proach, chapter Memory Hierarchy Design. Morgan Kaufmann, San Francisco, CA,
third edition, 2003.

148

[11] Zhiyi Yu, Michael Meeuwsen, Ryan Apperson, Omar Sattari, Michael Lai, Jeremy
Webb, Eric Work, Tinoosh Mohsenin, Mandeep Singh, and Bevan M. Baas. An
asynchronous array of simple processors for DSP applications. InIEEE Interna-
tional Solid-State Circuits Conference, (ISSCC ’06), pages 428–429, Feb. 2006.

[12] R. Bhargava, R. Radhakrishnan, B. Evans, and L. John. Characterization of MMX-
enhanced DSP and multimedia applications on a general purpose processor. InDi-
gest of the Workshop on Performance Analysis and Its Impact on Design held in
conjunction with ISCA98, pages 16–23, 1998.

[13] R. Bhargava et al. Evaluating MMX technology using DSP and multimedia applica-
tions. IEEE Micro, pages 37–46, Dec. 1998.

[14] J. Fritts, W. Wolf, and B. Liu. Understanding multimedia application characteris-
tics for designing programmable media processors. InSPIE Photonics West, Media
Processors’99,, pages 2–13, San Jose, CA, Jan. 1999.

[15] J. Fritts et al. Performance of image and video processing with general-purpose
and media ISA extensions. InInternational Symposium on Computer Architecture,
pages 124–135, May 1999.

[16] H. Nguyen and L. K. John. Exploiting SIMD parallelism in DSP and multimedia
algorithm using the AltiVec technology. InInternational Conference on Supercom-
puting, pages 11–20, May 1999.

[17] Zhiyi Yu. High Performance and Energy Efficient Multi-core Systems for DSP Ap-
plications. PhD thesis, University of California Davis, Davis,CA, Sep. 2007.

[18] D. N. Truong, W. H. Cheng, T. Mohsenin, Z. Yu, A. T. Jacobson, G. Landge, M. J.
Meeuwsen, A. T. Tran, Z. Xiao, E. W. Work, J. W. Webb, P. Mejia, and B. M. Baas.
A 167-processor computational platform in 65 nm CMOS.IEEE Journal of Solid-
State Circuits (JSSC), 44(4):1130–1144, April 2009.

[19] Y. W. Huang et al. A 1.3TOPS H.264/AVC single-chip encoder for hdtv applications.
In IEEE International Solid-State Circuits Conference, (ISSCC ’06), pages 128–130,
Feb. 2006.

[20] C. C. Lin et al. A 160kgate 4.5kb SRAM H.264 video decoder for HDTV appli-
cations. InIEEE International Solid-State Circuits Conference, (ISSCC ’06), pages
406–407, Feb. 2006.

[21] Hsiu-Cheng Chang et al. A 7mw-to-183mw dynamic quality-scalable H.264 video
encoder chip. InIEEE International Solid-State Circuits Conference, (ISSCC ’07),
pages 280–281, Feb. 2007.

[22] Yu-Kun Lin et al. A 242mw 10mm2 1080p H.264/AVC high-profile encoder chip.
In IEEE International Solid-State Circuits Conference, (ISSCC ’08), pages 314–615,
Feb. 2008.

149

[23] Zhenyu Liu et al. A 1.41w h.264/avc real-time encoder socfor hdtv1080p. In
Symposium on VLSI Circuits, (VLSI ’07), June 2007.

[24] Tung-Chien Chen et al. 2.8 to 67.2mw low-power and power-aware h.264 encoder
for mobile applications. InSymposium on VLSI Circuits, (VLSI ’07), June 2007.

[25] Koyo Nitta et al. An h.264/avc high422 profile and mpeg-2 422 profile encoder lsi
for hdtv broadcasting infrastructures. InSymposium on VLSI Circuits, (VLSI ’08),
June 2008.

