
Matrix Inversion on a Many-Core Platform

By

ZHANGFAN ZHAO

THESIS

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

in

Electrical and Computer Engineering

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Chair, Bevan M. Baas

Member, Hussain Al-Asaad

Member, Soheil Ghiasi

Committee in charge
2021

– i –



© Copyright by Zhangfan Zhao 2021
All Rights Reserved



Abstract

Matrix operations are a fundamental problem of scientific computation and industry

computation, which are widely used in many applications. Among them, the inversion of

matrices plays an essential role in multiple-input and multiple-output (MIMO) systems,

image signal processing, least-squares analysis, etc. With dramatically increasing data sizes,

the speed of inverting matrices usually becomes the key that affects the overall system

performance. Therefore, this thesis proposes a many-core matrix inversion method based on

Gaussian Jordan Elimination (GJE), which includes two implementations: a 603-processor

design using only on-chip memory with a 16-bit fixed point and a 635-processor design using

external off-chip memory with a 32-bit fixed point and a 32-bit float point. Details of the

parallel algorithm based on the GJE are presented. All the unique programs loaded to the

many-core platform and the mapping of the parallel architecture are described. The accuracy

of using different data types are analyzed. Due to the word length and the computation

complexity, the accuracy of the 16-bit fixed point is 2−1, the accuracy of the 32-bit fixed

point is 2−6 and the accuracy of the 32-bit float point is 2−9. Due to the limitation of on-chip

memory size, the implementation that uses only on-chip memory cannot invert the large

matrices.

Therefore, the proposed implementation that uses off-chip memory with the 32-

bit float point is compared against a general-purpose processor (i7-9700k) and a graphics

processing unit (GPU) chip (NVIDIA GTX1070). The designs for the many-core chip,

general-purpose processor and GPU are evaluated using the metrics of throughput per area

(MatInv/sec/mm2) and matrix inversions per energy (MatInv/J). Since different fabrication

technologies are used, throughput, area and energy dissipation for all platforms are scaled

to 14 nm. The improvement in throughput per area achieved from experiments is 20–60×

among all simulated matrices versus the general-purpose processor implementation, and

3.7–19× versus the GPU implementation. The improvement in matrix inversions per energy

achieved from experiments is 45–131× versus the general-purpose processor implementation,

and 8.5–41× versus the GPU implementation.
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Chapter 1

Introduction

1.1 Motivation

Matrix inversion of the form A−1A = I is a fundamental tool of linear algebra, which

is useful in many areas of applied mathematics, statistics, physics, economics, and engineering.

With the increased size of matrix used in a wide variety of applications, the speed of calculating

matrix inversion becomes the bottleneck that limits the performance of overall systems, especially

in many scientific and engineering applications, such as image signal processing and MIMO system.

Therefore, it is crucial to find a way to accelerate the process of calculating the inversed matrix.

Using parallel processing for matrix inversion is challenging and not as efficient as other

matrix operations such as multiplication and transpose. There is a lot of data dependency during

the calculation. Many custom implementations have been developed to exploit parallel computing

in matrix inversion. There are many architectures and algorithm have been proposed on general-

purpose processors [2], GPUs [3], FPGAs [4], and many-core platforms [5], [6], which indicates the

current trend of increased parallelism in high performance computer architectures. However, with

the increased number of cores used energy usage and die area also increases dramatically. It is

necessary to develop an energy-efficient method and small area usage method on the many-core

platform.

Therefore, this thesis presents a small area used and energy-efficient, scalable matrix

inversion method, which was simulated on a fine-grained many-core array of low-power, simple

Multiple Instruction Multiple Data (MIMD) processors (AsAP3). The method contains two matrix

1



inversion implementations. Each of the implementations consists of small modular program kernels

operating on each core, making them scalable to different array sizes and data types.

1.2 Thesis Organization

The remainder of this thesis is organized as follows.

Chapter 2 goes over the definition of the matrix inversion and introduces Gauss Jordan Elimination.

This algorithm is used to implement the matrix inversion on the many-core platform. Then, the

representation for the fixed point is reviewed.

Chapter 3 introduces the target fine-grained many-core architecture, AsAP3 (KiloCore), which is

used throughout the thesis.

Chapter 4 first gives the architecture of the proposed many-core matrix inversion methods, followed

by different kernels that are mapped to the processors in AsAP3.

Chapter 5 explains how data is scaled during the input and calculation phase. Then, it shows the

relationship between mean error and different input scaling.

Chapter 6 presents the throughput per watt comparison for all the implementations on a many-core

processor array (AsAP3) and compares the accuracy between different data types.

Chapter 7 presents the simulation results of implementation on AsAP3, compared to the implemen-

tations on Intel general-purpose processor and Nvidia GPU.

