
Design and Programming of the KiloCore Processor Arrays

By

Brent Vince Bohnenstiehl
Dissertation

Submitted in partial satisfaction of the requirements for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

in the

Office of Graduate Studies

of the

University of California

Davis

Approved:

Professor Bevan Baas, Chair

Professor Soheil Ghiasi

Professor Venkatesh Akella

Committee in Charge

2020

-i-

Copyright c© 2020 by

Brent Vince Bohnenstiehl

All rights reserved.

Abstract

Design and Programming of the KiloCore Processor Arrays

Modern semiconductor fabrication technologies now enable the construction of integrated

circuits which contain over 1000 processors on a single chip [1]. However, for such systems to

effectively compute workloads, new architectures are needed for the processors, the inter-processor

interconnect, circuits that interact with larger memories, and the applications they execute [2–4].

This work explores the characteristics of many-core arrays, and utilizes gained insights to

advance the state of the art through a new architecture designed to efficiently scale to thousands

of processors per chip, along with software development tools to aid in effectively programming

such arrays.

A detailed exploration is made of prior many-core architecture work to identify areas that

might be significantly improved. Possible benefits are found in the instruction set selection,

pipeline design, network communication between processors, voltage control logic, and other

areas. To name a few findings: inclusion of unsigned support speeds some operations up by as

much as 15x, profile-guided static branch prediction raises the correct prediction rate from 27%

to 96% in sampled applications, fast oscillator halting reduces active-clock stall cycles by 33%,

and voltage dithering improves DVFS energy savings by 16%.

A 1,000-processor array named KiloCore is presented. Fabricated in 32 nm PD-SOI CMOS

technology and occupying 64 mm2, this newly designed architecture implements lessons learned

from prior work along with other innovations. KiloCore processors may operate up to 1.78 GHz

at 1.1 V, and down to 115 MHz at 560 mV where an operation dissipates only 5.8 pJ. Several

applications are implemented on KiloCore and their characteristics and performance are discussed.

Across these applications and when scaled to the same fabrication technology, KiloCore at 0.9 V

has geometric mean improvements of 3.1x higher throughput per area and 16.7x higher energy

efficiency compared to published results on standard CPU and GPU architectures. Comparing

to just-CPUs and just-GPUs, Kilocore achieves 68.9x and 72.0x higher throughput per area per

Watt respectively.

A followup 697-processor array named KiloCore2 is presented. Fabricated with the same

technology and chip area as KiloCore, KiloCore2 is designed to achieve a 63% higher throughput

per processor than its predecessor, supports three voltage domains for optimizing per-processor

-ii-

energy efficiency, implements a new low-area packet routing network that is specifically designed

for the needs of a many-core system, and adds FFT and Viterbi accelerators along with a selection

of high speed processors for speeding up serial code. Pending final measurements, KiloCore2 is

designed to reach 2.0 tera-operations per second at 1.1 V, with standard processors reaching

2.9 GHz and fast processors reaching over 5.0 GHz operation.

Programming and analysis tools for many-core arrays are presented. High speed simulators,

written in C++, are over 50,000 times faster than Verilog RTL simulation, and contain a suite

of features to aid in application development and debugging. The KiloCore compiler generates

optimized assembly from user supplied kernels written in C++, Python, or potentially other

languages. Leveraging the LLVM infrastructure to act as a front end, this compiler focuses on

the back end operations needed to lower LLVM IR code into the format needed for stackless,

16-bit, direct-memory-access processors with strict memory limitations, as well as optimize the

code to be comparable to optimized hand-written assembly. Supplementing these tools is a

Project Manager, which allows users to write simple Python scripts to define a collection of tasks,

replicate and map them to a target many-core array, perform array-wide optimizations, and to

conveniently compile and run their applications.

-iii-

Acknowledgments

I give particular thanks to my advisor, Dr. Bevan Baas. In addition to providing funding

and a position in the VLSI Computation Laboratory (VCL) at UC Davis, his prior work on

many-core arrays was a critical inspiration for my own research. The KiloCore and KiloCore2

test chips would not have been possible without Dr. Baas’ connections and efforts in organizing

the fabrications.

While the work presented in this dissertation represents my own original efforts, some parts

touch on the work of others. I thank these current and prior members of the VCL group for their

contributions:

• Aaron Stillmaker for managing the physical design toolchain for the KiloCore chips.

• Timothy Andreas for daughterboard design of both chips, lab equipment setup, and

oscillator refinements in KiloCore2.

• Mark Hildebrand for writing a task-to-core mapping tool for many-core arrays.

• Jon Pimentel for assisting with the physical designs of both chips.

• Bin Liu for the oscillator design in KiloCore, reused in KiloCore2, and for assisting in the

physical design of KiloCore.

• Anh Tran for adapting his packet router design for use in the first KiloCore.

• Emmanuel Adeagbo for assisting with the physical designs of both chips, and oscillator

refinements in KiloCore2.

• Prior members of the VCL group for their earlier work on AsAP2 and its applications,

which forms the background for this research, and for the FFT and Viterbi accelerators

which were utilized in KiloCore2.

I thank Jeremy Rodgers for designing the chip package for KiloCore2.

I thank Dr. Venkatesh Akella, Dr. Soheil Ghiasi, and the other professors in the Electrical

and Computer Engineering department at UC Davis.

I thank my family members, on two legs or four, for their support and companionship through

the years of this research.

-iv-

This work was supported by DoD and ARL/ARO Grant W911NF-13-1-0090; NSF Grants

0903549, 1018972, 1321163, and CAREER Award 0546907; SRC GRC Grants 1971 and 2321,

and CSR Grant 1659; and C2S2 Grant 2047.

-v-

Contents

Abstract . i

Acknowledgments . iv

List of Figures . ix

List of Tables . xv

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 3

1.2.1 AsAP2 Platform . 5

1.2.2 AsAP2 Applications . 6

1.3 Dissertation Organization . 8

2 A Low Density Parity Check Decoder for a Many-Core Array 10

2.1 Introduction . 10

2.2 Software Algorithm . 10

2.2.1 Parity Check Matrix . 11

2.2.2 Compact Set . 12

2.2.3 Unpack Set . 12

2.2.4 Update Variable . 12

2.2.5 Correct Variable . 12

2.2.6 Valid Codeword Detection . 13

2.3 Software Implementation . 13

2.3.1 Memory Mapping, Data Routing . 13

2.3.2 Compact Set Lane . 14

2.3.3 Update Variable Lane . 16

2.3.4 Address Generation . 17

2.4 Results . 17

3 From AsAP2 to KiloCore 21

3.1 Applications Explored . 21

3.2 Unsigned arithmetic . 21

-vi-

3.3 Carry-Shift . 24

3.4 Branch unit . 24

3.5 Repeat Loop Modification . 26

3.6 Network IO . 27

3.6.1 Stall on Multiple-I/O Simultaneously . 27

3.6.2 Explicit output buffer destinations . 28

3.6.3 Quicker processor clock halting . 28

3.6.4 FIFO Depth . 29

3.7 Address Generator Modification . 31

3.8 Parallel Data Memories . 32

3.8.1 Software adjustment . 33

3.9 Voltage Tuning . 35

3.9.1 Application Profiling . 36

3.9.2 Voltage Model . 37

3.9.3 Voltage Selection . 37

3.9.4 Analysis . 38

3.10 Large Program Support . 41

4 KiloCore 45

4.1 High-Level Architecture . 45

4.1.1 Processors . 45

4.1.2 On-Die Communication . 46

4.1.3 Processor Data Memory Organization . 50

4.1.4 Independent Memory Modules . 50

4.2 Fine-grain Clocking . 52

4.2.1 Tolerating Power Grid Voltage Variations 53

4.3 Design and Implementation . 55

4.4 Measured Results . 56

4.5 Applications . 60

4.5.1 Task Partitioning . 62

4.5.2 Task Networking . 66

4.6 Performance and Comparisons . 67

-vii-

4.7 Development History . 68

5 KiloCore2 70

5.1 Summary of major differences . 70

5.2 Specialized Cores . 72

5.2.1 High Speed Processor . 72

5.2.2 Accelerators . 72

5.2.3 Temperature/Voltage Sensor . 73

5.3 Design and Implementation . 73

6 Software Tools for Writing Many-Core Applications 79

6.1 Many-Core Simulators . 79

6.1.1 AsAP2 Simulator . 79

6.1.2 KiloCore and KiloCore2 Simulator . 80

6.2 KiloCore Compiler . 82

6.3 Project Manager . 83

7 Conclusion 87

-viii-

List of Figures

1.1 Number of processors on a single die vs. year of publication, up to the publication

of KiloCore in 2016. Each processor is capable of independent program execution. 2

1.2 High level block diagram of the AsAP2 processor array [4]. 5

1.3 Block diagram of the six-stage pipeline of a single AsAP2 processor [4]. 6

1.4 Block diagram of the FFT accelerator in AsAP2 [19], reused with modifications

in KiloCore2. 6

1.5 Tasks used in a 137-processor AES engine designed for AsAP2 [20]. 7

1.6 Tasks and mapping for Snakesort (left) and Rowsort (right) for AsAP2 [21]. . . . 7

1.7 Tasks used in a 23-processor 802.11a baseband receiver for AsAP2 [22]. 8

1.8 Block diagram of the 147-processor H.264/AVC encoder for AsAP2 [23]. 8

2.1 High level software implementation of a Min-Sum LDPC decoder. 11

2.2 Memory and data routing system for code length 4095. 14

2.3 Memory and data routing system for code length 16129. 14

2.4 Core mapping for a Compact Set computation lane, for code lengths (a) 4095 and

(b) 16129. Lanes are replicated vertically to increase parallel computation. 15

2.5 Core mapping for an Update Variable computation lane, for code lengths (a) 4095

and (b) 16129. Lanes are replicated vertically to increase parallel computation. . 15

2.6 Core mapping for an address generation block, for code lengths (a) 4095 and

(b) 16129. These blocks are used to implement the parity check matrix H. 16

2.7 Overall application mapping to AsAP2, for code lengths (a) 4095 and (b) 16129.

Update Variable lanes are replicated in the upper left (shaded blue), Compact Set

lanes are replicated in the upper right (shaded green), address generators (shaded

orange) and data routing cores (shaded cyan) are clustered around the memory

modules on the bottom. 16

2.8 Instructions used, given as the highest for any core within a category, for code

lengths 4095 and 16129. Cores are limited to 128 instructions. 18

-ix-

2.9 Percentage by which energy usage is reduced by optimization, given as the average

for cores within a category, for code lengths 4095 and 16129. Reductions are

achieved through optimization of the frequency and voltage rail selection for each

individual core. Some cores increase in energy due to induced stall cycles from

mismatched frequency ratios with neighbors. 18

2.10 Percent of the total application energy used by cores in each category, for code

lengths 4095 and 16129. 19

3.1 Benefit of adding unsigned instructions to AsAP2 for various integer operations

of varying sizes. A speedup factor of 1 signifies equal performance. Add applies

to signed or unsigned addition or subtraction. Multiplies differ between unsigned

(u-mult) and signed (s-mult). 23

3.2 Instructions required for various integer operations on AsAP2, with and without

the addition of unsigned instructions. 23

3.3 Benefit of shift-carry instructions for software single-precision floating point

Add/Subtract, Multiply, and Division, when added to an otherwise unmodified

AsAP2. The average speedup is across random inputs, whereas the longest

path speedup is for input combinations that require the greatest rounding and

re-normalization effort. 24

3.4 Branch prediction success rate for AsAP2 applications, either following the untaken

path (original AsAP2) or modified to predict using a static flag per branch

instruction selected based on offline application profiling. 26

3.5 Program speedup of AsAP2 applications when branching is modified to behave

as in KiloCore, given as the average or max across processors in the application.

A speedup of 100% implies an execution time reduced to half. By coincidence,

three applications contain processors with speedups of very close to 100% (but

not exactly). 27

3.6 Energy reductions and stall cycle reductions for AsAP2 applications when changing

the processor stall logic to halt as soon as network writes are flushed from the

pipeline. A stall cycle is when a processor’s program is paused due to a data

dependency, but the processor’s oscillator is still cycling the clock. 30

-x-

3.7 Impact of inter-processor communication FIFO depth on AsAP2 application

throughput, modeled without write latency or corresponding reserve space. Metrics

are normalized to a 512 FIFO depth. This captures the application’s baseline

benefit from a transmitting processor continuing its program after initiating a

network write, without having to wait for the receiving processor to consume the

data. 31

3.8 Impact of inter-processor communication FIFO depth on AsAP2 application

throughput, with realistic write latency and reserved FIFO space to safely prevent

overflow. Metrics are normalized to a 512 FIFO depth. 32

3.9 Percentage of instructions requiring two data memory reads in AsAP2 applications,

given as an average across all processors and as the highest processor. 33

3.10 Pre-optimization number of Dual and Single write variables, averaged across

processors, in AsAP2 applications converted to utilize two single-read-port memory

banks. Dual variables must be written to both banks to avoid software slowdown. 34

3.11 Post-optimization number of Dual and Single write variables, averaged across

processors, in AsAP2 applications converted to utilize two single-read-port memory

banks. 35

3.12 Total data memory usage of a processor, given as peak and average across

processors in AsAP2 applications converted to utilize two single-read-port memory

banks, both pre- and post-optimization. 36

3.13 Reduction in energy consumption due to voltage optimization in several AsAP2

applications, across varying numbers of available voltage rails, for dithered

(alternating) and non-dithered (static) per-core rail assignments. 38

3.14 Reduction in energy consumption due to voltage optimization averaged over

AsAP2 applications, across varying numbers of available voltage rails, for dithered

(alternating) and non-dithered (static) per-core rail assignments. 39

3.15 Voltages selected for each rail, across AsAP2 applications, normalized to the

maximum operating voltage. Voltages are selected to minimize application energy

usage. 39

3.16 Voltage rail load distribution, given as energy draw or as current draw summed

across cores attached to the rail, averaged across AsAP2 applications. 40

-xi-

3.17 Energy * Area products based on the number of available voltage rails, where

energy is the amount consumed by an AsAP2 application. Application energies

are individually normalized to the 1 rail case, then averaged together. Area

represents that required for additional power gates to support connecting to a rail. 41

3.18 Performance benefit of increasing queued instructions when running large programs

out of a shared memory module, for the three sampled kernals, normalized to

ideal branchless code performance. 43

3.19 Performance benefit of increasing layers of branch prediction when running

large programs out of a shared memory module, for the three sampled kernels,

normalized to ideal branchless code performance. 44

4.1 KiloCore top-level processor array diagram. 46

4.2 Major components and connections of the 7-stage processor pipeline. Several

control and configuration signals are omitted for clarity. 47

4.3 Overview of inter-core communication using circuit and packet networks. Writes

are source-synchronous; responses include asynchronous wake-up signals for

sleeping processors. Circuit links include configurable registers and an east-west

connection for one layer is expanded on the right. 47

4.4 Path diagram and measured energies to transfer a bit of data from one point in

an application to another versus distance, beyond the energy required for pipeline

forwarding (i.e., pipeline forwarding = 0.0). (A) Pipeline forwarding or (B) local

Dmem may be used for in-core transfers. Independent memory may be used for

(C) local or (D) neighbor-processor transfers. Both (E) circuit and (F) packet

networks support distant transfers. 49

4.5 Multibank data memory read and write circuitry. 51

4.6 Components used in streaming instructions from a shared memory to a neighboring

processor. Streaming logic is shared between two processors, with only the port 0

connection shown here. 51

4.7 Supply voltage noise at a nominal 1.0 V when simultaneously turning on 999

processors from fully halted to fully active at maximum frequency. 54

4.8 Die micrograph. 56

4.9 (a) Annotated layout and (b) area breakdown of a single processor tile. 57

-xii-

4.10 (a) Annotated layout and (b) area breakdown of a single independent memory tile. 58

4.11 Maximum operating frequency of processors, memories, and routers. 59

4.12 Energy per typical operation for processors, memories, and routers. 60

4.13 Power of a processor, memory, and router when 100% active and operating at

the maximum clock frequency at the indicated supply voltage. Type of activity

impacts power usage; the spread between low-energy and high-energy activities

are indicated. 61

4.14 Example of serial and parallel task partitioning. Serial partitioning reduces

instruction counts per task and isolates large data structures, while parallel

partitioning improves the throughput of critical paths. 63

4.15 Number of instructions required by tasks in the example applications after task

partitioning. All tasks fit within the 128-word instruction memory of a single

processor. 64

4.16 Amount of data memory required by tasks in the example applications, after task

partitioning. Most tasks fit within the 512-byte data memory of a single processor,

with a small number of tasks requiring the assistance of the independent memory

modules. 64

4.17 Normalized application (a) throughput and (b) energy efficiency as the number of

cores available to the application is increased to 1000. 65

4.18 Tasks of sampled applications categorized by their number of inter-task input and

output links. A large majority of tasks utilize less than 3 inputs and less than 3

outputs. 66

5.1 Layout and IO ports of KiloCore2, where an asterisk (*) denotes higher speed

LVDS differential ports. "M" is a shared 64kB memory; "V" is a Viterbi accelerator;

"F" is an FFT accelerator; "H" is a high-speed processor. The empty space above

the FFT accelerator is occupied by a temperature-voltage sensor, which is slightly

smaller than a processor. 71

5.2 Top view of KiloCore2 in Encounter, when hiding power and ground wires.

Layout corresponds to that shown in Figure 5.1. The periphery consists of off-

chip I/O drivers, Electro-static discharge triggers and clamps, and deep trench

capacitors [39]. 74

-xiii-

5.3 (a) Annotated layout and (b) area breakdown of a single KiloCore2 standard

processor tile [39]. 75

5.4 Annotated layout of a single KiloCore2 extra-high-frequency processor tile [39]. . 76

5.5 Annotated layout of a single KiloCore2 shared memory tile [39]. 76

5.6 Annotated layout of a single KiloCore2 FFT accelerator tile [39]. 77

5.7 Annotated layout of a single KiloCore2 Viterbi accelerator tile [39]. 78

6.1 KiloCore simulator paused at a breakpoint in the assembly and viewing memory

contents, enabled by running in the Visual Studio IDE 81

6.2 Example of the KiloCore compiler work flow; (a) user provided C++ code

(simplified for brevity), (b) LLVM IR format output from Clang, (c) non-optimized

translation from IR to KiloCore Assembly, and (d) optimized KiloCore Assembly 84

6.3 KiloCore Project Manager GUI showing a version of the FFT application opened

to the tasks tab, with simulation results visible 85

6.4 KiloCore Project Manager GUI showing a version of the FFT application opened

to the mapping tab, which also may be zoomed in and display task names 86

-xiv-

List of Tables

1.1 Selection of chips showing the range of processor sizes in many-core arrays,

categorized as coarse-grain (200 kB or more memory per processor) down to

fine-grain (less than 5 kB per processor). 4

2.1 Parameters of implemented LDPC codes. 12

2.2 Memory utilization of data structures, with the number of 16-bit memory words

required to store the structure, and the read/write activity during a single Compact

Set (CS) or Update Variable (UV) iteration. 13

2.3 Performance of this work compared to a C++ implementation and a GPU

implementation. Primary metrics are throughput per area and bits decoded per

unit of energy. Results are scaled to 22 nm for comparison. Throughput is for

4 full decoding iterations and a partial 5th iteration, or 5 full iterations in the

GPU implementation. AsAP2 performance is given with and without voltage

optimization. 20

4.1 Energy per operation or activity at a supply voltage of 900 mV. Router flit transfer

does not include clock energy; processor and memory operations include clock

energy. 59

4.2 KiloCore application metrics for operation at 1.1 V. *Does not include time spent

waiting for networks. 67

4.3 Application metrics and comparisons of KiloCore with CPU and GPU imple-

mentations. 68

5.1 Lines in RTL Verilog code files, given as entire file and just code, from AsAP2

to KiloCore2, omitting generated files such as full array connections. AsAP2

and KiloCore share no code. KiloCore2 uses modified versions of the AsAP2

FFT and Viterbi accelerators. The AsAP2 motion estimation accelerator has no

comparable block in either KiloCore. 72

-xv-

6.1 Characteristics of several tools developed as part of this research. The compiler

metrics include KiloCore C++ header libraries. Metrics do not include testing

code or code that isn’t original to the KiloCore project. 86

-xvi-

Chapter 1

Introduction

1.1 Motivation
Parallel processing offers well known benefits in performance and efficiency, with many modern

chip designs focusing on integrating an increasing numbers of processors on a single die instead

of increasing the complexity of a smaller number of processors [2–6]. Many current and future

computing applications, ranging from embedded internet-of-things devices to cloud datacenters,

are placing increased emphasis on hardware solutions that provide high energy efficiency alongside

high performance [7].