[26] Kenichi Iwata et al. A 256mw full-hd h.264 high-profile codec featuring dual
macroblock-pipeline architecture in 65nm cmos. InSymposium on VLSI Circuits,
(VLSI ’08), June 2008.

[27] DSP Products,C6x Information, Texas Instruments.Fixed- and Floating-Point DSP-
SłOne Architecture), 1998.

[28] P. Kalapathy. Hardware-software interactions on mpact.IEEE Micro, 17:20–26,
1997.

[29] S. Rathnam and G. Slavenburg. An architectural overview of the programmable
multimedia processor, tm-1. InProc. Compcon, pages 319–326, 1996.

[30] Ruby Lee. Accelerating multimedia with enhanced microprocessors.IEEE Micro,
15:22–32, 1995.

[31] Alex Peleg and Uri Weiser. Mmx technology extension to the intel architecture.
IEEE Micro, 16(4):42–50, 1996.

[32] S. K. Raman, V. Pentkovski, and J. Keshava. Implementing streaming simd exten-
sions on the pentium iii processor.IEEE Micro, 20(4):28–39, 2000.

[33] R.B. Lee. Subword parallelism with max-2.IEEE Micro, 16(4):51–59, 1996.

[34] M. Tremblay, J.M. OConnor, V. Narayanan, and L. He. Vis speeds new media pro-
cessing.IEEE Micro, 16(4):10–20, 1996.

[35] M. Phillip et al. Altivec technology: Accelerating media processing across the spec-
trum. InProc. HOTCHIPS10, Aug. 1998.

[36] D. Cronquist, C. Fisher, M. Figueroa, P. Franklin, and C. Ebeling. Architecture
design of reconfigurable pipelined datapaths. InProc. 20th Anniversary Conf. Ad-
vanced Research in VLSI, pages 23–40, Feb. 1997.

[37] H. Singh et al. Morphosys: An integrated reconfigurable architecture. InProc.
NATO Symp. Systems Concepts and Integration, Feb. 1998.

[38] V. Baumgarte et al. Pact xppła self-reconfigurable data processing architecture. In
Proc. Eng. of Reconfigurable Systems and Algorithms,(ERSA2001), Feb. 1998.

150

[39] Scott Rixner, William J. Dally, Ujval J. Kapasi, Brucek Khailany, Abelardo Lpez-
lagunas, Peter R. Mattson, and John D. Owens. A bandwidth-efficient architecture
for media processing. InIn 31st International Symposium on Microarchitecture,
pages 3–13, 1998.

[40] Matthew Drake, Henry Hoffman, Rodric Rabbah, and Saman Amarasinghe. Mpeg-
2 decoding in a stream programming language. InIn International Symposium on
Computer Architecture (ipdps), Rhodes Island, Greece, Apr. 2006.

[41] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz. Smart mem-
ories: A modular reconfigurable architecture. InIn International Symposium on
Computer Architecture (ISCA), pages 161–171, June 2000.

[42] S. Ciricescu, R. Essick, B. Lucas, P. May, K. Moat, J. Norris, M. Schuette, , and
A. Saidi. The reconfigurable streaming vector processor (rsvpTM). In Proc. Int.
Symp. Microarchitecture, pages 141–150, Feb. 2003.

[43] Antonio Gentile and D. Scott Wills. Portable video supercomputing.IEEE Trasac-
tion on Computers, 53(8):960–973, Aug. 2004.

[44] Brucek Khailany et al. A programmable 512 GOPS stream processor for signal,
image, and video processing. InIEEE International Solid-State Circuits Conference,
(ISSCC ’07), pages 272–273, Feb. 2007.

[45] B. Flachs, S. Asano, S. H. Dhong, P. Hofstee, G. Gervais, R. Kim, T. Le, P. Liu,
J. Liberty, B. Michael, H. Oh, S. M. Mueller, O. Takahashi, A. Hatakeyama,
Y. Watanabe, and N. Yano. A streaming processing unit for a CELL processor. In
IEEE International Solid-State Circuits Conference, (ISSCC ’05), pages 134–135,
Feb. 2005.

[46] Mike Butts. Synchronization through communication in a massively parallel pro-
cessor array.IEEE Micro, 27(5):32–40, 2007.

[47] S. Bell et al. TILE64TM processor: A 64-core soc with mesh interconnect. InIEEE
International Solid-State Circuits Conference, (ISSCC ’08), pages 88–89, Feb. 2008.

[48] M. Nakajima et al. A 40 GOPS 250 mw massively parallel processor based on
matrix architecture. InIEEE International Solid-State Circuits Conference, (ISSCC
’06), pages 410–411, Feb. 2006.

[49] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra. Overview of the h.264/avc
video coding standard.IEEE Trans. Circuits Syst. Video Technol., 13(7):560–576,
2003.

[50] A. Joch et al. Performance comparison of video coding standards using lagrangian
coder control. InProc. IEEE Int. Conf. on Image Processing, pages 501–504, 2002.

151

[51] Lai-Man Po and Wing-Chung Ma. A novel four-step search algorithm for fast block
motion estimation.IEEE Transactions on Circuits and Systems for Video Technol-
ogy, 6(3):313–317, jun 1996.

[52] JVT. H.264/AVC reference software version jm 12.4.

[53] Chung-Cheng Lou, Szu-Wei Lee, and C.-C.J. Kuo. Adaptive motion search range
prediction for video encoding.IEEE Transactions on Circuits and Systems for Video
Technology, 20(12):1903–1908, Dec. 2010.

[54] Jia-Ching Wang, Jhing-Fa Wang, Jar-Ferr Yang, and Jang-Ting Chen. A fast mode
decision algorithm and its vlsi design for h.264/avc intra-prediction.IEEE Transac-
tion on Circuits and Systems for Video Technology, 17(10):1414–1422, 2007.

[55] Henrique S. Malvar, Antti Hallapuro, Marta Karczewicz, and Louis Kerofsky. Low-
complexity transform and quantization in H.264/AVC.IEEE Transaction on Circuits
and Systems for Video Technology, 13(7):598–603, 2003.

[56] Dongming Zhang et al. Complexity controllable dct for real-time h.264 encoder.
Journal of Visual Communication and Image Representation, 18(1):59–67, 2007.

[57] Chung-Ming Chen and Chung-Ho Chen. Complexity controllable dct for real-time
h.264 encoder.IEICE Trans. on Inf. and Syst, E90-D(1):99–107, 2007.

[58] Detlev Marpe, Heiko Schwarz, and Thomas Wiegand. Context-based adaptive bi-
nary arithmetic coding in the h.264/avc video compression standard.IEEE Transac-
tions On Circuits and Systems for Video Technology, 13(7):620–636, 2003.

[59] Yen-Kuang Chen et al. Towards efficient multi-level threading of h.264 encoder on
intel hyper-threading architectures. InProc. of the 18th International Parallel and
Distributed Processing Symposium (IPDPS’04), 2004.

[60] Michael Roitzsch. Slice-balancing H.264 video encoding for improved scalability
of multicore decoding. InProc. of the 7th ACM and IEEE International Conference
on Embedded software, pages 269–278, 2007.

[61] A. Rodrłguez* et al. Hierarchical parallelization of an h.264/avc video encoder. In
Proc. of the International Symposium on Parallel Computing in Electrical Engineer-
ing (PARELEC’06), 2006.

[62] Zhuo Zhao and Ping Liang. Performance comparison of video coding standards us-
ing lagrangian coder control. InProc. of IEEE International Conference on Acous-
tics, Speech and Signal Processing, pages V 489–492, 2006.

[63] Shuwei Sun, Dong Wang, and Shuming Chen. A highly efficient parallel algorithm
for h.264 encoder based on macro-block region partition.Lecture Notes In Computer
Science, pages 577–585, 2007.

152

[64] T. Hoare. ”communicating sequential processes”.Comm. ACM, 8(21):666–677,
1978.