Semiconductor fabrication technologies continue to provide increasing levels of integration [8],

offering opportunities for new architecture designs. However, increasing fabrication costs continue

to motivate the development of programmable and/or reconfigurable architectures which can

address the needs of a range of applications in varying computing domains. With the looming end

of Moore’s Law, such non-standard architectures and programming techniques enable compute

performance to continue to scale. Figure 1.1 shows the trend of an increasing number of processors

per die, where each processor is capable of independent program execution.

The highest energy efficiency and throughput-per-area is found when processors are a direct

match for the operational and memory requirements of their programs. This leads to an

architectural design problem: as processor size is reduced for efficiency when running small

applications, effectiveness or capability to run large applications is lost. Multiple-processor arrays

offer a solution: applications can be separated into groups of tasks better suited for fine-grain

processors, with the full array working together to support an entire application [9].

1

RAW
(16)

Cell
(9)

pc205
(248)

Polaris
(80)

Am2045
(336)

SCC
(48)

T3 &
Fermi
(16)

3D-
Maps
(64)

Epiphany
IV

(64)

MPPA-256
(288)

Gx72
(72)

7120A
(61)

R9
(64)

KiloCore
(1000)

0

100

200

300

400

500

600

700

800

900

1000

'02 '03 '04 '05 '06 '07 '08 '09 '10 '11 '12 '13 '14 '15 '16

N
um

be
r

of
 P

ro
ce

ss
o

rs

Year

Academic

Industry

Figure 1.1: Number of processors on a single die vs. year of publication, up to the publication of
KiloCore in 2016. Each processor is capable of independent program execution.

Compared to traditional CPU architectures, many-core arrays are poorly suited to large,

general applications, but excel as reprogrammable accelerators for streaming applications. In

streaming compute, a short algorithm, typically represented by hundreds to thousands of lines

of code, operates on a series of data blocks, where blocks may arrive over time (eg. processing

wireless signals) or be read from a larger database (eg. encrypting data). The accelerator is

programmed with one or more such algorithms, and enables significantly faster or lower energy

processing of the data.

This fine-grain approach has been used to develop processor arrays consisting of tens to

hundreds of processors [4, 5, 10,11]. However, the industry-developed architectures [10,11] are

opaque with respect to details of their microarchitecture, performance in applications, and

programming approach. The university-developed architectures [4, 5] offer transparency, but

are lacking in hardware refinement and programming tools, and do not best represent what

many-core architectures are capable of.

To address these issues, the research presented here develops a next-generation many-core

architecture. This refined design better represents the performance advantages possible with

many-core arrays. Actual performance in silicon is measured and shared publicly, along with the

details of the architecture. Further, to address difficulties in programming such arrays, a suite of

software tools are developed to aid in designing applications consisting of hundreds to thousands

or more tasks.

An ambitious goal is set for this new architecture: to achieve over a 50x improvement

in throughput per area per energy when compared to traditional CPUs and GPUs running

2

comparable, externally-developed applications. For fairness, all compared chips are scaled to the

same fabrication technology, and unused die area is omitted (eg. the on-die graphics accelerator

in some modern CPU chips).

Designed to scale to thousands of processors per chip, this new architecture has been named

KiloCore [9, 12–15]. KiloCore addresses the aforementioned factors with a massively-parallel

computing platform that is energy efficient for a wide variety of workloads, capable of very high

performance, easily scalable to higher processor counts, and suitable for a range of applications

and critical kernels either alone or acting as a co-processor in a heterogeneous system. Fabricated

in 32 nm PDSOI CMOS, KiloCore exceeds the aforementioned goal by achieving 70x higher

throughput per area per Watt than traditional CPUs and GPUs, and ushers in the era of 1,000+

independent processors per chip.

1.2 Related Work
Multiple-processor architectures, where each core runs an independent program, can be loosely

categorized into three varieties, as follows. These are summarized in Table 1.1.

1. Coarse-grain multi-core arrays implement processor cores with approximately 0.2 to 1 MB

or more memory per core [16,17]. Such processors operate largely independently on general

purpose complex workloads, with strong support for existing applications and requiring

little programmer redesign effort to achieve high core utilization. Common features include

multi-threading, multi-issue, out-of-order execution, and single-instruction-multiple-data

operations.

2. Medium-grain arrays provide 10 KB to 100 KB of memory per core [6, 18]. Increased

emphasis is placed on work sharing between cores to realize the architecture’s potential

performance, where a single coarse-grain thread may be split into a handful of subtasks.

3. Fine-grain many-core arrays provide around 1 KB to 5 KB of memory per core [4, 10,11].

Implementing complex applications requires a high degree of code partitioning and shared

work between cores, with a single coarse-grain thread being split into tens or hundreds of

subtasks.

Fine-grain architectures offer the highest potential energy and throughput efficiency, due

to the low energy per operation for each core and the high number of cores which fit into a

3

Table 1.1: Selection of chips showing the range of processor sizes in many-core arrays, categorized
as coarse-grain (200 kB or more memory per processor) down to fine-grain (less than 5 kB per
processor).

Granularity Creator Chip Processors Memory per Proc Year
Coarse Intel Single-chip Cloud Comp. 48 276 kB 2010
Coarse Intel Phi 5110P 60 544 kB 2012
Coarse Knupath Hermosa 256 280 kB 2016
Medium Tilera TILE64 64 80 kB 2007
Medium Kalray MPPA-256 256 144 kB 2012
Medium Adapteva Epiphany V 1024 64 kB 2016
Fine Picochip PC101 430 768 B or 8 kB or 32 kB 2003
Fine Ambric Am2045 336 288 B or 5 kB 2008
Fine UCDavis AsAP2 164 848 B 2008

given area. Such architectures are the focus of this research. Notable fine-grain architectures are

described below.

The Picochip PC101 [10] contains 430 16-bit, VLIW processor cores operating at 160 MHz.

Typical cores have 768 B of memory. The cores are heterogeneous: 240 are basic cores, 120 cores

add multiply-accumulate (MAC) support, 68 cores add 8 kB of memory, and 2 control cores

add 32 kB of memory. Subsequent versions reduced the number of cores per chip, replacing the

basic cores with fewer MAC cores. A time multiplexed synchronous mesh network is used for

communication, with data transferred horizontally along rows and vertically every four columns,

and cores being required to wait for their scheduled slot before performing a transfer.

The Ambric Am2045 [11] contains 336 32-bit processor cores operating at 300 MHz. The

cores are heterogeneous: 168 cores have 288 B of memory, a limited instruction set, and are use

primarily for simple tasks such as network data routing; the other 168 cores have 5 kB of memory

and the full instruction set. Two of each type of core, four total, form a compute unit. Cores in

a compute unit may communicate directly with each other, while the network connects compute

units to neighbors and allows them to form longer distance connections through a switching

mesh using handshake synchronization.

The UC Davis Asynchronous Array of Processors 2 (AsAP2) [4] contains 164 16-bit homo-

geneous processor cores operating up to 1.2 GHz. Each processor has 1 kB of local memory, with

an additional 48 kB of shared memory located at the bottom of the chip. A source-synchronous,

two-layer, circuit-switched mesh network is used for all communication.

4

Of these fine-grain arrays, AsAP2 is the only university chip and has published a much greater

level of detailed information on its architecture, energy efficiency, and application performance.

As such, it is the primary starting point for this research, and is described in further detail below.

1.2.1 AsAP2 Platform

The AsAP2 computational platform [4] supplements its 164 processors with three 16 kB memories

having two read/write ports each, and with specialized accelerators for motion estimation, FFT,

and Viterbi decoding. AsAP2 occupies 32.7 mm2 and was developed in 65 nm CMOS. Figure 1.2

shows the high level layout of the array.

 Slide 2

Core

DVFS

Osc

Comm 48 KB of total
Shared Memory

Chip
Input

Chip
Output

Single
Processor Core

Figure 1.2: High level block diagram of the AsAP2 processor array [4].

A single 16-bit processor may hold up to a 128 instruction program, contains a 128 word data

memory, and communicates with other processors using a statically configured circuit network.

A processor is limited to 2 input links and as many as 8 output links. Each processor contains

its own clock oscillator and may run up to 1.2 GHz, and each processor may be powered by one

of two voltage rails. Memory modules are limited to one random access per two cycles per port,

and are accessed using 16-bit words with 8192 unique addresses.

Figure 1.3 shows the six-stage pipeline diagram of a processor. Branch logic (not shown) is

placed alongside instruction decode. Figure 1.4 shows the block diagram of the FFT accelerator.

5

Figure 1.3: Block diagram of the six-stage pipeline of a single AsAP2 processor [4].

Memory Bank
2

I/O Address
Generator

Input Data
Control

Butterfly
Address

Generator

W-ROM

Mixed-Radix
Butterfly

Output Data
Control

Data In

Data Out

Stall Input

Stall Output

Data Write (Butterfly)

Address
Read/Write
(Butterfly)

W Index

Wb Wc Wd

Data Read
(Butterfly)

0 1 2 3

Muxblock

Muxblock

Memory Bank 1

M
ux, R

eg.

Data Write (I/O)

Data Read
(I/O)

Address
Read/Write

(I/O)

M
ux, R

eg.

Figure 1.4: Block diagram of the FFT accelerator in AsAP2 [19], reused with modifications in
KiloCore2.

1.2.2 AsAP2 Applications

A number of applications were developed to run on the AsAP2 platform, several of which are

analyzed or adapted as part of this work. A brief overview of several such applications follows.

An Advanced Encryption Standard (AES) engine operates on 128-bit keys, and uses up to 137

cores [20], with several variations of lower core count. Figure 1.5 displays the task connections,

6

where a block of 14 tasks acts as a template that is replicated to nine instances, with final data

processing happening in a block of 11 tasks.

Input

Sub-
4

Add &
Shift

Sub-
4

Sub-
4

Key
Sub

Mix-
4

Output

Sub-
4

Mix-
4

Key
Sche

Merge
Core

Merge
Core

Merge
Core

Sub-
4

Add &
Shift

Sub-
4

Sub-
4

Sub-
4

Sub-
4

Add &
Shift

Sub-
4

Sub-
4

Sub-
4

Merge
Core

Key
Sub

Merge
Core

Key
Sche

Merge
Core

Add
Key

Mix-
4

Mix-
4

Figure 1.5: Tasks used in a 137-processor AES engine designed for AsAP2 [20].

The first phase of an "external" record sort is implemented for a variable number of

processors [21]. Records are processed into sorted blocks in support of the second merging

phase of the external sort. The primary version processes 100-byte records containing 10-byte

sorting keys, while a secondary version operates on 4-Byte records containing 2-byte keys. In

the "Snakesort" layout, processors are connected in a single, linear series, from array input to

output. In the "Rowsort" layout, records are distributed across several parallel "Snakes", and

merge-sorted together at the array output. Figure 1.6 shows the tasks involved in these sorting

algorithms, after having been mapped to the full AsAP2 array.

Figure 1.6: Tasks and mapping for Snakesort (left) and Rowsort (right) for AsAP2 [21].

7

An 802.11a baseband receiver [22] uses 23 processors, and utilizes the AsAP2 FFT and Viterbi

accelerators. Figure 1.7 displays the task connections and accelerator usage.

Data
Distribution

Auto
Correlation

Offset
Accumulation

CORDIC -
Rotation

Energy
Computation

Frame
Detection

CORDIC –
Angle

Channel
Equalization

Channel
Estimation

Subcarrier
Reordering

Timing
Synchronization

CFO
Estimation

Demodulation
Bit Rate &

Data Length
Computing

Descrambling Pad Removal

Data
Distribution

Control

Deinterleaving
1

Deinterleaving
2

Depuncturing

FFT
(Accelerator)

Viterbi
Decoding

(Accelerator)

Post - Timing
Synchronization

to MAC layer

Pre - Channel
Estimation

: Other Connections (for Control, Detection, Estimation)

: Connections on the Critical Data Path

from ADC

Guard
Removal

Figure 1.7: Tasks used in a 23-processor 802.11a baseband receiver for AsAP2 [22].

An H.264/AVC encoder is implemented using 147 processors [23], and utilizes the AsAP2

motion estimation accelerator. Figure 1.8 displays high level block diagram of the encoder,

including the accelerator usage.

Main
Ctrl.

Intra
Prediction

Inter
Prediction

Mode
Select

Trans.
Quant.

Inverse T/
Scaling

CAVLC

Reference Frame

Data_In
(YUV)

Data_Out
(H.264 Bitstream)

Data
Parser

Calculate
Reference MB

Current Frame

Motion
Estimation
Accelerator

AsAP Chip

Figure 1.8: Block diagram of the 147-processor H.264/AVC encoder for AsAP2 [23].

1.3 Dissertation Organization
The remainder of this document is organized as follows. Chapter 2 introduces a Low Density

Parity Check decoder application, to build an understanding of designing software to utilize

many-core arrays. Chapter 3 shares insights derived from the prior AsAP2 work which led to

the development of KiloCore. Chapter 4 details the KiloCore architecture and fabricated chip,

8

including measurement results. Chapter 5 details the followup KiloCore II architecture and chip,

focusing on differences from KiloCore. Chapter 6 presents the software tools developed to aid in

design and analysis of many-core applications as well as architectural exploration. Chapter 7

summarizes the results of the research presented here.

9

Chapter 2

A Low Density Parity Check Decoder for a
Many-Core Array

Critical to understanding the design of many-core arrays is understanding how their applications

are developed. This chapter explores the design of such an application in detail.

2.1 Introduction
Low Density Parity Check (LDPC) codes, introduced in 1962 by Gallager [24], have become

increasingly popular in recent years, showing up in multiple communication protocols such as

802.3an (Ethernet), 802.16e (WiMAX), and 802.11n (Wi-Fi). Development of LDPC hardware

decoders involves high design costs and time, and such decoders tend to have limited capability

to adapt to alternate LDPC codes, leading to software decoder implementations as an attractive

alternative.

Fine-grain, many-core architectures offer high performance at low power for DSP applications,

and are a promising platform for software-based LDPC decoding.

A software decoding algorithm is described in section 2.2. Section 2.3 describes two imple-

mentations of the algorithm on AsAP2 for sample LDPC codes of different lengths. Section 2.4

presents the final designs and shares measurements of interest.

2.2 Software Algorithm
An LDPC code may be expressed using an MxN binary matrix H, where each of the rows

(M) defines the variables in a parity-check set, and the number of columns (N) matches the

length of the block being decoded. This design utilizes the Min-Sum algorithm described by

Chen et al. [25] for iterative decoding. The following terms are used in this work:

10

Variable
Update

Set
Compression

Address
Generation

Data
Routing,
Control

Memory

Valid
Codeword
Detection

Ij Qj

Unpack Set
Correct
Variable

Si

Djk

Cij

Djk+1

Vij

Qj , Si

Si

Qj

Figure 2.1: High level software implementation of a Min-Sum LDPC decoder.

Ij Log-likelihood ratio of channel information for the j-th variable node, input to the decoder.

Cij Message from check node i to variable node j.

Si Compacted Set capable of generating messages Cij for a given i.

Vij Message from variable node j to check node i.

Djk Partial sum of k check node messages and channel information in variable node j.

Qj Total sum of check node messages and channel information in variable node j.

L(i) Group of variable nodes connected to check node i.

Each decoding iteration is split into two major phases: Compact Set, which effectively

collects and compresses information from the variable node messages Vij into set Si, and Update

Variable, which sums check node messages Cij and Djk to generate Djk+1, obtaining Qj when all

summations are complete. Major data structures are maintained in shared memory. Figure 2.1

shows the primary components and data connections for this software decoder.

2.2.1 Parity Check Matrix

The parity check matrix is implemented through the memory access pattern. For each row of the

matrix, a memory address generator will produce the group of addresses corresponding to the

variables L(i) in the parity set. Addresses may be generated either using a look-up table or, if

11

Table 2.1: Parameters of implemented LDPC codes.

Code Rows Columns Row Weight Column Weight

(4095,3367) 378 4095 64 5

(16129,15372) 762 16129 127 6

the matrix has sufficient regularity, by computing them in software. This work uses the latter

method to implement the two LDPC codes described in Table 2.1.

2.2.2 Compact Set

In the Min-Sum algorithm, the check node messages Cij for a given check node i may only have

one of two possible magnitudes, corresponding to the two minimum magnitudes of messages Vij

from variable nodes L(i) [25]. During Compact Set, for each i, Vij are gathered and processed

to determine these two minimum magnitudes, along with the index j of the first minimum, a

compressed set of sign bits Nj isolated from Vij , and the total XOR of these sign bits T . The

resulting compacted sets Si are stored in memory.

2.2.3 Unpack Set

Compacted sets Si are unpacked to generate check node messages. For any given message Cij ,

the magnitude is equal to the first minimum in Si unless j matches the first minimum’s index, in

which case the magnitude is equal to the second minimum. The sign of Cij is equal to T ⊕Nj ,

the total sign bit corrected by the bit for variable j.

2.2.4 Update Variable

The original channel information Ij is combined with check node messages Cij to generate Djk,

the partial sums for each variable node. After the final summation, the Djk term is stored

as Qj . In this work, each set Si is processed in order, with the partial sums Djk read from

memory, updated to form Djk+1, and stored back into memory until their next corresponding

set is processed. An alternative approach would be to process variable nodes j in order and

read corresponding sets Si as needed, but this results in greatly increased memory traffic for the

selected LDPC codes.

2.2.5 Correct Variable

Each Qj produced by Update Variable requires correction in order to obtain the variable node

messages Vij to be passed to Compact Set on the following decoding iteration. In Correct

12

Table 2.2: Memory utilization of data structures, with the number of 16-bit memory words
required to store the structure, and the read/write activity during a single Compact Set (CS) or
Update Variable (UV) iteration.

Reads Writes Reads Writes

Data, Code Length Words CS CS UV UV

Input Ij , 4095 4095 0 0 4095 0

Input Ij , 16129 8128 0 0 16129 0

Variables Djk, 4095 4095 24192 0 20097 24192

Variables Djk, 16129 8128 96774 0 80645 96774

Sets Si, 4095 2646 2646 2646 2646 0

Sets Si, 16129 7620 7620 7620 7620 0

Variable, the previous set Si is unpacked to obtain the message Cij , as in Unpack Set above, and

the operation Vij = Qj − Cij is performed to obtain the corrected messages.

2.2.6 Valid Codeword Detection

Decoding is complete when the group of variables Qj in each parity group L(i) satisfy parity,

indicating a valid codeword has been found and may be output. This analysis may be performed

in parallel with the Compact Set phase, sharing the input data stream of Correct Variable in

order to overlap memory access. Detection of a valid codeword is communicated to all relevant

nodes to trigger data output with a general reset in preparation for the next input Ij .

2.3 Software Implementation
2.3.1 Memory Mapping, Data Routing

Three data structure are stored in the on-chip memory modules: the original input channel

information Ij , the variable node data Djk or Qj , and the compacted sets Si. Table 2.2 describes

the memory usage of each data structure, along with the read and write activity during the two

major decoding phases. Data is routed using dedicated processors which perform the appropriate

data stream joining and splitting functions.

The memory and data routing system for code length 4095 is shown in Figure 2.2. Here, Ij

and Djk are stored in an interleaved fashion and split across two memory modules, allowing

two read and two write ports to be active during Update Variable, and four read ports to be

active during Compact Set. Figure 2.3 shows this system for code length 16129. Here, Ij and

Djk are stored in separate memories, and are packed two per memory address due to memory

13

High Variable MemoryLow Variable Memory

Mem
Read

Control

Mem
Rd/Wr
Control

Mem
Read

Control

Mem
Rd/Wr
Control

Mem
Read

Control

Mem
Write

Control

Set Memory

Join
Read
Vars

Join
Read
Vars

Split
Write
Vars

Split
Read
Vars

Compact
Sets

Split
Sets

Update
Variables

Join
Write
Vars

Add. Gen.
Add. Gen.