[65] Ujval Kapasi, William J. Dally, Scott Rixner, John D. Owens, and Brucek Khailany.
The Imagine stream processor. InProceedings 2002 IEEE International Conference
on Computer Design, pages 282–288, Sep. 2002.

[66] M. Taylor et al. A 16-issue multiple-program-counter microprocessor with point-to-
point scalar operand network. InIEEE International Solid-State Circuits Conference
(ISSCC), pages 170–171, Feb. 2003.

[67] B.K. Khailany, T. Williams, J. Lin, E.P. Long, M. Rygh, D.W. Tovey, and W.J. Dally.
A programmable 512 GOPS stream processor for signal, image, and video process-
ing. IEEE Journal of Solid-State Circuits, 43(1):202–213, Jan. 2008.

[68] Nagai-Man Cheung, Xiaopeng Fan, Oscar C. Au, and Man-Cheung Kung. Video
coding on multicore graphics processors.IEEE Signal Processing Magazine,
27(2):79–89, Mar. 2010.

[69] Wei-Nien Chen and Hsueh-Ming Hang. H.264/AVC motion estimation implmenta-
tion on compute unified device architecture (CUDA). InIEEE International Confer-
ence on Multimedia and Expo, pages 697–70, April 2008.

[70] C. D. Chien et al. A high performance CAVLC encoder design for MPEG-4
AVC/H.264 video coding applications. InIEEE Int. Sym. on Circuits and Systems
(ISCAS), pages 3838–3841, May 2006.

[71] Choudhury A. Rahman and Wael Badawy. CAVLC encoder design for real-time
mobile video applications.IEEE Transactions on Circuits and Systems II: Express
Briefs, 64(10):873–877, Oct. 2007.

[72] Zhiyi Yu, M.J. Meeuwsen, R.W. Apperson, O. Sattari, M. Lai, J.W. Webb, E.W.
Work, D. Truong, T. Mohsenin, and B.M. Baas. AsAP: An asynchronous array of
simple processors.IEEE Journal of Solid-State Circuits, 43(3):695–705, Mar. 2008.

[73] Dean Truong, Wayne Cheng, Tinoosh Mohsenin, Zhiyi Yu, Toney Jacobson, Gouri
Landge, Michael Meeuwsen, Christine Watnik, Paul Mejia, Anh Tran, Jeremy Webb,
Eric Work, Zhibin Xiao, and Bevan M. Baas. A 167-processor 65 nm computational
platform with per-processor dynamic supply voltage and dynamic clock frequency
scaling. InSymposium on VLSI Circuits, (VLSI ’08), June 2008.

[74] D. N. Truong, W. H. Cheng, T. Mohsenin, Z. Yu, A. T. Jacobson, G. Landge, M. J.
Meeuwsen, A. T. Tran, Z. Xiao, E. W. Work, J. W. Webb, P. Mejia, and B. M. Baas.
A 167-processor computational platform in 65 nm cmos.IEEE Journal of Solid-
State Circuits (JSSC), 44(4):1130–1144, April 2009.

153

[75] Francesco Vitullo, Nicola E., Esa Petri, Sergio Saponara, Luca Fanucci, Michele
Casula, Riccardo Locatelli, and Marcello Coppola. Low-complexity link microar-
chitecture for mesochronous communication in Networks-on-Chip.IEEE TRANS-
ACTIONS ON COMPUTERS, 57(9):1196–1201, Sep. 2008.

[76] Sanjive Agarwala et al. A 600-MHz VLIW DSP.IEEE Journal of Solid-State
Circuits, 37(11):1532–1544, Nov 2002.

[77] G.Bjontegaard and K.Lillevold. Context-adaptive VLC(CVLC) coding of coeffi-
cients. Doc.JVT C028r1.doc, May 2002.

[78] Zhibin Xiao and Bevan M. Baas. A high-performance parallel CAVLC encoder on
a fine-grained many-core system. InInternational Conference on Computer Design,
(ICCD ’08), pages 248–254, October 2008.

[79] Eric W. Work. Algorithms and software tools for mapping arbitrarily connected
tasks onto an asynchronous array of simple processors. Master’s thesis, University
of California, Davis, CA, USA, September 2007.http://www.ece.ucdavis.
edu/vcl/pubs/theses/2007-4.

[80] Zhiyi Yu and Bevan M. Baas. A low-area interconnect architecture for chip mul-
tiprocessors. InIEEE International Symposium on Circuits and Systems (ISCAS),
pages 2857–2860, May 2008.

[81] Wei Zhao and Yu Cao. New generation of predictive technology model for sub-45nm
design exploration. InISQED ’06: Proceedings of the 7th International Symposium
on Quality Electronic Design, pages 585–590, Mar. 2006.

[82] J.M.Rabaey.Digital Integrated Circuits – A Design Perspective. Prentice-Hall In-
ternational, Inc, second edition, 2003.

[83] W.I.Choi et al. Fast motion estimation with modified diamond search for variable
motion block sizes.IEEE Trans. on Image Processing, 3:371–374, Sep. 2003.

[84] Li Zhuo, Qiang Wang, et al. Optimization and implementation of H.264 encoder on
DSP platform. InIEEE Int. Conf. on Multimedia and Expo (ICME), pages 232–235,
July 2007.

[85] Shashi Kant et al. Real time H.264 video encoder implementation on a pro-
grammable DSP processor for videophone applications. InInt. Conf. on Consumer
Electronics (ICCE), pages 93–94, Jan. 2006.

[86] Xun He, Xiangzhong Fang, Ci Wang, and S. Goto. Parallel HD encoding on CELL.
In IEEE International Symposium on Circuits and Systems (ISCAS 09), pages 1065–
1068, May 2009.

[87] S. Seo, M. Woh, S. Mahlke, T. Mudge, S. Vijay, and C. Chakrabarti. Customiz-
ing wide-SIMD architectures for H.264. InSAMOS’09: Proceedings of the 9th
international conference on Systems, architectures, modeling and simulation, pages
172–179, 2009.

154

[88] Intel official website. Intel processor specifications,Oct. 2010. http://ark.
intel.com/Product.aspx?id=35569.

[89] Hsiu-Cheng Chang, Jia-Wei Chen, Ching-Lung Su, Yao-Chang Yang, Yao Li, Chun-
Hao Chang, Ze-Min Chen, Wei-Sen Yang, Chien-Chang Lin, Ching-Wen Chen,
Jinn-Shan Wang, and Jiun-In Quo. A 7mw-to-183mw dynamic quality-scalable
h.264 video encoder chip. InIEEE International Solid-State Circuits Conference,
pages 280–603, Feb. 2007.

[90] Mike Butler. AMD Bulldozer Core - a new approach to multithreaded compute
performance for maximum efficiency and throughput. InIEEE HotChips Symposium
on High-Performance Chips (HotChips 2010), Aug. 2010.

[91] M. Taylor et al. The design and implementation of a first-generation CELL proces-
sor. InIEEE International Solid-State Circuits Conference (ISSCC), pages 184–185,
Feb. 2005.

[92] M. Horowitz R. Ho, K. Mai. The future of wires.Proc. of IEEE, 89:490–504, Apr.
2001.

[93] Zhiyi Yu and B.M. Baas. A low-area multi-link interconnect architecture for GALS
chip multiprocessors.IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 18(5):750–762, may. 2010.

[94] Erno Salminen, Ari Kulala, and Timo D. Ḧamäläinen. Survey of Network-on-
Chip proposals.Open Core Protocol International Partnership (OCP-IP): White
Paper, p.1, 2008. [online] Available: http://www.ocpip.org/socket/
whitepapers.

[95] Hui Zhang, Marlene Wan, V. George, and J. Rabaey. Interconnect architecture ex-
ploration for low-energy reconfigurable single-chip dsps. InProc. IEEE Computer
Society Workshop On VLSI, pages 2–8, 1999.