Add. Gen. Add. Gen.

Split
Read
Vars

Output

Input

Figure 2.2: Memory and data routing system for code length 4095.

Mem
Rd/Wr
Control

Mem
Read

Control

Mem
Rd/Wr
Control

Mem
Read

Control

Mem
Write

Control

Original Data
Memory

Variable Memory

Set Memory

Address
Prefixer

Join
Read
Vars

Address
Prefixer

Join
Write
Vars

Split
Sets

Address
Prefixer

Compact
Sets

Update
Variables

Add. Gen.

Split
Read
Vars

Input

Add. Gen.

Output

Split
Input
Vars

Figure 2.3: Memory and data routing system for code length 16129.

constraints. Minor connections used for control signaling and valid codeword detection are

present but omitted from the figures for clarity.

2.3.2 Compact Set Lane

The Correct Variable and Compact Set operations are mapped to a scalable computation lane,

shown in Figure 2.4. This lane may be replicated and stacked vertically to provide parallel

computing resources. Variable and set data is split across computation lanes upward, and the

generated new Sets are joined and returned downward. In a final layout, some split and join

14

Split
Variables

Correct
Variable

Correct
Variable

Compact
Set

Compact
Set

Join New
Sets

Split Old
Sets

Split
Variables

Buffer,
Unpack
Variable

Correct
Variable

Compact
Set

Split Old
Sets

Join New
Sets

Detect
Valid

(a)

(b)

Figure 2.4: Core mapping for a Compact Set computation lane, for code lengths (a) 4095 and
(b) 16129. Lanes are replicated vertically to increase parallel computation.

cores may be omitted and replaced with direct data links if necessary. For the 4095 code, each

lane is capable of processing two sets simultaneously.

For the 16129 code, additional overhead is required due to memory packing. Variable data

read out of memory is packed with two variables per word, and must be unpacked by selecting

the correct upper or lower byte based on the variable’s byte address, which is included in the

data stream. The unpacking core also provides additional buffering, which aids in capturing

data bursts which are larger than a processor’s input buffer and would otherwise cause back-up

in the variable splitting cores. Since valid codeword detection must use the unpacked variable

data, an additional core is included within the lane for performing this detection after unpacking.

For the 4095 code, valid detection cores may access the variable stream directly, and are placed

elsewhere.

Split Old
Variables

Update
Variable

Update
Variable

Split
Sets

Buffer,
Join

Variables

Split Old
Variables

Buffer,
Unpack

Variables

Update
Variable

Buffer,
Pack

Variables

Split
Sets

Join New
Variables

Join New
Variables

(a)

(b)

Figure 2.5: Core mapping for an Update Variable computation lane, for code lengths (a) 4095
and (b) 16129. Lanes are replicated vertically to increase parallel computation.

15

Address
Generator

0

Address
Generator

1

Address
Generator

2

Address
Generator

3

Address
Generator

4

Join
Addresses

Join
Addresses

Join
Addresses

Join
Addresses

Address
Generator

0

Address
Generator

1

Address
Generator

2

Address
Generator

3

(a)

(b)

Join
Addresses

Reset

Reset

Figure 2.6: Core mapping for an address generation block, for code lengths (a) 4095 and (b) 16129.
These blocks are used to implement the parity check matrix H.

AG

PV

AG

PV

AG

PV

AG

SV

SV

SV

SV

AG

AG

PV

AG

AG

PA

AG

UV

UV

UV

UV

MC

JA

JV

JA

PV

AG

PV

AG

UV

UV

UV

UV

MC

PA

SV

PV

PA

PA

AG

PV

BJ

BJ

BJ

BJ

JV

JV

SV

PV

DV

DV

PS

JV

JV

SS

JV

MC

JA

PV

PV

PV

MC

JA

PS

SV

SV

SV

SV

SV

SV

SV

SV

SV

MC

SS

AG

CV

CV

CV

CV

CV

CV

CV

CV

CV

MC

PV

AG

CV

CV

CV

CV

CV

CV

CV

CV

CV

AG

PA

CS

CS

CS

CS

CS

CS

CS

CS

CS

AG

CS

CS

CS

CS

CS

CS

CS

CS

CS

SS

JS

JS

JS

JS

JS

JS

JS

JS

JS

PV

JS

SS

SS

SS

SS

SS

SS

SS

SS

SS

Vmem Vmem Smem

AG

PV

AG

AG

SV

SV

SV

SV

SV

SV

SV

JA

JA

JA

PV

BU

BU

BU

BU

BU

BU

BU

MC

AP

SV

JA

AG

UV

UV

UV

UV

UV

UV

UV

SA

PV

AG

PV

BP

BP

BP

BP

BP

BP

BP

JC

JV

PV

PV

AG

JV

JV

JV

JV

JV

JV

JV

MC

AP

PV

JA

JA

SS

JA

SS

AG

SS

MC

AP

JV

PV

PV

PV

PV

PV

AG

JA

AG

AG

MC

SS

SV

SV

SV

SV

SV

SV

SV

SV

SV

MC

BU

BU

BU

BU

BU

BU

BU

BU

BU

PV

PS

DV

DV

DV

DV

DV

PS

DV

DV

DV

DV

PS

CV

CV

CV

CV

CV

PS

CV

CV

CV

CV

PV

CS

CS

CS

CS

CS

JS

CS

CS

CS

CS

PV

JS

JS

SS

JS

JS

SS

JS

JS

SS

JS

Vmem Vmem Smem

SV UV UV BJ JV SV CV CV CS CS JS SS SV BU UV BP SS SV BU DV CV CS JS

(a) (b)

SV Split Variables
SS Split Sets
SA Split Addresses
PV Pass Variable
PS Pass Set
PA Pass Address
MC Memory Controller
JV Join Variables
JS Join Sets
JC Join Control

DV Detect Valid
CV Correct Variable
CS Compact Set
BU Buffer, Unpack
BJ Buffer, Join
AG Address Generator

UV Update Variable

JA Join Addresses

Figure 2.7: Overall application mapping to AsAP2, for code lengths (a) 4095 and (b) 16129.
Update Variable lanes are replicated in the upper left (shaded blue), Compact Set lanes are
replicated in the upper right (shaded green), address generators (shaded orange) and data routing
cores (shaded cyan) are clustered around the memory modules on the bottom.

2.3.3 Update Variable Lane

Similar to Correct Variable lane, the Update Variable lane is scalable and implements the Unpack

Set and Update Variable operations, shown in Figure 2.5. These two operations are performed

inside of a single core, named Update Variable. For the 4095 code, each lane is capable of

processing two sets simultaneously.

16

For the 16129 code, memory packing again imposes overhead. In this case, however, the

unused variable in a packed pair must be preserved and rejoined with the updated variable before

being written back to memory, to avoid data loss. If this is not done here, the repacking must be

done in a more expensive fashion at the memory interface core.

2.3.4 Address Generation

Variable addresses are generated in software using a mathematical function which expresses the

implemented parity check matrices. This function is capable of fitting within a single core’s

instruction memory, but has been partitioned across multiple cores for increased throughput, as

shown in Figure 2.6. Adaptation of this design to other LDPC codes may be done by changing

the function in the address generator cores. The reset signal shown is sent when a valid codeword

is detected.

2.4 Results
The computation blocks described in Section 2.3 were mapped to the 164 processor array in

AsAP2. Compact Set and Update Variable compute lanes were each replicated until they

were capable of processing data as quickly as it is read from memory during each phase of the

application, and address generators were expanded to satisfy the address consumption rate of

the memories. Due to a limitation of the AsAP2 architecture, cores sending data across more

than two processors are limited to less than their normal maximum frequency. This is accounted

for in the mappings, with additional Pass cores inserted along long, high-rate data links; Pass

cores simply pass their input to their output. The final mappings are shown in Figure 2.7, where

Update Variable lanes are in the upper left, Compact Set lanes are in the upper right, and other

cores are intermixed and generally clustered around the memories at the bottom of the array.

The instruction memory utilization of the cores is shown in Figure 2.8, where cores are

grouped into categories. The Correct Variable and Variable Memory Control cores show the

largest instruction counts due to loop unrolling. A core may hold a maximum of 128 instructions,

but this limit was not found to be restrictive in this application.

Energy usage of the final mapping is optimized through an iterative profiling technique.

Starting with all cores set to their maximum frequency, the frequency of each individual core is

lowered until the overall application throughput is significantly reduced, with this point being

recorded as the estimated minimum required frequency of the core. After all minimum frequencies

17

Figure 2.8: Instructions used, given as the highest for any core within a category, for code lengths
4095 and 16129. Cores are limited to 128 instructions.

Figure 2.9: Percentage by which energy usage is reduced by optimization, given as the average
for cores within a category, for code lengths 4095 and 16129. Reductions are achieved through
optimization of the frequency and voltage rail selection for each individual core. Some cores
increase in energy due to induced stall cycles from mismatched frequency ratios with neighbors.

18

are found, the second voltage rail in AsAP2 is set to the estimated minimum energy point, where

lower frequency cores operate at a lower voltage for energy savings. Figure 2.9 shows the average

energy reduction for cores in each category. In some situations, energy usage may increase if

a low frequency core transmits to a higher frequency core, due to added empty cycles in the

receiving core when reading data bursts. Overall, optimization reduces energy usage by 9.3%

and 12.1% with a reduction in throughput of 0.56% and 0.44% for code lengths 4095 and 16129

respectively.

Figure 2.10: Percent of the total application energy used by cores in each category, for code
lengths 4095 and 16129.

Figure 2.10 shows the overall energy usage of cores in each category, after optimization. The

largest contributors are the address generators, which experience high activity during both phases

of the application and are replicated multiple times to satisfy the address consumption rate

of the memory controllers. The second largest contributors are Pass cores, which are typically

placed on high rate data links and see high activity as a result.

The performance of this design is compared to two other software LDPC decoder imple-

mentations, as shown in Table 2.3. First is a multi-threaded decoder written in C++ using

the algorithm described in this work, running on an Intel i7-3770k processor. Second is a GPU

decoder presented by Li et al. [26] running on an Nvidia GTX 580. Designs are scaled to 22 nm

using the scaling equations presented by Stillmaker et al. [27], as well as being presented unscaled.

Power for the i7 and GTX is assumed to be half of their rated thermal design power. The primary

19

Table 2.3: Performance of this work compared to a C++ implementation and a GPU
implementation. Primary metrics are throughput per area and bits decoded per unit of energy.
Results are scaled to 22 nm for comparison. Throughput is for 4 full decoding iterations and
a partial 5th iteration, or 5 full iterations in the GPU implementation. AsAP2 performance is
given with and without voltage optimization.

Block Tech. Thr. Thr./Area Bits/Energy

Platform Size (nm) (Mbps) (Mbps/mm2) (b/µJ)

i7-3770k 4095 22 23.9 0.150 0.62

i7-3770k 16129 22 25.0 0.156 0.65

GTX 580 [26] 2304 40 710.0 1.365 5.82

GTX 580 [26] 2304 22 970.7 5.431 23.40

AsAP2 4095 65 21.4 0.655 7.06

AsAP2 16129 65 13.5 0.413 4.72

AsAP2, Opt. 4095 65 21.3 0.651 7.66

AsAP2, Opt. 16129 65 13.4 0.412 5.31

AsAP2 4095 22 85.3 11.735 45.71

AsAP2 16129 22 53.8 7.411 30.52

AsAP2, Opt. 4095 22 84.8 11.670 50.40

AsAP2, Opt. 16129 22 53.6 7.379 34.74

metrics of interest are throughput per area and bits decoded per unit of energy. When scaled to

the same technology, the AsAP2 platform offers throughput per area up to 2.15x higher than the

GPU and 75x higher than the CPU, with energy efficiency up to 2.14x higher than the GPU and

77x higher than the CPU.

20

Chapter 3

From AsAP2 to KiloCore

Many of the architectural features of KiloCore originated in simulation and analysis of AsAP2

and its applications. During work on these applications, a number of insights were achieved into

how the AsAP2 architecture could be significantly improved upon. While KiloCore is a freshly

written design, reusing none of the AsAP2 implementation code, it does inherit many of the

architectural characteristics. The following sections detail many of the major differences between

the architectures.

3.1 Applications Explored
A custom conversion tool was used to translate several AsAP2 assembly applications into a

format suitable for high speed simulation. This simulator is described later in section 6.1.

These applications are described in section 1.2.2, and include the 802.11 baseband receiver, two

variations of the AES engine, two variations of Snakesort, and two variations of H.264 video

encoding.

Supplementing the above are several fresh applications. The 4095-bit LDPC decoder is

described in chapter 2. The High Speed Uplink Packet Access (HSUPA) protocol for 3G mobile

telecommunication networks is implemented using 8 processors and one memory. A software

floating point suite includes addition, subtraction, multiplication, and division, each occupying

one processor.

3.2 Unsigned arithmetic
In AsAP2, all arithmetic operations were assumed to be signed (two’s complement) to reduce

processor area, with corresponding sign extension in the hardware. In practice, this proved to be

21

significantly detrimental as many important applications rely on unsigned operations. Three

general types of scenarios arose: 1) comparison of unsigned values experienced corruption of the

carry bit which prevents direct comparison; 2) adding multi-word signed or unsigned values also

experienced carry bit corruption between words; and 3) multiplication of unsigned values, or of

multi-word signed values, was heavily corrupted by sign assumptions.

In each of these cases, significant cycle counts were added to obtain the correct results, eg.

converting 16-bit values into a longer series of 15-bit values and manually handling carry-out.

In addition to cycle and energy overhead, the extra instructions placed substantial pressure

on a processor core’s limited instruction memory, to the point where other computation kernel

optimizations would be omitted due to lack of memory space. The new architecture adds unsigned

add, subtract, and multiply-accumulate operations to address these problems.

One of the primary benefits of unsigned support is the improved handling of multi-word,

greater-than-16-bit values, such as 20-byte record keys for Sorting applications and 24-bit

mantissas in software single-precision floating point algorithms. This also benefits branches which

check the ALU carry flag, such as "branch if A is greater than B" where A or B are unsigned

values using a full 16-bit range. This compare-and-branch case requires two instructions with

unsigned support versus 9 instructions previously. The speedup of several basic operations on an

otherwise unmodified AsAP2 are given in Figure 3.1, where a factor of 1 represents no gain, 2

represents computation time cut in half, and so on. The greatest benefit is in 16-bit unsigned

multiplies, which require 15 cycles on unmodified AsAP2, and only one cycle with this change.

Signed multi-word multiplies continue to show slowdowns with simple unsigned support due

to the half-signed nature of several partial products. That is, for the signed operation C=A*B,

when computing the partial product of the high word of A and a lower word of B, a signed

value must be multiplied with an unsigned value. Consideration was given to half-sign multiply

instructions for KiloCore, but they were omitted due to the number of opcode permutations

required. The metrics in Figure 3.1 handle signed multi-word multiplies by operating on the

absolute values and separately computing the sign. These signed multi-word multiplies have not

been encountered in the target applications.

The reduction in instruction count for each of these computations is approximately inversely

proportional to the speedup, but not strictly so due to pipeline hazards inducing no-ops. Figure 3.2

22

1.00

5.50

8.75

15.00

6.17

3.50

1.00

2.72

2.25

0 5 10 15 20

16-bit add

32-bit add

64-bit add

16-bit u-mult

32-bit u-mult

64-bit u-mult

16-bit s-mult

32-bit s-mult

64-bit s-mult

Speedup Factor

Figure 3.1: Benefit of adding unsigned instructions to AsAP2 for various integer operations
of varying sizes. A speedup factor of 1 signifies equal performance. Add applies to signed
or unsigned addition or subtraction. Multiplies differ between unsigned (u-mult) and signed
(s-mult).

shows the amount of a processor core’s 128-word instruction memory that is used by these

computations, in the original AsAP2 and with the addition of unsigned instructions.

0 20 40 60 80 100

16-bit add

32-bit add

64-bit add

16-bit u-mult

32-bit u-mult

64-bit u-mult

16-bit s-mult

32-bit s-mult

64-bit s-mult

Instructions Required

Without Unsigned Insts

With Unsigned Insts

Figure 3.2: Instructions required for various integer operations on AsAP2, with and without the
addition of unsigned instructions.

The ALU flags "overflow", "carry", and "negative" naturally support multi-word operations

without modification, since they are set based on the final, high word of a computation result.

The "zero" flag is inaccurate, as it only indicates the high word being a zero value. Consideration

was given to a special "sticky zero" flag that would update across multiple result words, but it

was omitted due to lack of common use, awkwardness to implement in the instruction set, and

due to extending the ALU critical path.

23

3.3 Carry-Shift
Added in KiloCore are the SHLC, SHRC, and SRAC instructions. These are shifts that support

the current ALU carry bit being appended to the LSB or MSB position (as appropriate) of the

pre-shifted value prior to the shift operation. This offers efficient support for multi-word shifts of

one bit position, such as occur in CRC calculations, bitwise division and square root algorithms,

and mantissa normalization for software floating point algorithms. To support this, the standard

shift instructions have also been modified to set the carry bit appropriately. Although shifts of

only one bit may at first sound somewhat limiting, they are extremely useful and require a very

small amount of additional hardware.

The new instructions added are:

• SHLC : Shift left with carry in

• SHRC : Shift right with carry in

• SRAC : Shift right arithmetic with carry in

Figure 3.3 shows the performance gain in software floating point operations. The longest path

measurement is for the worst case cycle count for a single operation, one where the combination

of inputs require the longest rounding and re-normalization effort. Overall, the average operation

is sped up by 3%, and the longest path is reduced by 6%.

5.35

8.33

6.38

5.63

3.38

0.14

0 2 4 6 8 10 12

Div

Mult

Add / Sub

Percent Speedup

Average

Longest Path

Figure 3.3: Benefit of shift-carry instructions for software single-precision floating point
Add/Subtract, Multiply, and Division, when added to an otherwise unmodified AsAP2. The
average speedup is across random inputs, whereas the longest path speedup is for input
combinations that require the greatest rounding and re-normalization effort.

3.4 Branch unit
In AsAP2, the branch evaluation logic has limited hardware and relies on flags set by the ALU

on a previous cycle to implement common branch types. For instance, "if A>B" translates into

24

two instructions: a subtraction followed by a branch on the carry-out flag. In AsAP2, this meant

a branch evaluated in stage 2 depended on an ALU flag setting instruction in stage 4 to have

completed, requiring a two cycle delay between these instructions. In actual applications, these

delay slots were typically filled with empty cycles due to limited opportunities to schedule useful

instructions in that window.

All AsAP2 branches are effectively predicted not-taken, where the immediate instruction

after the branch would be fetched automatically but then discarded on a taken branch, a loss of

one cycle and related energy.

To address these weaknesses, KiloCore branching differs from AsAP2 as follows:

• The primary branch evaluation logic is placed in pipeline stage 4 instead of stage 2.

• Preliminary branch prediction is included in the program control unit, and is evaluated

the same cycle as instruction read with the help of a static prediction bit added to branch

instructions.

• Network input FIFOs reads are determined in stage 4 instead of stage 2, and the KiloCore

FIFO design supports zero-latency reads (as opposed to two-cycle latency in AsAP2).

• Address generators in stage 2 store prior state for two cycles, to support rollback on

misprediction.

By placing the branch logic alongside the ALU, the typical pre-branch no-ops of AsAP2

are eliminated. However, this change results in a greater branch misprediction penalty, which

increases from 1 to 3 cycles. The cycle penalty can be largely mitigated by improved branch

prediction to limit the frequency of misprediction events. The KiloCore approach allows branch

instructions to be statically set as predict-taken or predict-not-taken based on the specific branch

opcode used. This requires negligible hardware overhead, especially when compared to dynamic

branch prediction units in coarser-grained processors.