[96] P. P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh. Effect of traffic localization
on energy dissipation in NoC-based interconnect. InProc. IEEE Int. Symp. Circuits
and Systems (ISCAS), pages 1774–1777, 2005.

[97] J. Kim, J. Balfour, and W.J. Dally. Flattened butterfly topology for on-chip networks.
Computer Architecture Letters, 6(2):37–40, Feb. 2007.

[98] J. Balfour and W.J. Dally. Design tradeoffs for tiled cmp on-chip networks. InPro-
ceedings of the 20th Annual International Conference on Super Computing, pages
187–198, 2006.

[99] Vangal S. et al. An 80-Tile 1.28TFLOPS network-on-chip in 65nm CMOS. InIEEE
International Solid-State Circuits Conference (ISSCC), pages 100–101, Feb. 2007.

155

[100] J. Howard, S. Dighe, S.R. Vangal, G. Ruhl, N. Borkar, S. Jain, V. Erraguntla,
M. Konow, M. Riepen, M. Gries, G. Droege, T. Lund-Larsen, S. Steibl, S. Borkar,
V.K. De, and R. Van Der Wijngaart. A 48-core ia-32 processor in 45 nm cmos using
on-die message-passing and dvfs for performance and power scaling.IEEE Journal
of Solid-State Circuits, 46(1):173 –183, Jan. 2011.

[101] Hongyu Chen et al. The y architecture for on-chip interconnect: analysis and
methodology. IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, 24(4):588–599, April 2005.

[102] Feng Zhou, Esther Y. Cheng, Bo Yao, Chung-Kuan Cheng, and Ronald Graham. A
hierarchical three-way interconnect architecture for hexagonal processors. InSLIP
’03: Proceedings of the 2003 international workshop on System-level interconnect
prediction, pages 133–139, 2003.

[103] Kang G. Shin. Harts: A distributed real-time architecture.IEEE Computer,
24(5):25–35, 1991.

[104] Catherine Decayeux and Davis Seme. 3d hexagonal network: modeling, topologi-
cal properties, addressing scheme, and optimal routing algorithm.IEEE Trans. on
Parallel and Distributed Systems, 16(9):875–884, Sep. 2005.

[105] J. Becker, F. Henrici, S. Trendelenburg, M. Ortmanns, and Y. Manoli. A continuous-
time hexagonal field-programmable analog array in 0.13um CMOS with 186MHz
GBW. In IEEE International Solid-State Circuits Conference, (ISSCC ’08), pages
70–71, Feb. 2008.

[106] Allen D. Malony. Regular processor arrays. Inthe 2nd Symposium on the Frontiers
of Massively Parallel Computation, pages 499–502, 1988.

[107] M. Yuffe, E. Knoll, M. Mehalel, J. Shor, and T. Kurts. A fully integrated multi-CPU,
GPU and memory controller 32nm processor. InIEEE International Solid-State
Circuits Conference (ISSCC), pages 264–266, Feb. 2011.

[108] S. Wong et al. Modeling of interconnect capacitance, delay, and crosstalk in VLSI.
IEEE Trans. Semiconduct. Manufact., 13:108–111, February 2000.

[109] PTM. Predictable technology model, interconnect section. Online.
http://www.eas.asu.edu/ptm/.

[110] ITRS. International technology roadmap for semiconductors, 2010 update, intercon-
nect section. Online. http://www.itrs.net/reports.html.

[111] Yulei Zhang, James F. Buckwalter, and Chung-Kuan Cheng. Performance predic-
tion of throughput-centric pipelined global interconnects with voltage scaling. In
Proceedings of the 12th ACM/IEEE international workshop on System level inter-
connect prediction, SLIP ’10, pages 69–76, 2010.

156

[112] Zhibin Xiao and Bevan Baas. A 1080p H.264/AVC baseline residual encoder for a
fine-grained many-core system.IEEE Transaction on Circuits and Systems for Video
Technology, 21(7):890–902, 2011.

[113] Anh T. Tran, Dean N. Truong, and Bevan M. Baas. A complete real-time 802.11a
baseband receiver implemented on an array of programmable processors. InAsilo-
mar Conference on Signals, Systems and Computers (ACSSC), pages 165–170, Oct.
2008.

[114] Wm. A. Wulf and Sally A. Mckee. Hitting the memory wall: Implications of the
obvious.Computer Architecture News, 23:20–24, 1995.

[115] S. McKee and Sally A. Reflections on the memory wall. InProceedings of the 1st
conference on Computing frontiers, pages 162–167, New York, NY, USA, 2004.

[116] O. Sattari. Fast fourier transforms on a distributed digital signal processor. Master’s
thesis, University of California, Davis, Davis, CA, USA, 2004.

[117] Zhiyi Yu. High Performance and Energy Efficient Multi-core Systems for DSP Ap-
plications. PhD thesis, University of California, Davis, CA, USA, October 2007.
http://www.ece.ucdavis.edu/vcl/pubs/theses/2007-5.

[118] Michael Meeuwsen, Zhiyi Yu, and Bevan M. Baas. A shared memory module
for asynchronous arrays of processors.EURASIP Journal on Embedded Systems,
2007:Article ID 86273, 13 pages, 2007.

[119] Stephen T. Le. A fine grained many-core h.264 video encoder. Master’s thesis,
University of California, Davis, CA, USA, March 2010.http://www.ece.
ucdavis.edu/vcl/pubs/theses/2010-03.

[120] Z. Xiao, S. Le, and B. M. Baas. A fine-grained parallel implementation of a
H.264/AVC encoder on a 167-processor computational platform. InIEEE Asilomar
Conference on Signals, Systems and Computers, Nov. 2011.

[121] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, and C. Kozyrakis. A
case for intelligent RAM.IEEE Micro, 17(2):34–44, March-April 1997.

[122] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. A. Horowitz. Smart
Memories: a modular reconfigurable architecture. InInternational Symposium on
Computer Architecture (ISCA), pages 161–171, June 2000.

[123] Yi Kang, Wei Huang, Seung-Moon Yoo, D. Keen, Zhenzhou Ge, V. Lam, P. Pattnaik,
and J. Torrellas. FlexRAM: toward an advanced intelligent memory system. In
International Conference on omputer Design (ICCD ’99), pages 192–201, 1999.

[124] Jung-Yup Kang, S. Gupta, and J.-L. Gaudiot. An efficient data-distribution mech-
anism in a Processor-In-Memory (PIM) architecture applied to motion estimation.
IEEE Transactions on Computers, 57(3):375–388, march 2008.

157

[125] Firoozshahian Amin, Solomatnikov Alex, Shacham Ofer,Asgar Zain, Richardson
Stephen, Kozyrakis Christos, and Horowitz Mark. A memory system design frame-
work: creating smart memories. InProceedings of the 36th annual international
symposium on Computer architecture, pages 406–417, 2009.

[126] K. Mai, R. Ho, E. Alon, D. Liu, Y. Kim, D. Patil, and M. A. Horowitz. Architec-
ture and circuit techniques for a 1.1-GHz 16-kb reconfigurable memory in 0.18-µm
CMOS. IEEE Journal of Solid-State Circuits (JSSC), 40(1):261–275, January 2005.

[127] Shyamkumar Thoziyoor, Jung Ho Ahn, Matteo Monchiero, Jay B. Brockman, and
Norman P. Jouppi. A comprehensive memory modeling tool and its application to
the design and analysis of future memory hierarchies. InProceedings of the 35th
Annual International Symposium on Computer Architecture, ISCA ’08, pages 51–
62, Washington, DC, USA, 2008.

[128] R. Mahmud. Techiniques to make clock switching glitch free. [online] Available:
http://www.eetimes.com.