AsAP2 applications were found to have highly predictable branches. Figure 3.4 shows the

increase of correct branch prediction in several AsAP2 applications after profiling was applied to

tune each branch instruction. The lowest gains were found in LDPC, which makes heavy use

of conditional execution instead of branching in its computation kernels. Overall, the average

prediction accuracy was increased from 27% to 96% with this modification. The net speedup for

these branch changes, including the elimination of pre-branch empty cycles and the reduction in

25

misprediction penalties, is shown in Figure 3.5. Here, the AsAP2 model is modified to match the

branch logic of KiloCore, and applications updated accordingly. These measurements were made

for each individual core within an application for the speedup of its local program when the core

is not stalled on network reads or writes. On average, programs see a 24.7% speedup.

97.1

86.1

99.0

92.2

99.9

99.2

99.1

13.7

52.3

34.8

58.0

0.3

1.2

31.8

0 20 40 60 80 100

80211

Snakesort, 100B

Snakesort, 4B

LDPC

H.264 Inter

H.264 Intra

HSUPA

Likelihood Correct Path Taken (%)

Never-Taken Static-Tuned

Figure 3.4: Branch prediction success rate for AsAP2 applications, either following the untaken
path (original AsAP2) or modified to predict using a static flag per branch instruction selected
based on offline application profiling.

Consideration was given to combined ALU+branch operations, enabled by the branch unit

and ALU being located in the same pipe stage, to achieve single cycle branching without

significant additional hardware. However, even the simple "branch if negative" and "branch if

equal" instructions were found to substantially increase the critical path of the processor, so they

were removed from the final design of KiloCore.

3.5 Repeat Loop Modification
The repeat instruction allows for low overhead code loops through use of automatic loop hardware.

In AsAP2 this was implemented using two counters: one indicating the number of instructions

inside the loop, and a second for the number of loops to perform. This imposed a natural

limitations that the loop needed to always contain a fixed number of instructions, and that the

loop could not be terminated early (eg. "break" or "continue" constructs).

KiloCore’s repeat instruction forgoes instruction counting in favor of forming a soft code

link between the last instruction and first instruction of a loop, automatically detecting and

overriding the post-loop instruction address with the start of loop address. Conceptually, the

hardware adds an implicit, 0-cycle decrement-and-branch operation after the last instruction

26

75.0

21.0

78.0

6.0

100.0

100.0

99.9

27.0

12.2

51.0

0.0

18.0

16.8

48.0

0 20 40 60 80 100

80211

Snakesort, 100B

Snakesort, 4B

LDPC

H.264 Inter

H.264 Intra

HSUPA

Program Speedup (%)

Mean Highest

Figure 3.5: Program speedup of AsAP2 applications when branching is modified to behave as in
KiloCore, given as the average or max across processors in the application. A speedup of 100%
implies an execution time reduced to half. By coincidence, three applications contain processors
with speedups of very close to 100% (but not exactly).

of the repeated block. This allows for dynamic code inside of loops without the loop hardware

adding complexity to the program flow, and also allows early loop termination by branching out

of the loop block without returning.

A secondary benefit of this change is reduced overhead for starting repeat loops. In both

the old and new implementation, there is a 3 cycle delay between launching a repeat instruction

and the Program Counter unit being configured for repetitions. In AsAP2, since the repeat loop

needed to count instructions inside the loop, this 3 cycle setup delay needed to be filled with

3 no-ops so that the PC unit was configured before the first loop instruction was launched. In

KiloCore, this 3 cycle hazard is between the repeat instruction and the last loop instruction,

allowing the hazard to be filled by earlier loop instructions.

3.6 Network IO
3.6.1 Stall on Multiple-I/O Simultaneously

In AsAP2, if a core needed to handle dynamic data flows where the ordering of data was not well

defined, it needed to enter a polling loop to continually check the appropriate FIFO status signals.

For example, a core might loop between checking input FIFO 0 and input FIFO 1 in order to

respond to the first value to arrive on either input. These loops required high energy consumption

when no practical work was being performed. Such loops occur in the H.264 application.

27

The addition of new STALLIN and STALLOUT instructions allow for stalling a processor

core until one of a selected set of inputs or outputs becomes not-empty or not-full respectively.

A stalled core will turn off its local oscillator to reduce active power to zero while waiting. The

new stall instructions take in, as a source argument, a bitmask of input or output directions to

wait on. After a program has moved past a stall instruction, a natural next step would be for the

core to perform one or more conditional branches to determine which input or output direction

is then ready for use.

3.6.2 Explicit output buffer destinations

In AsAP2, a processor would select a set of desired output directions by modifying a special bit

mask register, where output writes are sent to all selected directions. Stall logic would check

for full output FIFOs during stage 2, while the direction register would be written during stage

6. As a result, any output writing instructions needed to be launched 5 or more cycles after an

output direction change for safe operation. This imposed a large penalty on applications that

required frequent changes in output direction.

In KiloCore, each individual output direction is available as an instruction destination, in

addition to a broadcast register that behaves like AsAP2. This allows programs to cleanly

transition between single-direction writes, which make up the large majority of writes to be

performed. When a multiple-direction write is needed, changes to the broadcast register have

been streamlined: the stall logic module has been moved to stage 4, and the output direction

mask has been assigned a dedicated register written during stage 4. This allows a direction mask

changing instruction to be immediately followed by an output write, negating the 5 cycle hazard

from AsAP2.

3.6.3 Quicker processor clock halting

When an instruction stalls a processor, such as due to reading an empty input buffer, there is

a danger of pending output writes from recent instructions still being in transit between the

processor and target FIFO, that will become stuck if the processor halts its clock immediately.

Such a situation could lead to whole-application lockup if the input the processor is waiting for

depends on the stuck output’s data, due to some dependency loop in the application. A simple

example of this would be a synchronization handshake between neighboring processors. Any

data flow that is not purely linear is potentially in danger.

28

In AsAP2, a processor would wait for a fixed 8 cycles after a stall occurred before its clock

would halt, allowing output writes to exit the processor pipeline and also traverse registers in

the network and the target processor’s FIFO to complete a write. In most cases, this inserted

excess stall cycles, as typically few if any cycles were necessary to complete output writes before

halting the clock. Furthermore, this fixed cycle count still had a danger of writes becoming stuck

when several network registers were enabled in a long distance circuit network link.

In KiloCore, this situation is addressed by dynamically adjusting the number of inserted

stall cycles based on how recently an output write was launched. In hardware, this is achieved

using a counter to track the progress of writes. When an output writing instruction passes the

stall logic check in stage 4, it sets the countdown to a configurable value (set statically during

programming). Each cycle the count decrements towards 0, at which point the processor may

halt its oscillator if there are no other stay-awake conditions. If no output writes are pending

when the processor reaches a stall, as is commonly the case, it may halt immediately. Each

individual processor may be configured for a different number of write cycles based on the number

of registers in its output circuit network link, along with the pipeline depth of instructions which

write to the network.

In applications where the computational loads between processors that communicate with

each other are frequently mismatched, the number of stall events can be very high, contributing

significantly to the total application energy. Figure 3.6 shows the reductions in output stall

cycles and total energy for several applications when this architectural change is implemented in

AsAP2. On average, stall cycles with an active clock are reduced by 33%, and overall application

energy usage reduced by 3%. Individual applications see up to a 75% stall cycle reduction or up

to a 7% energy usage reduction.

3.6.4 FIFO Depth

In AsAP2, the inter-processor communication FIFOs have a depth of 64 16-bit words, with two

such FIFOs per processor. These FIFOs serve two purposes: 1) buffering so that the sending

processors can continue its program without waiting on the receiving processor to consume data,

and 2) storing write data during the latency cycles between the sender starting a write in its

pipeline and the distant receiver FIFO’s "full" signal being updated and returned. To explain

the latter case: when the sending processor starts a data write which will eventually switch the

receiver FIFO from "not-full" to "full", there will be a number of cycles of delay before the write

29

31.1

4.1

75.0

8.2

32.3

47.0

6.9

0.2 0.2
0.8

4.3

5.7

0

1

2

3

4

5

6

7

8

0

10

20

30

40

50

60

70

80

80211 Snakesort,
100B

Snakesort,
4B

LDPC AES HSUPA

P
er

ce
nt

 E
ne

rg
y

R
ed

uc
tio

n

P
er

ce
nt

 C
yc

le
 R

ed
uc

tio
n

Cycles Energy

Figure 3.6: Energy reductions and stall cycle reductions for AsAP2 applications when changing
the processor stall logic to halt as soon as network writes are flushed from the pipeline. A stall
cycle is when a processor’s program is paused due to a data dependency, but the processor’s
oscillator is still cycling the clock.

completes, the FIFO status updates, and this new status is returned to the sender. During this

window, the sender is allowed to continue to transmit write data to the FIFO, and the FIFO is

configured to signal being "full" prior to actually being full, such that the reserved space can

safely capture any pending writes before the sender pauses transmission.

Several AsAP2 applications were simulated with varying FIFO depths and had their through-

put measured. In Figure 3.7 FIFOs were modeled with a simplified zero-latency network and no

reserved space. This captures the application’s baseline benefit from a transmitting processor

continuing its program after initiating a network write, without having to wait for the receiving

processor to consume the data, and only pausing once the FIFO is full. Metrics are normalized

to a 512 FIFO depth. Both versions of AES cease to function below a depth of 8 due to internal

inter-processor dependency loops, and 802.11 is similarly nonfunctional below a depth of 32.

Snakesort for 100-Byte records sees large penalties for FIFOs below a depth of 64 words (128

Bytes), as a processor can no longer fully store an output record in a FIFO and must pause

for the receiver. These behaviors could potentially be adjusted with changes to the application

source code.

In Figure 3.8 this same analysis is performed using real network latency and a 10 word reserve

space, the default in AsAP2 applications. Most applications were found to have little change in

throughput beyond 32 words, with the exceptions of HSUPA and Snakesort of 100-byte records.

30

For KiloCore, a 32-word FIFO depth is selected. To address the Snakesort penalty, the

KiloCore rewrite of the Snakesort kernel splits each record in two halves to be transmitted over

two links, sending 25 words (50 bytes) to each FIFO.

Figure 3.7: Impact of inter-processor communication FIFO depth on AsAP2 application through-
put, modeled without write latency or corresponding reserve space. Metrics are normalized to a
512 FIFO depth. This captures the application’s baseline benefit from a transmitting processor
continuing its program after initiating a network write, without having to wait for the receiving
processor to consume the data.

3.7 Address Generator Modification
Each AsAP2 processor contains a set of address generation units which provide automatically

incrementing pointers. These are typically used to optimize the traversal of data blocks and

occasionally see use in other optimizations.

AsAP2 provides four such address generators, but the typical program used only one if any

of these. The highest usage peaked at three, with the fourth address generator providing no

benefit to the examined applications. Furthermore, the previous address generators contained

AND and OR masks to set or clear their address bits, a reverse stride setting, a bit reversal and

automatic right shift option, and a shift mask which caused selected address bits to be shifted

left and OR’d with their unshifted neighbors. In the examined applications, none of these special

features were used.

31

Figure 3.8: Impact of inter-processor communication FIFO depth on AsAP2 application through-
put, with realistic write latency and reserved FIFO space to safely prevent overflow. Metrics are
normalized to a 512 FIFO depth.

KiloCore implements three address generators, the maximum usable by any given instruction

(one dest and two sources), and reduces the configuration options to just the start address, end

address, and a signed value for the stride.

3.8 Parallel Data Memories
A challenge experienced during both the AsAP2 and KiloCore tapeouts is the lack of available

full speed, three-port (1 write, 2 read) SRAM designs from the foundry for use as data memory.

While a double-pumped variation is available, its operational frequency is cut in half, removing

it as a practical option in a high performance design. It is possible to settle for a two-port

SRAM, but this requires instructions that read two memory locations to be split across two

cycles, imposing penalties on performance, energy efficiency, and potentially instruction memory

usage.

To determine the importance of instructions that obtain both source operands from data

memory (as opposed to network inputs, constants, pipeline bypasses, etc.), the prevalence of

double memory reading instructions in several sample applications was examined and is shown

in Figure 3.9. Here, the software floating point kernels are collected together under the FP entry.

Analysis is performed on a per-processor basis, and determines what percentages of instructions

32

in that processor perform dual reads. The figure shows the average across all processors, and the

processor with the highest percentage. While the average program across applications is made

up of 7.8% of such double-read instructions, the peaks can be very high, up to 54% in 802.11.

10.8
6.7

0.8
6.4

14.3

24.1 24.2

1.7

54.6

20.0

0

10

20

30

40

50

60

LDPC AES Snakesort 80211 FP

P
e
rc
en
t

Average

Max

Figure 3.9: Percentage of instructions requiring two data memory reads in AsAP2 applications,
given as an average across all processors and as the highest processor.

To work around this challenge, AsAP2 utilized a pair of dual-port SRAMs with write ports

tied together, creating an effective triple port memory but at the cost of doubling the area and

write-back energy. During the design of KiloCore, the data memory was instead broken into

two independent banks, each of which can be instantiated with a single dual-port SRAM with

individual write-back. For nearly the same area, this effectively doubles the maximum available

data memory, but imposes coding challenges for variable to memory mapping. A method of

addressing these challenges is discussed below.

Ultimately, the final KiloCore design opts for flip-flop based memories to achieve higher

performance, bypassing the SRAM restriction on three ports. However, this two-port dual-bank

approach is still utilized. When comparing synthesis of a single three-port flip-flop memory bank

to a pair of two-port memory banks of equal combined capacity, the dual-bank solution occupies

16% less area, reduces active access energy by 46% for single-bank writes, and reduces leakage

power by 24%. The hardware logic implementation is discussed further in chapter 4.

3.8.1 Software adjustment

With instructions that can read from two source operands, if both of the sources reference

variables assigned to the same memory bank, an error will occur since the bank is only able to

source one of the variables through its single read port. There are three straightforward ways to

address this situation: 1) spend an extra cycle to pre-read one variable before each instruction

33

that needs to read a single bank twice; 2) write one or both of the conflicting variables to both

banks; or 3) reassign one of the variables to the other memory bank at compile time.

When converting existing applications that were written for a single, dual-read data memory

to use two single-read memories, the most straightforward method is to assign all variables to

be written to both memories at write-back (called a Dual assignment). In this case, the two

single-read memories are functionally equivalent to the previous architecture’s dual-read memory.

However, this also requires the greatest amount of data memory to support the applications. A

basic optimization is to only assign variables as Dual if they appear in an instruction that reads

two variables; all other variables appear alone and may be assigned to either memory freely. The

Dual and Single variable breakdown for several AsAP2 applications is shown Figure 3.10, using

this basic assignment method. On average, 18% of variables are mapped to both banks.

30.2

5.8 3.0 2.6

16.317.0

54.3

106.0

42.8 39.0

0

20

40

60

80

100

120

LDPC AES Snakesort 80211 FP

V
ar

ia
bl

es

Avg Dual

Avg Single

Figure 3.10: Pre-optimization number of Dual and Single write variables, averaged across
processors, in AsAP2 applications converted to utilize two single-read-port memory banks. Dual
variables must be written to both banks to avoid software slowdown.

Using profile data for each application, variable assignment to low, high, or both memory

banks can be optimized. By reducing the number of double writes, more memory becomes

available for use and write-back energy costs are reduced. Without performing any changes to

the existing code beyond memory location reassignment, Algorithm 1 was applied to the program

for each core.

The results of this optimization step are shown in Figure 3.11, where nearly all Dual variables

are eliminated. Further optimization is possible with refinement of the algorithm. For three of

the five test applications, dual write backs are eliminated entirely. One core in 802.11 requires

two Dual variables, floating point addition requires one, and floating point division requires

two. The reduction in average and maximum per-core memory usage is shown in Figure 3.12.

34

Algorithm 1 Basic algorithm for assigning variables to data memory banks.
1. For each variable, record a list of all neighbor variables—those that are read in the same instruction.

2. Order the list of variables by the number of neighbors, descending.

3. For each variable:

3a. If assigned as Dual, skip.

3b. If unassigned: if any of its neighbors is assigned to Low, assign this variable to High. Otherwise,

assign this variable to Low.

3c. For each unassigned neighbor, assign it to the opposite data memory (eg. Low if this variable is

High).

3d. If any neighbor is already assigned to the same data memory as this variable, a conflict exists.

4. If no conflict was found, optimization is complete. Otherwise:

4a. Out of all non-Dual variables, assign the one with the most neighbors to Dual.

4b. Reset all other non-Dual variables to unassigned.

4c. Repeat step 3.

LDPC in particular benefits from its peak usage falling below 128 words, allowing it to run at

a smaller memory stepping. All applications would operate with two 64-word memory banks,

though KiloCore opts for the larger 128-word banks for future application development.

0.0 0.0 0.0 0.1 1.0

47.1

60.1

109.0

45.3
54.3

0

20

40

60

80

100

120

LDPC AES Snakesort 80211 FP

V
a

ria
bl

es

Avg Dual

Avg Single

Figure 3.11: Post-optimization number of Dual and Single write variables, averaged across
processors, in AsAP2 applications converted to utilize two single-read-port memory banks.

3.9 Voltage Tuning
Many-core applications typically exhibit significantly varying workloads across cores, and

substantially benefit from reducing per-core voltages when it will not impact application through-

put. The following analysis focuses on static frequency and voltage assignments for cores based

on application profiling. This approach offers substantial energy savings with little hardware

35

0

32

64

96

128

160

192

LDPC AES Snakesort 80211 FP

M
em

or
y

W
or

ds

Post-Opt Max

Post-Opt Avg

Pre-Opt Max

Pre-Opt Avg

Figure 3.12: Total data memory usage of a processor, given as peak and average across processors
in AsAP2 applications converted to utilize two single-read-port memory banks, both pre- and
post-optimization.

overhead per-core. These static assignments can be determined for a variety of full-application

performance points and used in an array-wide Dynamic Frequency and Voltage Scaling (DVFS)

scheme, but this analysis only focuses on optimizing individual performance points.

3.9.1 Application Profiling

Central to optimizing voltage is knowledge of the required operating frequencies of each core in an

application, as the primary constraint on voltages is that they are high enough to support these

frequencies. However, determining these frequencies is not trivial. In many-core applications,

workloads of the cores do not correlate to the necessary operating frequencies. Inter-core

dependencies create complex workload patterns, such that even very low workload cores may be

required to operate at high speeds if they contribute to an overall application critical path.

A reliable way to determine these optimal frequencies is through iterative profiling. In this,

an application running a representative workload is iteratively simulated under varying per-core

frequency conditions, starting with all cores set to a frequency that achieves the application

performance target. For each core in the application, its individual core frequency is gradually

reduced until a drop in overall application throughput is observed, and the pre-drop frequency

estimated as the core’s ideal frequency.

In practice, even if the ideal frequencies do not impact application throughput, they will

increase latency, and short simulations cannot easily separate latency from throughput. As such,

some allowance is made for the simulated throughput estimate being reduced by frequency tuning.

In the rest of this analysis, the final throughput reduction has been constrained to less than

36

3%, where each individual core tuning may reduce throughput by a fraction of that percentage

depending on the number of cores in the application.

When tuning is complete, the application profile will contain the minimum required frequency

for each core in the application. Arbitrarily complex core interactions are accounted for in these

frequencies, contingent on the interaction being present in the representative workload.

3.9.2 Voltage Model

This analysis will make use of a voltage model constructed using measured data from AsAP2,

which was fabricated in 65 nm CMOS. Due to low core areas and high core counts, providing

unique voltage domains to each core is impractical: an on-chip voltage regulator is much larger

than a given core, while off-chip delivery will not scale for potentially 1000+ cores requiring

unique voltages. The chosen approach is to use a limited set of shared voltage domains, with a

given core connecting to a single domain at any given time. AsAP2 made use of two such voltage

domains; this analysis is aimed at finding the ideal domain count for real applications. Where

appropriate, the voltage model includes energy spent or recovered when switching a core between

voltage domains.

3.9.3 Voltage Selection

The voltage for a given core may be reduced to the minimum that will support that core’s profiled

frequency requirement. Two methods are explored for assigning voltages: 1) static assignment,

where each core connects to a single voltage rail; and 2) dithered assignment, where a core will

alternate between two voltage rails on a fixed schedule.

Dithered assignments allow a core to alternate between a low and high frequency such that it

achieves the required effective frequency, but saves energy for those cycles spent on the lower

voltage rail. In hardware, this requires setting the number of active cycles to spend on each rail,

with a counter triggering an automated rail switch when the desired cycles are reached.

Voltage selection consists of two parts: picking a voltage for each available rail, and assigning

individual cores to these rails according to their required effective frequencies. The target

optimization goal is to find the rail voltages which provide the greatest application energy

savings.

Energy and voltage have a non-smooth relationship, where incrementally increasing the

voltage of a rail will increase energy use for all cores attached to this rail, but may allow cores

that were previously operating at a higher voltage to decrease energy by dropping to this rail.

37

Figure 3.13: Reduction in energy consumption due to voltage optimization in several AsAP2
applications, across varying numbers of available voltage rails, for dithered (alternating) and
non-dithered (static) per-core rail assignments.

The chosen optimization algorithm consists of checking every possible voltage combination with

a coarse granularity, then reiterating at increased granularities but only checking within a narrow

window of a rail’s previous voltage. The final granularity is 1% of the maximum operating

voltage.

3.9.4 Analysis

Profiling and optimization was performed on several AsAP2 applications, aiming to maintain

their performance at the highest operating point. Figure 3.13 shows the expected reduction

in energy usage (per unit of workload) for each of the profiled applications. Reductions are

in comparison to having a single voltage domain available for all cores. Dithered assignments

assume voltage switching happens while a core is active (the core need not add idle cycles during

a switch). Figure 3.14 shows the average of the four applications. Energy savings begin with an

18% reduction when allowing two voltage rails without dithering, increasing up to 36% with six

rails and dithering support. Dithering gives anywhere from 12% to 23% improved energy savings

over the non-dithering cases, averaging a 16% benefit across rail counts.

Figure 3.15 shows the spread of voltages assigned to each rail for each application. Voltages

are normalized to the maximum operating voltage. In all cases, at least one rail is assigned to

38

Figure 3.14: Reduction in energy consumption due to voltage optimization averaged over AsAP2
applications, across varying numbers of available voltage rails, for dithered (alternating) and
non-dithered (static) per-core rail assignments.

Figure 3.15: Voltages selected for each rail, across AsAP2 applications, normalized to the
maximum operating voltage. Voltages are selected to minimize application energy usage.

the maximum voltage in order to support the most critical cores in the application. The spread

of voltages increases as more rails are added, with the lowest rail operating down to 55% of

the maximum voltage. This spread needs to be accounted for during physical design, to avoid

excessive reverse currents through the power gates connecting to each rail.

39

Figure 3.16: Voltage rail load distribution, given as energy draw or as current draw summed
across cores attached to the rail, averaged across AsAP2 applications.

Figure 3.16 shows the per-rail load distribution, giving both the energy drawn from the rail

as well as the average current. Without dithering, lower voltage rails are always loaded less

than higher voltage rails. However, with dithering for three or more voltage rails, the maximum

load is experienced by the second highest voltage rail. In this case, cores that would normally

be connected to the highest rail constantly are instead spending a portion of their time on the

second rail, increasing its load. Load distribution may be considered during physical design when

selecting the metal and power gate distribution across the rails.

Figure 3.17 calculates the energy * area product for each rail count; lower is better. Area

consists of the additional power gates (1.4% of core area) to connect to a voltage rail with less

than 4% peak voltage drop at maximum operating voltage, matching the AsAP2 physical design.

Areas are normalized to the single rail case, which is assumed to contain a single set of power

gates along with control logic for depowering a core.

The benefits of adding additional rails are found to largely level off after the third rail.

Optimums are found at four rails without dithering or five rails with dithering, providing a 0.3%

or 0.5% improvement over three rails respectively. KiloCore2 opts for three rails, as discussed

further in chapter 5.

40

Figure 3.17: Energy * Area products based on the number of available voltage rails, where
energy is the amount consumed by an AsAP2 application. Application energies are individually
normalized to the 1 rail case, then averaged together. Area represents that required for additional
power gates to support connecting to a rail.

3.10 Large Program Support
When an application would benefit from a large program kernel, such as to handle control

logic, AsAP2 offers the programmer no convenient way to implement this if it goes beyond

the 128 instruction limit of a processor. A potential solution would be to add one or more

larger processors to the array, but each of these would occupy the area of many of the standard

processors, and would often go underutilized by many applications. KiloCore opts for an alternate

solution: using the on-chip shared memories (external to the processors) to supply instructions

and program control for these larger kernels.

Since only one version of processor layout is used for all processors in the array, any hardware

added for communicating with a memory module will also be added to processors that do not

neighbor such a memory module. Therefore, the hardware added to each processor is minimized

or shared to reduce this penalty.

Incoming instructions are streamed to one of the 16-bit data FIFOs of the processor, as would

a normal data stream. An internal module concatenates these 16-bit words into full instruction

words for launching into the pipeline. The pipeline freezes when waiting for an instruction,

maintaining correct instruction order and allowing streamed code to be scheduled in the same

manner as standard code.

41

Branchless code may be streamed from 1) other cores, 2) an on-chip memory, or 3) from an

external source directly, but branching code is supported only when the core is attached to an

on-chip memory.

Program control is handled inside a memory tile, where the program address width is expanded

to 16-bits. Control cannot be managed internally in a processor since it only supports 7-bit

instruction addresses, corresponding to a local 128 word instruction memory. The processor

and memory tiles operate on separate clocks, as part of a GALS architecture, introducing

significant latency. The round trip delay for sending an instruction and receiving a branch result

is approximately 31 cycles when configured for strong metastability protection (14.5 processor

cycles and 12.5 memory cycles, slightly varying based on clock alignments).

The memory instruction stream is provided alongside the standard memory data ports,

allowing both instructions and data to be provided by a single memory. To support branches

and general program flow, an additional port is added between a processor and the memory

for carrying 2-bit response signals. Response signals are sent to indicate a correctly predicted

branch, a mispredicted branch, or a miscellaneous executed instruction.

The memory controller will queue a number of instructions to the processor before stopping

to wait for responses. The benefits of queuing instructions are shown in Figure 3.18, starting from

a minimum of 5 in order to support the sample computation kernels without code modification.

The kernels tested are from the Snakesort, software floating point addition/subtraction, and

software floating point multiplication. Performance is measured relative to a kernel running out of

a processor’s local memory, with the peak theoretical performance for streamed instructions being

0.33, or one instruction every 3 cycles when transferred over the 16-bit data bus. Performance

is found to peak at 11 instructions queued for this architecture. Since the processor needs to

flush excess instructions after a branch misprediction, queuing additional instructions beyond

11 imposes additional energy penalties, and may impose a performance impact if the processor

clock speed is much slower than the memory clock speed due to the overhead of emptying the

instruction FIFO. This 11-instruction limit may be implemented in the memory-side program

controller using a small counter of instructions sent to the processor that haven’t yet been

acknowledged as executed.

When a branch misprediction occurs, the processor will signal the memory of this event and

then begin flushing its instruction FIFO, which is filled with mispredicted-path instructions. The

42

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

5 6 7 8 9 10 11 12 13

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Maximum Instructions Queued

Add

Mult

Sort

Figure 3.18: Performance benefit of increasing queued instructions when running large programs
out of a shared memory module, for the three sampled kernals, normalized to ideal branchless
code performance.

memory, upon receiving the misprediction signal, will reset itself to the correct path. A special

code word is sent from the memory to the processor to indicate the end of a mispredicted stream

and start of a corrected stream. A branch correction queue in the memory holds the alternate

paths of recently predicted branches, for supplying the correction addresses to the program

controller. Return addresses are also queued for correcting mispredicted Jump style branches.

Figure 3.19 shows how the depth of the branch prediction buffer impacts performance. This

buffer depth limits the number of branch paths which will be followed before the evaluation of

the first predicted path is returned by the processor. The tested kernels were found to reach a

peak performance at 4 layers for Sorting, 5 layers for FP Multiply, and 6 layers for FP Addition.

Addition contains the most stressful branching code, up to 8 branches within an 11 instruction

window. KiloCore implements a queue depth of 8.

For bootstrapping purposes and to accelerate portions of a kernel, program control may be

dynamically transferred between the processor (operating out of its local instruction memory at

full speed) and the external memory program at runtime. Special instructions are provided for

triggering control handoff in either direction. When in control, both the memory and processor

programs are capable of settings each other’s instruction address before a control switch, allowing

for a variety of program layout optimizations. Conceptually, the program can be primarily

housed in the processor and use the external memory for long function calls, or the program can

be housed in the external memory and use the processor for fast function calls.

43

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Maximum Branches Predicted

Add

Mult

Sort

Figure 3.19: Performance benefit of increasing layers of branch prediction when running large
programs out of a shared memory module, for the three sampled kernels, normalized to ideal
branchless code performance.

44

Chapter 4

KiloCore

4.1 High-Level Architecture
The KiloCore chip includes 1000 independent, uniform, programmable, RISC-type, in-order,

single-issue processors; and 12 independent memory modules [12]. Processors are arrayed in 32

columns and 31 rows with 8 processors and 12 independent memories in a 32nd row as shown in

Figure 4.1. Processors and independent memory modules with no work to do dissipate exactly

zero active power (leakage only)—this is an important capability in the 1000-processor-chip

era due to the difficulty in implementing complex software workloads that spread evenly over

thousands of processors which leads to the increasing prevalence of processors with widely-varying

activity levels [13]. Under most conditions, the processor array has a near-optimal proportional

scaling of power dissipation over a wide range of activity levels.

4.1.1 Processors

Each processor contains a 128 x 40-bit instruction memory, 512 Bytes of data memory, three

programmable data address generators, two 32 x 16-bit input buffers, and a 16-bit fixed-point

datapath with a 32-bit multiplier output and a 40-bit accumulator. The 72 instruction types

include signed and unsigned operations to enable efficient scaling to 32-bit or larger word widths,

with no instructions being algorithm-specific. Processors support predication for any instruction

using two conditional execution masks, static branch prediction, and automated hardware looping

for accelerating inner loops. Although the natural word width of the datapaths and memories

is 16 bits, through software other word widths are easily handled—for example, 32-bit floating

point [28] and 10-Byte sorting keys for 100-Byte data records [21].

45

Figure 4.1: KiloCore top-level processor array diagram.

Each processor issues one 40-bit instruction in-order per cycle into its 7-stage pipeline (shown

in Figure 4.2) from its local instruction memory and it may also source large programs from an

on-die independent memory module. Instruction input operands and output results commonly

come from or go to the local data memory, one of several circuit-switched network ports, the

packet router port, an attached independent memory, a pipeline forwarding path, or a series

of special dedicated-purpose registers that include dereferenceable pointers, address generator

configuration, predication flag masks, oscillator frequency selection, and other software-accessible

core configuration fields.

4.1.2 On-Die Communication

The processor array connects processors and independent memories via a two-dimensional mesh,

a topology which maps well to planar integrated circuits and scales simply as the number of

processors per die increases. Communication on-chip is accomplished by two complementary

means: a very high-throughput and low-latency circuit-switched network [29] and a very-small-area

packet router [30] which is especially well-suited for high fan-in and high fan-out communication;

details are provided in Figure 4.3.

46

Pr
og

ra
m

 C
on

tro
l

Imem
Read

Dmem0
Read

Dmem1
Read

Branch Check
Circuit In 0

Instr
Stream

Branch
Detect

Cond Exec
Add/Sub
Logical

Shift
Misc

Move

MAC0

La
tc

he
s

MAC1

Saturate

Circuit In 1
Packet In
Mem In

Addr
Gen
0-2

Ptr.
0-3

s6in
imm

ext imm
ret addr

acc

s5in
s6in

Fl
ag

s,
 R

es
ul

t S
el

mispred.

Sr
c

Pr
e-

Se
l

So
ur

ce
 S

el
ec

t

s5in s6in

acc

mispred.

mispred.

Dmem0 Write
Dmem1 Write

Circuit Out 0-7

Packet Out
Mem Out

Config Write

W
rit

eb
ac

k
Se

le
ct

flags

In
st

r D
ec

od
e

Figure 4.2: Major components and connections of the 7-stage processor pipeline. Several control
and configuration signals are omitted for clarity.

Figure 4.3: Overview of inter-core communication using circuit and packet networks. Writes
are source-synchronous; responses include asynchronous wake-up signals for sleeping processors.
Circuit links include configurable registers and an east-west connection for one layer is expanded
on the right.

47

The circuit-switched links are source-synchronous so the source clock travels with the data to

the destination, where it is translated to the destination-processor’s clock domain. The network

supports communication between adjacent and distant processors, as resources allow, with each

link supporting a maximum rate of 28.5 Gbits/sec with optionally-inserted registers to maintain

data integrity over long distances. Each of the four edges of each processor has two such links

entering and two links exiting the processor. The high-throughput circuit-switched network is

especially efficient—transferring data to an adjacent processor dissipates 59% less energy than

writing and later reading that data using local data memory, and transferring that data to a

processor 4 tiles away requires only 1% more energy than using data memory.

The packet router inside each processor occupies only 9% of each processor’s area and is

especially effective for high fan-in and high fan-out communication, as well as for administrative

messaging. Each router supports 45.5 Gbits/sec of throughput with a maximum of 9.1 Gbits/sec

per port. Routers operate autonomously from their host processors and contain their own clock

oscillators so they can power down to zero active power when there are no packets to process.

Each router contains five 4 x 18-bit input buffers, one for each cardinal direction and one for

the local processor. Routers utilize wormhole routing to efficiently transfer long data bursts, in

which a header packet will reserve a path and is followed by an arbitrary number of data packets,

terminating in a tail packet which releases the path.

Each circuit or packet link terminates in a dual-clock FIFO memory [31] which reliably

transfers data between clock domains. Additionally, links contain the necessary asynchronous

wake-up signals which inform idle modules when they need to activate their local clock to process

new work or to verify when FIFOs are full or empty. Both network types contribute to a total

bisection bandwidth of 4.2 Tbits/sec.

Figure 4.4(a) illustrates the various methods of transferring data from one point in an

application to another. These points may be within a single processor or spread across different

processors depending on how code has been partitioned. Figure 4.4(b) reports the energy costs

for each method and includes both a write and a single read, implying transferred data are used

only once. Since pipeline forwarding is the lowest-energy method, energy values are reported as

additional energy required beyond forwarding, that is, pipeline forwarding = 0.0 in this graph.

48

(a)

(b)

Figure 4.4: Path diagram and measured energies to transfer a bit of data from one point in an
application to another versus distance, beyond the energy required for pipeline forwarding (i.e.,
pipeline forwarding = 0.0). (A) Pipeline forwarding or (B) local Dmem may be used for in-core
transfers. Independent memory may be used for (C) local or (D) neighbor-processor transfers.
Both (E) circuit and (F) packet networks support distant transfers.

49

4.1.3 Processor Data Memory Organization

Processors with a relatively small amount of memory per core require that memory is used

efficiently. A straightforward solution to sustain a throughput of one instruction per cycle with

common 2-input-operand and 1-output-operand instructions would be to utilize an N-word 3-port

data memory which is unfortunately not very area or power efficient. If a 3-port memory is

unavailable, one can be made easily albeit very inefficiently, from two N-word memories with

write ports shorted together and reads made independently [4, 5]. A third possibility is to utilize

two independent N-word memories which has the great advantage of yielding a total data space

of 2N words and being able to sustain two reads and one write per cycle, but only if there are no

conflicts where both input operands are in one of the two banks. Conflicts can be resolved by

detecting their occurrence and stalling the processor when they occur. We have chosen another

approach which uses compile-time information to place data into banks to minimize conflicts.

When conflicts cannot be avoided or ruled out, data is written into both banks eliminating the

conflict for that instruction and allowing a sustained throughput of one instruction per cycle at

a cost of the loss of one otherwise-useful data word. Profiles of five diverse applications (AES

encryption, 4095-bit code length low-density parity-check (LDPC) decoder, 100-byte database

record sorting, 802.11a/g OFDM Wi-Fi receiver, and software single-precision floating-point

arithmetic) showed that 99.66% of all operands across all applications could be mapped to

an address in only one bank and thus only a very small number of operands needed to be

written to both banks redundantly to avoid conflicts during subsequent reads. The scheme

permits conflict-free addressing with optimal memory space maximization. Figure 4.5 shows the

lightweight circuitry used to implement the three types of writes (bank0, bank1, both banks)

and properly route read data to the processor.

4.1.4 Independent Memory Modules

Independent memory modules each contain a 64 kB SRAM and are shared between two

neighboring processors. Modules support random access and a variety of programmable burst

access patterns for data reading and writing, and are also capable of streaming instructions

for large-program execution to an adjoining processor using an internal control module. When

executing an instruction stream from an independent memory, a processor transfers program

control and branch prediction control to dedicated circuits inside the memory block to more

efficiently execute across branches. Programs running out of the external memory may use up

50

Figure 4.5: Multibank data memory read and write circuitry.

to 11,050 instructions. Each memory module contains two 32 x 18-bit input buffers, two 32 x

16-bit output buffers, and one 16 x 2-bit processor response buffer, and supports 28.4 Gbps of

I/O bandwidth. Figure 4.6 gives details of the module’s internal blocks.

Figure 4.6: Components used in streaming instructions from a shared memory to a neighboring
processor. Streaming logic is shared between two processors, with only the port 0 connection
shown here.

51

4.2 Fine-grain Clocking
Many-core applications often require processors to remain idle or operate at low activity for

substantial periods of time. Therefore, energy-efficient many-core designs must adapt to wide

variations in core workloads. In KiloCore, each core, each packet router inside each core,

and each independent memory module contains its own local programmable clock oscillator

in an independent fully-synchronous clock domain [32] resulting in a total of 2012 Globally

Asynchronous Locally Synchronous (GALS) [33] clock domains.

Oscillators do not use PLLs and each one is allowed to change its frequency, halt, or restart

arbitrarily including with respect to other clock domains. Halting is very helpful in saving

energy when there is no work to do which is detected by the processor when it attempts to read

input buffer(s) which are empty or when attempting to write output buffer(s) which are full.

Oscillator halting is handled automatically by local hardware logic which observes instruction

source and destination operands, and also the state of inter-processor buffers for both upstream

inputs and downstream outputs. When an oscillator is halted, the core/router/memory consumes

zero active power. A halted processor consumes only 1.1% of its typical active power through

leakage. Oscillators restart in response to asynchronous signals from connected cores when

they send data to an empty buffer or free room in a full buffer, for upstream and downstream

links respectively. Cores exiting a halt state require up to 3 cycles to read input buffers before

program execution may continue; cores entering a halt state require a variable number of cycles

after program execution pauses to complete any pending writes to the communication network.

This inefficiency is negligible in many cases however it can be significant in situations where

high-workload and low-workload cores are connected and performing fine grain communication,

such that the low-workload core is regularly waiting on the high workload core, but not for long

enough periods of time to benefit from clock halting. Per-core oscillator frequency tuning is

used to help in this situation, slowing the low-workload core such that its data production or

consumption rate is matched to the high-workload core. We estimate the ideal clock frequency

for each core to be the lowest frequency at which a core may operate without reducing overall

application throughput. These frequencies are identified during application profiling. Fortunately,

even significantly inaccurate frequency estimates typically result in small increases in power

dissipation over the ideal case. Tuning could certainly also be done during a run-time tuning

phase or even during program execution by a dedicated hardware controller [4].

52

For the four applications described in Section VI, on average, clock halting yields a 61%

reduction in energy usage compared to processors which never halt and do not utilize per-core

frequency tuning. Of the energy that is consumed, 87% is from program computation and leakage

while 13% is from stall cycles.

4.2.1 Tolerating Power Grid Voltage Variations

One thousand cores arbitrarily switching between being halted with leakage only to fully active

can clearly result in significant power grid noise. Rather than trying to minimize the noise, clock

oscillators are designed to rapidly adjust their instantaneous frequencies to compensate for supply

noise variations through circuit design and by being powered by the local core’s power grid.

Oscillators are designed so that their frequency tracks closely below the core’s maximum

operating frequency when voltage droop occurs and in fact, cores were found to operate error-free

when configured to operate at their maximum frequency without any additional margin for

voltage droop, though some margin may be needed for overshoot depending on the power supply

characteristics. In a manner similar to oscillators, circuit elements in the clock trees such as

buffers and clock gates naturally adjust their instantaneously delay because they too are powered

by the core’s local power grid.