[129] Chris J. Myers.Asynchronous Circuit Design. John Wiley & Sons, Inc., 2001.

[130] A.T. Tran, D.N. Truong, and B.M. Baas. A low-cost high-speed source-synchronous
interconnection technique for GALS chip multiprocessors. InCircuits and Systems,
2009. ISCAS 2009. IEEE International Symposium on, pages 996–999, May. 2009.

[131] Michael J. Meeuwsen. A shared memory module for an asynchronous array of
simple processors. Master’s thesis, University of California, Davis, CA, USA, April
2005. http://http://www.ece.ucdavis.edu/cerl/techreports/
2005-2/.

[132] R. Banakar, S. Steinke, Bosik Lee, M. Balakrishnan, and P. Marwedel. Scratchpad
memory: a design alternative for cache on-chip memory in embedded systems. In
Symposium on Hardware/Software Codesign, pages 73–38, May 2002.

[133] B. Flachs, S. Asano, S. H. Dhong, P. Hofstee, G. Gervais, R. Kim, T. Le,
P Liu, J. Leenstra, J. Liberty, B. Michael, H. Oh, S. M. Mueller, O. Takahashi,
A. Hatakeyama, Y. Watanabe, and N. Yano. A streaming processing unit for a CELL
processor. InIEEE International Solid-State Circuits Conference (ISSCC), February
2005.

[134] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, f. Ghodrat, B. Greenwald, H. Hoffman,
P. Johnson, J. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumpen,
M. Frank, S. Amarasinghe, and A. Agarwal. The raw microprocessor: A compu-
tational fabric for software circuits and general-purpose programs.IEEE Micro,
22(2):25–35, March-April 2002.

[135] S. Bell, B. Edwards, et al. TILE64 processor: A 64-core SoC with mesh intercon-
nect. InIEEE International Solid-State Circuits Conference (ISSCC), pages 88–89,
February 2008.

158

[136] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural support
for lock-free data structures.SIGARCH Comput. Archit. News, 21(2):289–300, May
1993.

[137] ChipRuud Haring. The blue Gene/Q compute chip. InHotChips 23, Aug. 2011.

[138] Gabriel H. Loh. 3d-stacked memory architectures for multi-core processors.Pro-
ceedings of the 35th Annual International Symposium on Computer Architecture,
36(3):453–464, June 2008.

[139] S.R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan,
A. Singh, T. Jacob, S. Jain, V. Erraguntla, C. Roberts, Y. Hoskote, N. Borkar, and
S. Borkar. An 80-tile Sub-100-W TeraFLOPS processor in 65-nm CMOS.IEEE
Journal of Solid-State Circuits, 3(1):29–41, Jan. 2008.

[140] Dae Hyun Kim, K. Athikulwongse, M. Healy, M. Hossain, Moongon Jung,
I. Khorosh, G. Kumar, Young-Joon Lee, D. Lewis, Tzu-Wei Lin, Chang Liu,
S. Panth, M. Pathak, Minzhen Ren, Guanhao Shen, Taigon Song, Dong Hyuk Woo,
Xin Zhao, Joungho Kim, Ho Choi, G. Loh, Hsien-Hsin Lee, and Sung Kyu Lim. 3D-
MAPS: 3D massively parallel processor with stacked memory.IEEE International
Solid-State Circuits Conference (ISSCC), pages 188–189, Feburary 2012.

[141] David Fick, Ronald G. Dreslinski, Bharan Giridhar, Gyouho Kim, Sangwon Seo,
Sudhir Satpathy Matthew Fojtik, Yoonmyung Lee, Daeyeon Kim, Nurrachman Liu,
Michael Wieckowski, Gregory Chen, Trevor Mudge, Dennis Sylvester, and David
Blaauw. Centip3De: A 3930 DMIPS/W configurable near-threshold 3d stacked sys-
tem with 64 arm cortex-m3 cores.IEEE International Solid-State Circuits Confer-
ence (ISSCC), pages 190–191, Feburary 2012.

159