Figure 4.7 shows measured waveforms from a beyond-worst-case voltage droop event, where

999 processors are simultaneously turned on. In actual usage, only approximately 2/3 of the array

could start at one time because halted cores are restarted by the arrival of external data sent

from non-halted cores, and processors with outputs connected to more than two other processors

at a time is very rare in our explored applications. In this test, a single victim processor in

the center of the array at coordinates (15,15) runs a critical path test program while the other

999 cores in the array are simultaneously turned on to maximum frequency and begin running

an energy intensive program. A globally-broadcast configuration signal is used to synchronize

this event. The test is performed at a nominal supply voltage of 1.0 V. The victim processor

was found to operate error-free throughout the event at a nominal clock frequency equal to its

measured standalone maximum frequency to within 20 MHz, the oscillator step size at the test

voltage.

A measured on-die waveform of the supply voltage is shown in Figure 4.7(a), showing the

short term supply noise using a 200 ns capture window. A 14% reduction in voltage occurs

over 4 ns, with a corresponding decrease in the victim processor’s clock period to compensate.

53

(a)

(b)

(c)

Figure 4.7: Supply voltage noise at a nominal 1.0 V when simultaneously turning on 999 processors
from fully halted to fully active at maximum frequency, while measuring the clock oscillator of a
single victim core in the center of the array. 1.0 V appears as 965 mV and 870 mV appears as
840 mV due to a resistor-divider created by our 1.9 Ohm SMA cable and 50 Ohm scope input.
(a) 20 ns/division waveform capture, showing a clock frequency reduction in response to a 14%
supply voltage reduction over 4 ns. (b) 40 us/division waveform capture, showing gradual supply
droop and recovery, with a corresponding clock frequency recovery. (c) (Lower orange waveform)
Instantaneous clock frequency calculated from the time-domain waveform in subplot (b), and
(Upper green waveform) estimated Fmax derived from independent measurements, showing
victim processor operation below but a maximum of 10% from its maximum possible operating
frequency Fmax.

54

Figure 4.7(b) shows the long term voltage droop and recovery using a 400 µs capture window. 84

µs after the turn-on event, the voltage begins recovering from 13% below nominal as a function

of the PCB and bench power supply electrical environment. To maintain visibility of the clock

waveforms, the processor output clock is divided by 8 for subplot (a) and is reduced to a 630

MHz source frequency and divided by 8192 for (b). Figure 4.7(c) plots the victim processor’s

instantaneous frequency (labeled "Measured") during the test using a higher clock rate data

capture, and with the same timescale as subplot (b). Also plotted is the processor’s maximum

supported frequency corresponding to the instantaneous voltage (labeled "Fmax"), based on

pre-test measurements. The victim processor’s oscillator remains below but within 10% of this

maximum Fmax frequency. 84 µs after the turn-on event, the maximum frequency is reduced to

28% below nominal, while the oscillator’s frequency is reduced 35%.

4.3 Design and Implementation
The processor array is built from standard cells and was synthesized except for small circuits

such as the clock oscillator which were designed by hand. Cell placement and routing were

performed by industry-standard CAD tools. Except for the 64 KB SRAMs inside the independent

memory modules, all memories are built from clock-gated flip-flops with synthesized interfacing

logic which greatly simplifies the physical design and lowers the minimum operating voltage for

applications which do not use the independent memories.

The 8.0 mm by 8.0 mm chip was fabricated in a 32 nm partially depleted silicon on insulator

(PD-SOI) technology and contains 621 million transistors. The entire array measures 7.94 mm by

7.82 mm. Each processor contains 575,000 transistors and occupies 239 µm by 232 µm; therefore

18 processors occupy almost 1 mm2. Figure 4.8 is a die photo showing outlines of the 1000

cores and 12 independent memories, and 564 C4 solder bumps for flip-chip mounting in the

center of the array. The chip is mounted inside a stock 676-ball BGA package that delivers full

power to only the approximately 160 central processors; therefore, a maximum execution rate

of 1.78 trillion MIMD instructions per second per chip is possible only with a custom-designed

chip package. I/O signaling is handled by 64 LVDS drivers and 38 single-ended drivers. Pad

drivers are placed along the periphery of the processor array. Ten analog voltage probe points

are included to support on-chip voltage measurements.

Figure 4.9(a) is a post-placement plot of a single processor tile showing regions of the largest

components along with details on the die area occupied by the various components. Both the

55

Figure 4.8: Die micrograph.

circuit-switched network (including FIFO0 and FIFO1) and the packet-switched network (includes

router clock oscillator) occupy 9% of each tile’s area. The processor’s two clock oscillators and

associated control occupy 1% of the tile’s area and recover some of that area by eliminating the

need for a chip-level clock tree. Figure 4.10 shows the same information for a single independent

memory tile.

4.4 Measured Results
Processors, routers, and independent memories operate from a maximum voltage of 1.1 V down

to minimum voltages of 560 mV, 670 mV, and 760 mV respectively. Figure 4.11 shows the

average maximum frequency for each of these modules across their operable ranges. Independent

memories have a reduced operating voltage due to their large SRAM array. The reason for

the routers’ reduced operating voltage is not known but suspected to be due to a specific

implementation feature in their GALS network interfaces. Individual cores are allowed to operate

at their local Fmax due to GALS clocking. At their highest voltage, processors average 1.78 GHz.

When certain critical paths related to ALU carry and zero flags are avoided or coded with two

instructions, a processor may operate up to 22% above its normal maximum frequency—a typical

processor using this technique was measured operating at 2.29 GHz. This is done by a simple

56

(a)

(b)

Figure 4.9: (a) Annotated layout and (b) area breakdown of a single processor tile.

57

Figure 4.10: (a) Annotated layout and (b) area breakdown of a single independent memory tile.

reprogramming of the clock oscillator so that its frequency is appropriately higher than normal

based on the critical paths used by the program assigned to that processor.

Table 4.1 lists energy usage of a variety of instructions and events when operating at

900 mV. ALU and MAC instructions are categorized according to their pipeline groupings, where

input latches for each group isolate them from each other. Measurements are taken with high

operand bit activity. Branch misprediction energy includes three high-activity instructions on

the mispredicted path.

Figure 4.12 shows the typical energy per operation for each module type across its operable

voltage range. Processor power varies considerably with instruction selection and memory access

patterns. Therefore, processor instruction energy is calculated using weighted averages based on

58

Figure 4.11: Maximum operating frequency of processors, memories, and routers.

Table 4.1: Energy per operation or activity at a supply voltage of 900 mV. Router flit transfer
does not include clock energy; processor and memory operations include clock energy.

Operation or Activity Energy (pJ)
Instruction, ALU Add/Sub 11.0
Instruction, ALU Logic 10.3
Instruction, ALU Move 10.0
Instruction, ALU Shift 9.9
Instruction, ALU Other 9.7
Instruction, MAC 19.9
Instruction, Branch Correct 9.7
Instruction, Branch Incorrect 41.0
No-op 7.5
Stall Cycle 6.9
Dmem Read 1.0
Dmem Write 1 Bank 2.7
Dmem Write 2 Banks 5.0
Circuit Comm. First Tile 1.3
Circuit Comm. Additional Tiles 0.6
Packet Router Clock 2.2
Packet Router Flit Transfer 1.9
Shared Memory Stall Cycle 4.5
Shared Memory Read 12.3
Shared Memory Write 19.6

59

code from a profiled 334-processor FFT application, including data reads/writes along with circuit

network communication. At 560 mV, a single processor dissipates 5.3 pJ per typical instruction

while operating at 115 MHz. Packet router energy varies with port activity level; values reported

are for transferring a single flit, assuming two router ports are actively transferring and sharing

clock energy. Independent memory energy also depends on activity and so values reported are

an average of random read and random write energies, and are further averaged between one or

both ports active.

Figure 4.12: Energy per typical operation for processors, memories, and routers.

Figure 4.13 shows the power for each module across its voltage range when active 100% of

the time utilizing the same weightings and conditions as were used for energy measurements.

4.5 Applications
Programming is accomplished by a multi-step process. Individual programs are written using

C++ or assembly, making use of templating and parameterization to share code across processors.

An automatic mapping tool maps tasks to cores with considerations such as: avoiding faulty

or partially-functional processors; optimizations to take advantage of process, voltage, and

temperature variations; self-healing for failures due to wear-out effects; and simultaneous execution

of unrelated workloads.

60

Figure 4.13: Power of a processor, memory, and router when 100% active and operating at the
maximum clock frequency at the indicated supply voltage. Type of activity impacts power usage;
the spread between low-energy and high-energy activities are indicated.

Several applications have been mapped to KiloCore and their performance estimated using

simulations which assume custom chip packaging, whereby the cores along the outer part of

the array are assumed to have the same voltage stability as those under the actual package’s

C4 solder bumps. Simulations are cycle accurate within a core, use sub-cycle precision for

core interactions, fully model varied per-core frequencies, and utilize sub-instruction energy

measurements. Application code has been lightly-to-moderately optimized and additional effort

would yield significant improvements. All four applications store instructions inside local processor

memories and so usage of independent memories, run-time instruction swapping, or run-time

off-chip instruction streaming are not required.

An Advanced Encryption Engine (AES) application is implemented with 974 processors,

expanding the 137-core version developed for AsAP2 [20]. At a reduced 0.9 V, it supports

a throughput of 14.5 Gbps while using 6.5 Watts. It is operable down to 560 mV, where a

throughput of 1.23 Gbps is achieved using 158 mW.

A Low Density Parity Check (LDPC) decoder is implemented with 944 processors and 12

independent memories, expanding the version discussed in chapter 2. It supports a (4095,3717)

61

code with row and column weights of 64 and 6, and utilizes 12 parallel decoding lanes. At

a reduced 0.9 V, with four decoding iterations, it has a throughput of 111 Mbps while using

3.4 Watts. It is operable down to 760 mV, where it decodes 62 Mbps using 1.1 Watts.

A 4096-point complex Fast Fourier Transform (FFT) application is implemented with 980

processors and 12 independent memories, being freshly developed for this architecture. It

processes 16-bit complex data and calculates 12 transforms in parallel. At 0.9 V, 567 MSamples

per second are processed using 4.1 Watts. It is operable down to 760 mV, with 313 MSamples

per second using 1.4 Watts. A second 4096-point complex FFT application was developed which

processes a single FFT transform at a time and uses 619 processors and 12 memories to transform

295 MSamples per second using 2.6 Watts at 0.9 V.

The first phase of an "external" record sort is implemented with 1000 processors. This is

based on the sorting application for AsAP2 [21], but is freshly implemented to better leverage

KiloCore’s architecture. 100-Byte records contain a 10-byte sorting key and are processed into

sorted blocks of 185 kB in support of the second merging phase of the external sort. At 0.9 V,

this application sorts 1.47 GB per second using 1.2 W. It is operable down to 560 mV, where it

can sort 137 MB per second using 61 mW.

4.5.1 Task Partitioning

KiloCore is designed for high cooperation between processors, where each processor executes

a small task of up to 128 instructions. Mapping an application to this architecture involves

applying a series of task partitioning transformations, where the final tasks are mappable to the

processors. These transforms are loosely categorized as serial and parallel partitioning.

Serial partitioning transforms sections of code into a sequence of tasks, which form a

computation pipeline. Live variables at the code separation points are transferred between

tasks using message passing. Variables may be transferred from producers to consumers either

directly, through intermediate tasks in the chain, or using a mixture of these methods. Partitioning

may produce tasks with as little as one instruction which directly reads data from the network,

performs an operation, and writes the result back to the network.

Parallel partitioning performs task replication to increase the throughput of critical paths in

the application which exhibit data parallelism. This transform is typically applied to loop bodies

or is used to implement vector operations. This partitioning introduces overhead for splitting

and joining the data being processed by the replicas, which may involve inserting additional

62

data routing tasks if a large number of replicas are formed. When task execution time varies

significantly with the data, intelligent distribution may be used to supply data to tasks as they

finish their computations.

Serial and parallel partitioning transformations are applied to the application multiple times,

progressing from the original code to that which will be mapped to KiloCore. Figure 4.14 shows

an example of partitioning a task which processes elements in a 4096 element data array. This

task is partitioned serially to isolate the data access tasks from the main workload, replicating

the loop iterator to maintain correct task execution counts. Parallel partitioning is then applied

to accelerate the address generation and data computation tasks, with appropriate loop count

modifications.

Figure 4.14: Example of serial and parallel task partitioning. Serial partitioning reduces
instruction counts per task and isolates large data structures, while parallel partitioning improves
the throughput of critical paths.

Figure 4.15 shows the number of instructions required for tasks after partitioning was

performed for the sampled applications. All tasks fit within the 128-word instruction memory of

a KiloCore processor.

Figure 4.16 shows the amount of data memory required by these same tasks. 98.7% of tasks

fit within the 512-byte data memory of a KiloCore processor. The remaining tasks include those

which access larger data structures in the FFT and LDPC applications. These tasks are mapped

to the 24 processors neighboring the 12 independent memories in KiloCore.

Task partitioning introduces overhead for inter-task data transfers. This overhead is partially

hidden in KiloCore by allowing instructions to directly access the network links as part of their

source and destination fields. In the sampled applications, after partitioning, communication

63

Figure 4.15: Number of instructions required by tasks in the example applications after task
partitioning. All tasks fit within the 128-word instruction memory of a single processor.

Figure 4.16: Amount of data memory required by tasks in the example applications, after task
partitioning. Most tasks fit within the 512-byte data memory of a single processor, with a small
number of tasks requiring the assistance of the independent memory modules.

64

overhead accounts for 30% of overall energy usage, including network energy along with

instructions dedicated to reading or writing the networks. This energy partially replaces that

which would be spent on writing and subsequently reading variables from local data memories.

In some situations, partitioning will directly lower application energy, as a variable transferred

using the circuit network over a short distance requires as little as 25% of the energy used when

storing and reading the same variable from a local data memory.

Figure 4.17(a) shows throughput scaling for the sampled applications as core count increases.

Figure 4.17(b) shows the corresponding energy efficiency of the applications. AES, FFT, and

LDPC show approximately linear growth in throughput with core count, with energy efficiency

remaining steady when going to large numbers of cores. The Sort algorithm is omitted here since

it utilizes additional cores to increase the size of sorted blocks, and the amount of work being

done at different core counts is not directly comparable.

Figure 4.17: Normalized application (a) throughput and (b) energy efficiency as the number of
cores available to the application is increased to 1000.

65

4.5.2 Task Networking

An important consideration for manycore architectures is how to transfer data between cores in a

manner that is energy efficient, avoids network congestion, and supports inter-task synchronization.

The communication requirements of an application depend heavily on the method of imple-

mentation. In our sampled applications, algorithms were chosen which, once partitioned into

fine-grained tasks, exhibit low densities of inter-task communication links. When mapping one

task to each processor, on average only 0.15% of possible links are utilized as compared to

maximally dense all-to-all communication. In Figure 4.18, tasks are categorized by their number

of required input or output connections. 95% of the tasks have a fan-in of two or fewer, and 93%

have a fan-out of one or two. This result is partially influenced by the partitioning algorithms

used, which favor reducing the number of links needed.

Figure 4.18: Tasks of sampled applications categorized by their number of inter-task input and
output links. A large majority of tasks utilize less than 3 inputs and less than 3 outputs.

KiloCore utilizes complementary circuit and packet networks to efficiently support these links.

The low area, low energy, high throughput circuit network supports 2 inputs and up to 8 outputs

per processor. 95% of links in the sampled applications are supported by this network. The

remaining links are assigned to the packet network, which is designed for medium throughput

to reduce packet router area overhead. The packet network is also used to support general

administrative signaling.

66

4.6 Performance and Comparisons
Performance metrics at a supply voltage of 1.1 V for applications are found in Table 4.2, including

branch correct prediction rates, instructions per cycle and per second, and overall throughput

and power.

Table 4.2: KiloCore application metrics for operation at 1.1 V. *Does not include time spent
waiting for networks.

Application Cores Branch
Correct
Predict

Active Inst.
Per Cycle Per

Core*

Inst. Per
Second
(Billion
insts/s)

Throughput Power
(W)

Throughput /
Watt

AES 974 100% .93 802 21.4 Gbps 15.4 1.39 Gbps/W
LDPC 4095-bit 5-iterations 944 89% .95 320 145.4 Mbps 8.21 17.7 Mbps/W
FFT 4096-point complex 980 94% .98 407 823.9

MSamp/s
9.75 84.5

MSamp/s/W
Sort 100-Byte records 1000 96% .96 131 2.12 GB/s 3.12 0.678

GB/s/W

KiloCore’s applications are compared against a selection of Intel i7 and Nvidia GPU

processors due to their wide acceptance and deployment, highly-optimized hardware, and

mature programming tools. In addition, Intel Core (and related Xeon) and Nvidia GPUs are

frequently deployed in computing domains ranging from mobile, desktop, server, datacenter, to

scientific supercomputer. Comparison data are given in Table 4.3 and include KiloCore data both

unscaled and scaled to the same technology using data from Holt [8]. The AES comparisons on

an Intel i7 [34] and Nvidia GPU [35] are taken from the literature, and do not use the specialized

AES hardware present in many Intel processors. The LDPC comparisons on an i7 [36] and

GPU [37] implement (9216,4608) and (2304,1152) codes with row and column weights of 6,3

and 24,12 respectively, and perform 5 decoding iterations. The i7 FFT uses the FFTW library

with 8 independent threads iterating on cached data. The GPU FFT is implemented on an

Nvidia GTX 960 using the cufftExecC2C function from the Nvidia Cuda cuFFT library. Both

implementations utilize single precision floating point operations. Interestingly, a hypothetical

floating-point KiloCore would actually experience a speedup compared to this fixed-point version

which must explicitly handle data alignment and overflow functions. Sorting is implemented on

an i7-3770k using std::sort in C++ with 8 independent threads operating on separate record

groups in cache, and is implemented on a GTX 960 using the sort function from the Nvidia

Cuda Thrust library. Power is measured using on-die energy counters when available, or by the

measured power delta with a correction for power supply efficiency. For cited designs without

reported power, we use half of the thermal design power (TDP) [38]; i7 power numbers do not

67

include uncore power. Area comparisons are made using die area, subtracting the estimated area

for the graphics, memory controller, and unused cores in the comparison CPUs.

Table 4.3: Application metrics and comparisons of KiloCore with CPU and GPU implementations.
KiloCore metrics are normalized against the comparison device, and are (cols. 7-8) unscaled and
operating at 1.1 V, and †(cols. 9-10) scaled to the same technology using data from Holt [8].
‡Assumes device power is half of thermal design power [38].

App Device Tech (nm) Thruput Thruput/

Watt

Thruput/

Area

KiloCore

Relative

Thruput/

Area

KiloCore

Relative

Thruput/

Watt

KiloCore†

Relative

Thruput/

Area

KiloCore†

Relative

Thruput/

Watt
AES i7 920 [34]‡ 45 1.2 Gbps 0.018

Gbps/W

0.11

Gbps/mm2

55.7 75.3 24.1 52.8

AES Tesla

C2050 [35]‡

40 60 Gbps 0.50 Gbps/W 4.6

Mbps/mm2

2.95 2.76 1.68 2.07

LDPC i7

3960X [36]‡

32 180 Mbps 2.77

Mbps/W

1.11

Mbps/mm2

4.03 6.40 4.03 6.40

LDPC GTX

Titan [37]‡

28 621.4 Mbps 4.97

Mbps/W

0.41

Mbps/mm2

2.05 3.56 2.73 3.97

FFT i7 3770k 22 1048

MSamp/s

18.4

MSamp/s/W

22.5

MSamp/s/

mm2

1.17 4.58 2.71 6.65

FFT GTX 960 28 5120

MSamp/s

76.4

MSamp/s/W

6.55

MSamp/s/

mm2

0.57 1.11 0.76 1.23

Sort i7 3770k 22 3.91 GB/s 0.074

GB/s/W

0.59

MB/s/mm2

0.80 9.11 1.87 13.2

Sort GTX 960 28 0.135 GB/s 0.004

GB/s/W

0.024

GB/s/mm2

55.7 186 74.1 207

Across these applications and when scaled to the same fabrication technology, KiloCore at 1.1

V has geometric mean improvements of 4.3x higher throughput per area and 9.4x higher energy

efficiency compared to the other processors. Significantly higher efficiencies are possible at lower

supply voltages. At KiloCore’s optimal energy-delay voltage of 0.9 V, it achieves geometric mean

improvements of 3.1x higher throughput per area and 16.7x higher energy efficiency, with an

overall 70.5x improvement in throughput per area per Watt. When comparing to just CPUs or

just GPUs, this overall metric is 68.9x and 72.0x better respectively.

4.7 Development History
The work that would eventually become KiloCore began as a proof-of-concept design. The

register-transfer-level (RTL) code (in Verilog) for a processor core was developed from scratch,

68

reusing none of the code from AsAP2. In addition to implementing ideas discussed in chapter 3,

this architecture made numerous smaller changes to improve hardware efficiency or enable later

feature expansions. A new assembler was written in Python, and the record sorting application

was adapted as the primary test. Approximately six weeks were spent on initial microarchitecture

design and Verilog and Python code writing, followed by two days of debugging to go from the

first Verilog compilation attempt to successfully running the multiple-core Sorting application.

This work was set aside for a period of time to work on other projects. When the chip

fabrication opportunity arrived it was on short notice, only 87 days before what would be our

tapeout. Approximately six weeks of this time was spent on completing and polishing the RTL

design, while co-authors handled preparing the physical design flow. Full access to the physical

design libraries were gained only 34 days before tapeout.

The success of KiloCore, despite the rushed schedule, can partly be attributed to the robustness

of this many-core architectural style: the independence of each processor allows them to be

replicated without overhead for global buses, global clock trees, or shared cache management. In

the years since tapeout only three bugs have been discovered in the RTL design, each solved by

minor coding restrictions.

69

Chapter 5

KiloCore2

KiloCore2 (KC2) consists of 697 efficient, programmable processors to run software programs, 697

packet routers that are each paired with a processor, 2 Viterbi accelerators, 1 FFT accelerator, and

14 memory modules containing 64kB of memory each that may be used for data or instructions.

The core layout of this array is displayed in Figure 5.1.

Similar to the first KiloCore, each element has an independent oscillator for local clock

generation, and communicates with asynchronous neighbors using dual-clock FIFOs. The com-

munication network includes two independent, statically configurable circuit meshes that support

source-synchronous communication, a packet network which support dynamic communication,

and a dynamic circuit network which uses packets to establish temporary source-synchronous

links during run-time.

5.1 Summary of major differences
A number of changes were made to the architecture since KiloCore. These changes were motivated

by a mixture of simple refinements (pipeline changes), extra design time (new packet router), and

a custom package design (multiple voltage domains, more I/O). A partial list of changes follows.

• New low-area packet router

• 3 voltage domains available to each processor, up from 1

• DVFS control circuitry

• Deepened multiplier pipeline and a 63% higher processor frequency target

• FFT and Viterbi accelerators

70

�
�
�
�

� � � � � � � � � � � � � � �

����	�
��
���

����	�
��
���

����	�
��	
���

�����
��	
���

����	�
��	
���

����	�
��
�������	�
��	
���

����	�
��	
�� ����	�
��
��

�����
��
���

�����
��
��

�����
��	
��

��
������
��

��
������
��

��
������
��

��
������
��

��
������
��

��
������
��

��
������
��

��
������	
��

��
������	
��

��
������	
��

��
������	
��

��
������	
��

��
������	
��

��
������	
��

Figure 5.1: Layout and IO ports of KiloCore2, where an asterisk (*) denotes higher speed
LVDS differential ports. "M" is a shared 64kB memory; "V" is a Viterbi accelerator; "F" is an
FFT accelerator; "H" is a high-speed processor. The empty space above the FFT accelerator is
occupied by a temperature-voltage sensor, which is slightly smaller than a processor.

• Temperature/voltage sensor

• Special high speed processors with an even deeper general pipeline and removal of some

critical path functionality, having a 200% higher frequency target than original KiloCore

processors

• Double data-rate chip IO, transferring on both clock edges

• Many more IO ports: 4x circuit network ports, 2x packet network ports, and 14 narrow

ports intended for integration with external optical IO drivers, as shown in Figure 5.1

• Various small refinements: reduced opcode width, more branch options, byte level memory

access, etc.

Table 5.1 shows the amount of RTL source code involved in each architecture, from AsAP2

through KiloCore2. KiloCore and AsAP2 share no code. KiloCore2 uses modified versions

71

of the AsAP2 FFT and Viterbi accelerators. The AsAP2 motion estimation accelerator has

no comparable block in either KiloCore. Generated code files are omitted, such as the 375-

thousand-line full-array connections file which is written by a configurable Python script for

KiloCore.

Table 5.1: Lines in RTL Verilog code files, given as entire file and just code, from AsAP2 to
KiloCore2, omitting generated files such as full array connections. AsAP2 and KiloCore share no
code. KiloCore2 uses modified versions of the AsAP2 FFT and Viterbi accelerators. The AsAP2
motion estimation accelerator has no comparable block in either KiloCore.

Chip Source Lines Code Lines
AsAP2 47012 32184
KiloCore 31088 20885
KiloCore2 65940 44049

5.2 Specialized Cores
The bottom right of the array is occupied by specialized cores, as visible in Figure 5.1. These are

described below.

5.2.1 High Speed Processor

High speed processors have reduced capabilities, in return for higher operational frequencies.

Notable changes include: the removal of the MAC unit, tied off external memory port, dis-

connection from the packet input port, removal of network induced stall logic (in favor of polling),

removal of dynamic voltage selection, removal of address generators, halved data memory size,

removal of branch prediction, and an additional ALU execution stage. Programs written for high

speed processors must handle data flow control in software. In return for these trade-offs, high

speed processors are able to execute their kernels nearly twice as fast as standard processors,

and excel at executing serial code.

5.2.2 Accelerators

The Fast Fourier Transform accelerator contains specialized hardware for performing FFTs up to

length 4096, and inherits from the design used in AsAP2 [19]. The primary modification is a

doubling of module IO ports, which were previously limiting FFT performance. For a 4096-point

FFT, the AsAP2 design requires 8193 cycles for IO but only 6174 cycles for compute; with

compute and IO being performed in parallel, this results in compute resources only being utilized

75% of the time. In KC2, 4097 cycles are required for IO, leading to a 33% speedup at this FFT

length.

72

The Viterbi accelerators contain specialized hardware for performing decoding of Viterbi

encoded data, and inherit from the design used in AsAP2 [4]. Wrapping logic for these accelerators

integrates them into the architecture’s network, clocking, and configuration schemes.

5.2.3 Temperature/Voltage Sensor

The TVsense module provides on-die temperature and voltage measurements. This module is

slightly smaller than a processor, and is located in the lower-right portion of the array near the

accelerators and high speed processors. Programming and reading are done through the standard

array configuration and test bus.

5.3 Design and Implementation
Similar to the first KiloCore, the processor array is built from standard cells and is synthesized

except for small circuits such as the clock oscillator which were designed by hand. Cell placement

and routing are performed by industry-standard CAD tools. Except for the SRAMs inside the

independent memory modules and FFT and Viterbi accelerators, all memories are built from

clock-gated flip-flops with synthesized interfacing logic which greatly simplifies the physical design

and lowers the minimum operating voltage for applications which do not use those modules.

The 8.0 mm by 8.0 mm chip was fabricated in a 32 nm partially depleted silicon on insulator

(PD-SOI) technology and contains 580 million transistors. The entire array measures 7.51 mm by

7.43 mm. Each processor contains 750,601 transistors and occupies 265 µm by 274 µm. Figure 5.2

shows the top view of the array in Encounter, with top level power and ground rails hidden.

KiloCore2 contains 2,499 C4 solder bumps for connecting to a custom BGA chip package. Of

these, 296 are used for double-ended (LVDS) and 161 for single-ended I/O signals. 12 bumps are

set aside as analog probe points, to be used in sampling the power and ground voltages near

selected processors. 2 bumps are utilized as dedicated power and ground for the temperature-

voltage sensor. The remaining bumps are used for general power delivery: 81 for I/O, 531 for

standard core voltage, 200 and 196 for alternate processor voltages, and 1020 for common ground.

I/O signals and power are placed near the periphery, while core power is distributed throughout.

Standard processors and routers are designed to operate at 2.0 GHz at 900 mV. This achieves

a 63% higher throughput per processor than the original KiloCore. Specialized high speed

processors are designed to operate at 3.85 GHz at 900 mV. At 1.1 V, the standard and high

73

Figure 5.2: Top view of KiloCore2 in Encounter, when hiding power and ground wires. Layout
corresponds to that shown in Figure 5.1. The periphery consists of off-chip I/O drivers, Electro-
static discharge triggers and clamps, and deep trench capacitors [39].

speed processors are projected to reach 2.9 GHz and over 5 GHz respectively. The entire array is

projected to achieve over 2 tera-operations per second when running at 1.1 V.

Figure 5.3(a) is a post-placement plot of a single processor tile showing regions of the largest

components along with details on the die area occupied by the various components. The circuit-

switched network (including two 64 Byte input FIFOs) occupies 11% of the tile area, whereas

the new packet router occupies only 6%. The processor’s clock oscillator and associated control

occupy 1% of the tile’s area and recover some of that area by eliminating the need for a chip-level

clock tree.

Annotated layouts for other tile types are shown in Figure 5.4 for high speed processor tiles,

Figure 5.5 for shared memory tiles, Figure 5.6 for FFT accelerator tiles, and Figure 5.7 for FFT

accelerator tiles.

At the time of this writing, the KiloCore2 chips are pending final touch-ups and daughterboard

mounting.

74

(a)

(b)

Figure 5.3: (a) Annotated layout and (b) area breakdown of a single KiloCore2 standard processor
tile [39].

75

Figure 5.4: Annotated layout of a single KiloCore2 extra-high-frequency processor tile [39].

Figure 5.5: Annotated layout of a single KiloCore2 shared memory tile [39].

76

Figure 5.6: Annotated layout of a single KiloCore2 FFT accelerator tile [39].

77

Figure 5.7: Annotated layout of a single KiloCore2 Viterbi accelerator tile [39].

78

Chapter 6

Software Tools for Writing Many-Core
Applications

This chapter discusses the primary tools that were developed to support the KiloCore research

effort.

6.1 Many-Core Simulators
6.1.1 AsAP2 Simulator

When this work began, the VCL group at UC Davis was developing AsAP2 applications directly

through Verilog simulation. Application code was hand written in assembly, inter-core links

were manually set up using network control fields for each tile, and testing was done by visually

reading simulation waveforms of processor pipeline activities. Simulations would take hours for

small applications like 802.11a (23 processors), up to a month for a full-array record Sorting (164

processors).

To address these inefficiencies, development began on a model of AsAP2’s functionality with

needless detail abstracted away. Over time, this developed into a full simulator, and was quickly

adopted by the VCL group. Several notable features include:

• Written in C++

• Primary goal is to aid in application development, and architected accordingly

• Supports all AsAP2 core types: processor, memory, FFT accelerator, Viterbi accelerator,

and Motion Estimation accelerator, as well as external chip input and output handling

logic

79

• Assembly modeled by re-entrant macros which update pipeline state, reentry handled by

long jumps

• Assembly functions are optionally parameterized, for easily customizing code on a per-core

basis

• Abstracted array configuration, eg. a single function to make a circuit link between two

cores regardless of distance

• Supports GALS operation: cores operate on unique clock periods and voltage domains,

and may be adjusted during simulation

• Time and energy estimation based on actual AsAP2 measurements, across voltages

• Detailed pipeline model ensures cycle accuracy within a core, and communication between

cores is done with sub-cycle accurate data transfers (due to asynchronous clocking)

• Arbitrarily multi-threaded, where each thread handles multiple cores, thread count can

be tuned to the host system, and inter-core communication uses custom, thread-safe

asynchronous FIFOs (avoids lock, mutex or semaphore overhead)

• Fast run times; a Verilog 1-month Sorting simulation is reduced to less than 1 minute

• Integrates into a host IDE (nominally Visual Studio) for breakpoint support to aid in code

debugging

• Automated checks warn on coding hazards (eg. read-after-write), uninitialized memory

access, unconnected network ports, and other possible errors

• A wide variety of code profiling functions

• Support for integrating custom C++ code into the assembly simulation, commonly used

for additional debug checks or conditional breakpoints

• Support for saving and restoring long simulations

• Support for exploring a variety of DVFS algorithms

6.1.2 KiloCore and KiloCore2 Simulator

Following the tapeout of KiloCore, a new version of the simulator was developed to support the

KiloCore architecture and streamline existing functionality. Time and energy estimation were

updated with the new chip measurements. Notable new features include:

80

• New global timing model simplifies modeling of environmental conditions, such as voltage

droop or temperature changes

• Naturally models process variation, with some cores being faster than others

• Integrated support for checking data at any link or final output against golden references

• Supports the new packet network, with zero simulation overhead for routers which can

never be trafficked

• Improved extensibility for adding custom simulation modules, such as off-chip memories,

admin processes, and environmental condition models

• API functionality for integrating with external programs, to control characteristics of the

simulation and to return results

Figure 6.1 shows the simulator at work, paused at a breakpoint in the FFT application when

computing a butterfly. Here, the contents of the host processor’s data memory are displayed, as

well as the pipeline contents. All simulated processor state may be viewed in this way by the

user.

Figure 6.1: KiloCore simulator paused at a breakpoint in the assembly and viewing memory
contents, enabled by running in the Visual Studio IDE

These many-core simulators have been a key part of a variety of many-core related research

efforts [9, 12–14,28,40–48].

81

6.2 KiloCore Compiler
While the many-core simulators greatly speed up runtime and ease assembly debugging, they

still require the programmer to learn the appropriate assembly and architecture characteristics.

To make programming more accessible, the latter years of this research include the development

of an optimizing compiler to handle assembly generation.

The KiloCore compiler (KCC) is designed as a custom back end to the LLVM compiler

infrastructure. Any suitable front end may be used to process programmer input code into

the LLVM intermediate representation (IR) format. The back end parses this IR code, and

progressively transforms it into a form suitable to KiloCore assembly. Though the LLVM output

is targeted at stack-based load/store architectures with separate register files and memory, KCC

handles converting such code into a form suitable for a stackless, 16-bit, direct-memory-access

architecture. A minimal effort mapping of IR to assembly results in poor code quality, so the

bulk of KCC is devoted to analyzing and optimizing the code to KiloCore’s particular strengths.

The standard programming flow is to write kernels using C++, with a suitable header library

to represent select parts of the KiloCore hardware. At minimum, the programmer must declare

and use explicit network ports for data input and output from a processor. Optional parts

of the header library support parts of the hardware that are not easily exploited by compiler

optimization, such as the address generation units or the 40-bit multiply-accumulation register.

Clang, a well developed front end for LLVM, is used to process the C++ into IR. While

off-the-internet distributions of Clang are supported, a lightly customized version of Clang and

LLVM is preferred in which Kilocore is specified as using 16-bit pointers and integers.

As IR code can potentially be generated by a variety of front ends, KCC also has limited,

proof-of-concept support for handling kernels written in Python, with the help of the Numba

package. A runtime patch is applied to Numba to add support for volatile loads and stores,

which are utilized to safely model network access operations.

Internally, KCC is organized into a variety of analysis and transform modules. Each module

defines its requirements (other modules that must run first) and invalidations-on-change (other

modules that need to be rerun if a code change is made). With this, the compiler flow is

made self-organizing. This and various other characteristics of KCC were selected to benefit

manageability and extensibility for a sole developer.

82

Figure 6.2 shows a simplified example of code compilation. User supplied input code (a) defines

a task which reads input, does some compute, and sends output. This is fed into customized

Clang to generate LLVM IR format (b), including any target-nonspecific optimizations LLVM

provides. KCC processes this IR into an un-optimized form suitable for assembly generation (c),

and optionally performs a wide variety of optimizations to improve code quality (d). Later tools

will customize packet headers and IO port numbers based on final task to array mapping and

routing.

At the time of this writing, KCC generated code performs to within 7% of carefully hand-

crafted and optimized assembly, across all applications that have been converted from assembly

to C++. The largest difference occurs in LDPC, which utilizes architectural shortcuts in a

critical path loop which do not yet have corresponding compiler optimizations.

6.3 Project Manager
While the simulator and compiler aid in writing code kernels and validating them, they do not

particularly help a programmer define and connect the potentially thousands of tasks that will

make up a complex application. These tasks also need to be mapped to a target many-core array,

routed through the circuit network, and profiled and optimized for ideal frequency and voltage

settings.

The KiloCore Project Manager (PM) was written to address these and other needs. Written

in Python, it executes a user supplied script which will define the tasks, specify operations to

perform (eg. map, simulate, profile), and validate results. The PM acts as a user-facing front end

for other KiloCore tools, including the simulator, compiler, and mapper. Some notable features

of the PM include:

• Convenient task paramaterization, grouping, and replication (of individuals or groups)

• Automatic data stream splitting and joining for parallel tasks clusters

• An application’s tasks may easily be imported into other projects, e.g. the AES engine can

be added as a component to any larger application

• Performs task-to-core mapping and routing, either with a basic good-enough-for-simulation

algorithm, or through a sophisticated mapping tool written by a co-worker in Julia

• Runs KCC on provided C++ source files, and caches generated assembly for reuse

83

void Add_Inc (core_input input , core_output output) {

f o r (shor t i = 0 ; i < 8 ; i++) {

output << input . read () + i ; } }

(a) Input C++

d e f i n e d s o _ l o c a l void @_Z7Add_Inc10core_input11core_output(% c l a s s . core_input ∗ %input , %c l a s s .

core_output ∗ %output) local_unnamed_addr #4 {

entry :

%l i n k _ u s h o r t . i = g e t e l e m e n t p t r %c l a s s . core_input , %c l a s s . core_input ∗ %input , i 1 6 0 , i 3 2 0 ,

i 3 2 0 , i 3 2 6

%l i n k _ u s h o r t . i . i = g e t e l e m e n t p t r %c l a s s . core_output , %c l a s s . core_output ∗ %output , i 1 6 0 ,

i 3 2 0 , i 3 2 0 , i 3 2 6

br l a b e l %f o r . body

f o r . cond . cleanup :

r e t void

f o r . body :

%i . 0 9 = phi i 1 6 [0 , %entry] , [%inc , %f o r . body]

%0 = load v o l a t i l e i16 , i 1 6 ∗ %l i n k _ u s h o r t . i , a l i g n 2 , ! tbaa ! 2 7

%add = add i 1 6 %0, %i . 0 9

s t o r e v o l a t i l e i 1 6 %add , i 1 6 ∗ %l i n k _ u s h o r t . i . i , a l i g n 2 , ! tbaa ! 2 7

%i n c = add nuw nsw i 1 6 %i . 0 9 , 1

%e x i t c o n d = icmp eq i 1 6 %inc , 8

br i 1 %exitcond , l a b e l %f o r . cond . cleanup , l a b e l %f o r . body }

(b) LLVM IR

Function (Add_Inc) {

entry :

MOVE(dmem[1 2 8] , 0 , SW)

BRL(for_body)

for_cond_cleanup :

BRL(entry)

for_body :

MOVE(dmem [0] , input_0 , nop3 , SW)

ADDU(dmem [0] , dmem [0] , dmem[1 2 8] , nop3 ,SW)

MOVE(output_0 , dmem [0])

ADDU(dmem [0] , dmem[1 2 8] , 1 , nop3 , SW)

MOVE(dmem[1 2 8] , dmem [0] , SW)

XOR(n u l l 0 , dmem [0] , 8)

BRNZL(for_body)

BRL(for_cond_cleanup) }

(c) Unoptimized Assembly

Function (Add_Inc) {

entry :

RPT(1 0 2 4)

ADDU(output_0 , input_0 , 0)

ADDU(output_0 , input_0 , 1)

ADDU(output_0 , input_0 , 2)

ADDU(output_0 , input_0 , 3)

ADDU(output_0 , input_0 , 4)

ADDU(output_0 , input_0 , 5)

ADDU(output_0 , input_0 , 6)

ADDU(output_0 , input_0 , 7)

END_RPT

BRL(entry) }

(d) Optimized Assembly

Figure 6.2: Example of the KiloCore compiler work flow; (a) user provided C++ code (simplified
for brevity), (b) LLVM IR format output from Clang, (c) non-optimized translation from IR to
KiloCore Assembly, and (d) optimized KiloCore Assembly

• Prepares, builds, and runs the simulator

• Prepares and runs applications on the physical chip (if available)

• Capable of fine-tuning core frequencies through iterative simulations, minimizing energy

lost to processor stalls

84

• Using technology models combined with application profiling, can optimize voltage rail

selection for the 3 rails in KiloCore 2 to minimize energy at no loss of throughput

• GUI provides an accessible way for users to run scripts, view task layouts and mappings,

run the integrated tools, and view simulation results

Figure 6.3 shows the Project Manager GUI after a simulation of a 650-processor version

of the FFT application on KiloCore 2. Simulation metrics are recorded for each individual

processor, along with a global summary. Figure 6.4 shows the particular task mapping used in

this simulation, with labels hidden due to clutter.

Figure 6.3: KiloCore Project Manager GUI showing a version of the FFT application opened to
the tasks tab, with simulation results visible

Table 6.1 summarizes some characteristics of these tools. Any generated code files or external

libraries are not included. The KiloCore simulator is somewhat smaller than the AsAP2 simulator

due to streamlining and lack of a motion estimation accelerator. Code related to tool chain

testing and verification has been omitted. The task mapper is written by a co-worker. The high

ratio of source lines to code lines in KCC is due to a high amount of internal documentation

important to developing and maintaining an optimizing compiler. The high ratio in the Project

Manager is due to API documentation exported to HTML and the GUI for user reference.

85

Figure 6.4: KiloCore Project Manager GUI showing a version of the FFT application opened to
the mapping tab, which also may be zoomed in and display task names

Table 6.1: Characteristics of several tools developed as part of this research. The compiler
metrics include KiloCore C++ header libraries. Metrics do not include testing code or code that
isn’t original to the KiloCore project.

Tool Primary Language Source Lines Code Lines
AsAP2 Simulator C++ 21670 11730
KiloCore Simulator C++ 19940 10247
Compiler Python 59797 16869
Project Manager Python 33572 9506
Task Mapper Julia 13227 8943

86

Chapter 7

Conclusion

Key to understanding the operation of many-core arrays is knowledge of how their applications

are written and behave. This dissertation opened with the design of such an application: a Low

Density Parity Check decoder running on the AsAP2 164-processor architecture. This decoding

algorithm is formed from a collection of individual data processing and storage tasks, which were

balanced and replicated to fill the processor array.

A detailed exploration was made of the AsAP2 architecture and its applications. Various

opportunities for improvement were found, including in the instruction set, pipeline design,

network communication between processors, and voltage control logic. To name a few findings:

inclusion of unsigned support speeds some operations up by as much as 15x, low-overhead branch

prediction raises the correct prediction rate from 27% to 96%, fast oscillator halting reduces

active-clock stall cycles by 33%, and voltage dithering improves DVFS energy savings by 16%.

The 1,000 processor KiloCore chip was presented. Fabricated in 32 nm and occupying

64 mm2, this newly designed architecture implements lessons learned from AsAP2 along with

other innovations. KiloCore processors may operate up to 1.78 GHz at 1.1 V, down to 115 MHz

at 560 mV where an operation dissipates only 5.8 pJ. In situations with many processors turning

on at once, up to 999 of them, the KiloCore oscillators are shown to naturally slow down with

voltage grid droop, allowing running processors to remain under their maximum frequency and

maintain error-free operation. Four applications are written or adapted for KiloCore, their

characteristics and performance discussed. Across these applications and when scaled to the

same fabrication technology, KiloCore at 0.9 V achieves geometric mean improvements of 3.1x

higher throughput per area and 16.7x higher energy efficiency compared to CPUs and GPUs,

with an overall 70.5x improvement in throughput per area per Watt.

87

Following this, the 697 processor KiloCore2 chip was presented. Fabricated in 32 nm and

occupying 64 mm2, this second generation refinement of the KiloCore architecture is designed

to achieve a 63% higher throughput per processor than the original KiloCore, supports three

voltage domains that processors may be connected to to optimize energy usage, utilizes a custom

chip package to greatly increase the number of I/O ports, and implements a new low-area packet

routing network that is specifically designed for the needs of a many-core system. Increased core

speeds can reduce compute latency by over 39% for latency sensitive applications. Preliminary

estimates are that the array will reach 2.0 Tera-operations per second at 1.1 V.

Finally, the programming and analysis tools for many-core arrays were presented. A high

speed simulator, written in C++, is over 50,000 times faster than prior Verilog simulations, and

contains a suite of features to aid in application development and debugging. This simulator

enabled rapid architectural exploration, leading to the insights that eventually developed into the

KiloCore architecture. The KiloCore compiler was presented for generating optimized assembly

from user supplied kernels written in C++, Python, or potentially other languages. Leveraging

the LLVM infrastructure to act as a front end, this compiler focuses on the back end operations

needed to lower LLVM IR code into the format needed for stackless, 16-bit, direct-memory-access

processors with strict memory limitations. Supplementing these tools is a Project Manager,

which allows users to write simple Python scripts to define a collection of tasks, replicate and

map them to a target many-core array, and compile and run their applications.

These hardware and software design techniques are scalable well beyond the 1000 processors

in KiloCore. Modern fabrication technology and commercial chip areas have the potential to fit

tens of thousands of such processors on a single die. Following in the footsteps of Kilocore, we

look forward to more of these thousand-processor-era architectures being developed in the near

future.

88

References

[1] S. Borkar. Thousand core chips: A technology perspective. In 2007 44th ACM/IEEE Design
Automation Conference, pages 746–749, June 2007.

[2] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, P. Iyer, A. Singh,
T. Jacob, S. Jain, S. Venkataraman, Y. Hoskote, and N. Borkar. An 80-tile 1.28 TFLOPS
network-on-chip in 65nm CMOS. In 2007 IEEE International Solid-State Circuits Conference.
Digest of Technical Papers, pages 98–589, Feb 2007.

[3] M. Butts. Synchronization through communication in a massively parallel processor array.
IEEE Micro, 27(5):32–40, Sep. 2007.

[4] D.N. Truong, W.H. Cheng, T. Mohsenin, Zhiyi Yu, A.T. Jacobson, G. Landge, M.J.
Meeuwsen, C. Watnik, A.T. Tran, Zhibin Xiao, E.W. Work, J.W. Webb, P.V. Mejia, and
B.M. Baas. A 167-processor computational platform in 65 nm cmos. Solid-State Circuits,
IEEE Journal of, 44(4):1130–1144, April 2009.

[5] Z. Yu, M. J. Meeuwsen, R. W. Apperson, O. Sattari, M. Lai, J. W. Webb, E. W. Work,
D. Truong, T. Mohsenin, and B. M. Baas. AsAP: An asynchronous array of simple processors.
IEEE Journal of Solid-State Circuits, 43(3):695–705, March 2008.

[6] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay, M. Reif, Liewei
Bao, J. Brown, M. Mattina, Chyi-Chang Miao, C. Ramey, D. Wentzlaff, W. Anderson,
E. Berger, N. Fairbanks, D. Khan, F. Montenegro, J. Stickney, and J. Zook. TILE64 -
processor: A 64-core SoC with mesh interconnect. In Solid-State Circuits Conference, 2008.
ISSCC 2008. Digest of Technical Papers. IEEE International, pages 88–598, Feb 2008.

[7] K. Kim. Silicon technologies and solutions for the data-driven world. In 2015 IEEE
International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, pages
1–7, Feb 2015.

[8] W. M. Holt. Moore’s law: A path going forward. In 2016 IEEE International Solid-State
Circuits Conference (ISSCC), pages 8–13, Jan 2016.

[9] B. Bohnenstiehl, A. Stillmaker, J. Pimentel, T. Andreas, B. Liu, A. Tran, E. Adeagbo, and
B. Baas. KiloCore: A fine-grained 1,000-processor array for task parallel applications. IEEE
Micro, 37(2):63–69, March 2017.

[10] Andrew Duller, Gajinder Panesar, and Daniel Towner. Parallel processing ? the picoChip
way! 01 2003.

[11] M. Butts and A. M. Jones. TeraOPS hardware and software: A new massively-parallel,
MIMD computing fabric IC. In HotChips Symposium on High-Performance Chips, Stanford,
CA, August 2006.

[12] B. Bohnenstiehl, A. Stillmaker, J. Pimentel, T. Andreas, B. Liu, A. Tran, E. Adeagbo, and
B. Baas. A 5.8 pJ/Op 115 billion Ops/sec, to 1.78 trillion Ops/sec 32 nm 1000-processor
array. In Symposium on VLSI Circuits, June 2016.

89

[13] B. Bohnenstiehl, A. Stillmaker, J. Pimentel, T. Andreas, B. Liu, A. Tran, E. Adeagbo,
and B. Baas. KiloCore: A 32 nm 1000-processor array. In IEEE HotChips Symposium on
High-Performance Chips, August 2016.

[14] B. Bohnenstiehl, A. Stillmaker, J. Pimentel, T. Andreas, B. Liu, A. Tran, E. Adeagbo,
and B. Baas. KiloCore: A 32-nm 1000-processor computational array. IEEE Journal of
Solid-State Circuits (JSSC), 52(4):891–902, April 2017.

[15] Aaron Stillmaker, Brent Bohnenstiehl, and Bevan Baas. The design of the KiloCore chip.
In ACM/IEEE Design Automation Conference, Austin, TX, Jun. 2017.

[16] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H. Wilson,
N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella, P. Salihundam,
V. Erraguntla, M. Konow, M. Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel,
K. Henriss, T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. V. D. Wijngaart, and T. Mattson.
A 48-core IA-32 message-passing processor with DVFS in 45nm CMOS. In 2010 IEEE
International Solid-State Circuits Conference - (ISSCC), pages 108–109, Feb 2010.

[17] G. Chrysos. Intel Xeon Phi coprocessor (codename Knights Corner). In 2012 IEEE Hot
Chips 24 Symposium (HCS), pages 1–31, Aug 2012.

[18] B. D. de Dinechin, R. Ayrignac, P. Beaucamps, P. Couvert, B. Ganne, P. G. de Massas,
F. Jacquet, S. Jones, N. M. Chaisemartin, F. Riss, and T. Strudel. A clustered manycore
processor architecture for embedded and accelerated applications. In 2013 IEEE High
Performance Extreme Computing Conference (HPEC), pages 1–6, Sep. 2013.

[19] A.T. Jacobson, D.N. Truong, and B.M. Baas. The design of a reconfigurable continuous-flow
mixed-radix FFT processor. In Circuits and Systems, 2009. ISCAS 2009. IEEE International
Symposium on, pages 1133–1136, May. 2009.

[20] Bin Liu and B.M. Baas. Parallel AES encryption engines for many-core processor arrays.
Computers, IEEE Transactions on, 62(3):536–547, March 2013.

[21] Aaron Stillmaker, Lucas Stillmaker, and Bevan Baas. Fine-grained energy-efficient sorting
on a many-core processor array. In Parallel and Distributed Systems (ICPADS), 2012 IEEE
18th International Conference on, pages 652–659, Singapore, Singapore, December 2012.

[22] A.T. Tran, D.N. Truong, and B.M. Baas. A complete real-time 802.11a baseband receiver
implemented on an array of programmable processors. In Signals, Systems and Computers,
2008 42nd Asilomar Conference on, pages 165–170, Oct 2008.

[23] Zhibin Xiao, Stephen Le, and Bevan Baas. A fine-grained parallel implementation of
a H.264/AVC encoder on a 167-processor computational platform. In IEEE Asilomar
Conference on Signals, Systems and Computers (ACSSC), November 2011.

[24] R.G. Gallager. Low-density parity-check codes. Information Theory, IRE Transactions on,
8(1):21–28, January 1962.

[25] Jinghu Chen, A. Dholakia, E. Eleftheriou, M.P.C. Fossorier, and Xiao-Yu Hu. Reduced-
complexity decoding of LDPC codes. Communications, IEEE Transactions on, 53(8):1288–
1299, Aug 2005.

90

[26] Rongchun Li, Jie Zhou, Yong Dou, Song Guo, Dan Zou, and Shi Wang. A multi-standard
efficient column-layered LDPC decoder for software defined radio on GPUs. In SPAWC,
2013, pages 724–728, June 2013.

[27] Aaron Stillmaker, Zhibin Xiao, and Bevan Baas. Toward more accurate scaling estimates
of CMOS circuits from 180 nm to 22 nm. Technical Report ECE-VCL-2011-4, VLSI
Computation Lab, ECE Department, University of California, Davis, December 2011.
http://www.ece.ucdavis.edu/cerl/techreports/2011-4/.

[28] Jon J. Pimentel and Bevan M. Baas. Hybrid floating-point modules with low area overhead
on a fine-grained processing core. In IEEE Asilomar Conference on Signals, Systems and
Computers (ACSSC), Pacific Grove, CA, November 2014.

[29] Zhiyi Yu and Bevan M. Baas. A low-area multi-link interconnect architecture for GALS
chip multiprocessors. Very Large Scale Integration (VLSI) Systems, IEEE Trans. on,
18(5):750–762, May 2010.

[30] A. T. Tran and B. M. Baas. Achieving high-performance on-chip networks with shared-buffer
routers. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22(6):1391–
1403, June 2014.

[31] R. W. Apperson, Z. Yu, M. J. Meeuwsen, T. Mohsenin, and B. M. Baas. A scalable
dual-clock FIFO for data transfers between arbitrary and haltable clock domains. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 15(10):1125–1134, Oct 2007.

[32] Zhiyi Yu and Bevan M. Baas. High performance, energy efficiency, and scalability with GALS
chip multiprocessors. IEEE Trans. on Very Large Scale Integration Systems, 17(1):66–79,
January 2009.

[33] D. M. Chapiro. Globally-asynchronous locally-synchronous systems. PhD thesis, Stanford
University, Stanford, CA, USA, 1984.

[34] K. Iwai, T. Kurokawa, and N. Nisikawa. AES encryption implementation on CUDA GPU
and its analysis. In Networking and Computing (ICNC), 2010 First International Conference
on, pages 209–214, Nov 2010.

[35] Q. Li, C. Zhong, K. Zhao, X. Mei, and X. Chu. Implementation and analysis of AES
encryption on GPU. In High Performance Computing and Communication 2012 IEEE 9th
International Conference on Embedded Software and Systems (HPCC-ICESS), 2012 IEEE
14th International Conference on, pages 843–848, June 2012.

[36] Xia Pan, Xiao fan Lu, Ming qi Li, and Rong fang Song. A high throughput LDPC decoder
in CMMB based on virtual radio. In Wireless Communications and Networking Conference
Workshops (WCNCW), 2013 IEEE, pages 95–99, April 2013.

[37] G. Wang, M. Wu, B. Yin, and J. R. Cavallaro. High throughput low latency LDPC decoding
on GPU for SDR systems. In Global Conference on Signal and Information Processing
(GlobalSIP), 2013 IEEE, pages 1258–1261, Dec 2013.

91

http://www.ece.ucdavis.edu/cerl/techreports/2011-4/

[38] Mike Butler. AMD Bulldozer Core - a new approach to multithreaded compute performance
for maximum efficiency and throughput. In IEEE HotChips Symposium on High-Performance
Chips (HotChips 2010), August 2010.

[39] Aaron Stillmaker. Design of Energy-Efficient Many-Core MIMD GALS Processor Arrays
in the 1000-Processor Era. PhD thesis, University of California, Davis, Davis, CA, USA,
December 2015. http://vcl.ece.ucdavis.edu/pubs/theses/2015-1.stillmaker/.

[40] Aaron Stillmaker, Lucas Stillmaker, Brent Bohnenstiehl, and Bevan Baas. Energy-efficient
sorting on a many-core platform. In Technology and Talent for the 21st Century (TECHCON
2013), September 2013.

[41] Bin Liu, Brent Bohnenstiehl, and Bevan M. Baas. Scalable hardware-based power
management for many-core systems. In IEEE Asilomar Conference on Signals, Systems and
Computers (ACSSC), Nov. 2014.

[42] Soheil Ghiasi Bin Liu, Mohammad H. Foroozannejad and Bevan M. Baas. Optimizing power
of many-core systems by exploiting dynamic voltage, frequency and core scaling. In IEEE
International Midwest Symposium on Circuits and Systems (MWSCAS), Aug. 2015.

[43] Emmanuel O. Adeagbo and Bevan M. Baas. In Technology and Talent for the 21st Century
(TECHCON 2015)), title = Energy-Efficient String Search Architectures on a Fine-Grained
Many-Core Platform, year = 2015, month = sep.

[44] B. Bohnenstiehl and B. Baas. A software LDPC decoder implemented on a many-core array
of programmable processors. In 2015 49th Asilomar Conference on Signals, Systems and
Computers, pages 192–196, Nov 2015.

[45] Jon J. Pimentel, Brent Bohnenstiehl, and Bevan M. Baas. Hybrid hardware/software floating-
point implementations for optimized area and throughput tradeoffs. IEEE Transactions on
Very Large Scale Integration Systems (TVLSI), 25(1):100–113, January 2017. Official date
of publication July 12, 2016.

[46] Emmanuel O Adeagbo. Energy-efficient pattern matching methods on a fine-grained many-
core platform. Master’s thesis, University of California, Davis, Davis, CA, USA, March 2017.
http://vcl.ece.ucdavis.edu/pubs/theses/2017-1.Adeagbo/.

[47] Peiyao Shi. Sparse matrix multiplication on a many-core platform. Master’s thesis, University
of California, Davis, Davis, CA, USA, December 2018. http://vcl.ece.ucdavis.edu/
pubs/theses/2018-1.pshi/.

[48] Filipe Borges. AlexNet deep neural network on a many core platform. Master’s thesis,
University of California, Davis, Davis, CA, USA, 2019.

92

http://vcl.ece.ucdavis.edu/pubs/theses/2015-1.stillmaker/
http://vcl.ece.ucdavis.edu/pubs/theses/2017-1.Adeagbo/
http://vcl.ece.ucdavis.edu/pubs/theses/2018-1.pshi/
http://vcl.ece.ucdavis.edu/pubs/theses/2018-1.pshi/

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Motivation
	Related Work
	AsAP2 Platform
	AsAP2 Applications

	Dissertation Organization

	A Low Density Parity Check Decoder for a Many-Core Array
	Introduction
	Software Algorithm
	Parity Check Matrix
	Compact Set
	Unpack Set
	Update Variable
	Correct Variable
	Valid Codeword Detection

	Software Implementation
	Memory Mapping, Data Routing
	Compact Set Lane
	Update Variable Lane
	Address Generation

	Results

	From AsAP2 to KiloCore
	Applications Explored
	Unsigned arithmetic
	Carry-Shift
	Branch unit
	Repeat Loop Modification
	Network IO
	Stall on Multiple-I/O Simultaneously
	Explicit output buffer destinations
	Quicker processor clock halting
	FIFO Depth

	Address Generator Modification
	Parallel Data Memories
	Software adjustment

	Voltage Tuning
	Application Profiling
	Voltage Model
	Voltage Selection
	Analysis

	Large Program Support

	KiloCore
	High-Level Architecture
	Processors
	On-Die Communication
	Processor Data Memory Organization
	Independent Memory Modules

	Fine-grain Clocking
	Tolerating Power Grid Voltage Variations

	Design and Implementation
	Measured Results
	Applications
	Task Partitioning
	Task Networking

	Performance and Comparisons
	Development History

	KiloCore2
	Summary of major differences
	Specialized Cores
	High Speed Processor
	Accelerators
	Temperature/Voltage Sensor

	Design and Implementation

	Software Tools for Writing Many-Core Applications
	Many-Core Simulators
	AsAP2 Simulator
	KiloCore and KiloCore2 Simulator

	KiloCore Compiler
	Project Manager

	Conclusion