Chapter 8 gives a summary of the thesis and some ideas for future work.
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Chapter 2

Background

2.1 Definition of Matrix Inversion

Matrix inversion is an essential concept in matrix theory. For a matrix A with size n× n,

if there exists another matrix B with size n× n that makes A×B = B ×A = I, we say the matrix

A is invertible, and matrix B is the inverse matrix of matrix A notated as A−1.

There are various ways to invert a matrix, such as LU decomposition, QR decomposition,

and Gauss Jordan Elimination. The LU decomposition and Gauss Jordan Elimination are widely

used because these two algorithms are suitable for any invertible dense matrix. The computational

complexity for both algorithms is 2N3.

2.2 Gauss Jordan Elimination

2.2.1 Sequential Gauss Jordan Elimination with partial pivoting

The basic idea of Gauss Jordan elimination is to make a partitioned matrix [A|I] where

A is the input matrix with size n× n, and I is the identity matrix with size n× n as well. Then,

use elementary row operations to convert a matrix into reduced row-echelon form. The matrix A

becomes an identity matrix, and the matrix I becomes the inverse of matrix A.

[A | I]→ [I | A−1]

The result will not come out until completes n times iterations, where n is equal to the input

matrix’s rank. For example, for a 3×3 matrix, it needs three iterations to calculate the final result.

3



In each iteration i, the following steps are needed to be done on the partitioned matrix [A I]:

1. Find the largest absolute value in column i and swap its row with the pivot row.

2. Normalize the updated pivot row by dividing each element in the pivot row by the pivot element.

3. Eliminate all the elements that are in the same column with the pivot element.

4. Increment i and repeat these steps until i equals the rank of the input matrix.

The Figure 2.1 shows how to invert a 3×3 matrix using Gaussian Jordan elimination step by step.

Figure 2.1: Invert a 3 by 3 matrix using Gaussian Jordan elimination step by step.

Algorithm 1 Pseudo code for sequential Gauss Jordan elimination with partial pivoting.

Require: matrix A , Rank

Ensure: inverse matrix A−1

1: function GJE(A,Rank)

2: M ← [A I]
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3: for step = 0→ rank do

4: pivot row ← step

5: max value← 0

6: for i = step→ rank do . finding the next pivot

7: if |M [i, step]| > |M [step, step]| then

8: max value←M [i, step]

9: pivot row ← i

10: end if

11: end for

12: M [step, :]↔M [pivot row, :] . Row exchange

13: for j = step→ 2× rank do . Normalization Phase

14: M [step, j]←M [step, j]÷M [step, step]

15: end for

16:

17: for i = 0→ rank do . Elimination Phase

18: if i! = step then

19: factor ←M [i, step]

20: M [i, :] = M [i, :]− factor ×M [step, :]

21: end if

22: end for

23: end for

24: end function

2.2.2 Parallel Gauss Jordan Elimination

As shown in Algorithm 1, there is a data dependency between each iteration, which means

the whole process has to be done in sequence. However, in the same iteration, there is no data

dependency. There are 4 phases in each iteration: selecting pivot, row swap, normalizing the

pivot row, and elimination. The most computational efforts are spent on the normalization and

elimination phases. For a n×n matrix, in each iteration, the normalization phase requires processing

2n elements, and the elimination phase requires processing (n−1) rows with 2n elements in each row.

Without any paralleling, the overall complexity of the program is proportional to n× (n− 1)× 2n,
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notated as O(n3).

Since there is no data dependency in the normalization and elimination phases, we can

distribute the work to different threads, both column-wise and row-wise. In the normalization phase,

spawn m threads normalize the whole pivot row that each thread only processes n/m elements. In

the elimination phase, (n− 1) rows can be distributed to different threads, and each element can

be distributed to different threads. The parallel version of Gauss Jordan Elimination is shown in

Algorithm 2.

Algorithm 2 Pseudo code for parallel Gauss Jordan elimination with partial pivoting.

Require: matrix A , Rank

Ensure: inverse matrix A−1

1: function GJE parallel(A,Rank)

2: M ← [A I]

3: for step = 0→ rank do

4: pivot row ← step

5: max value← 0

6: for i = step→ rank do

7: if |M [i, step]| > |M [step, step]| then

8: max value←M [i, step]

9: pivot row ← i

10: end if

11: end for

12: M [step, :]↔M [pivot row, :]

13: for j = step→ 2× rank do . distributing the workload in Normalization phase

14: M [step, j]←M [step, j]÷M [step, step]

unroll the loop and distribute the work to m threads. each thread processes 2×rank/m elements

15: end for

16:

17: for i = 0→ rank do . distribute the workload in Elimination phase

18: if i! = step then

19: factor ←M [i, step] broadcast factor to every threads

20: M [i, :] = M [i, :]− factor ×M [step, :]
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unroll the loop and distribute the work to n×m threads. each thread processes (2× rank/m)×

((rank − 1)/n) elements

21: end if

22: end for

23: end for

24: end function

By doing this each thread needs to process n× (n− 1)/m elements. Ideally, if there are

unlimited threads, each thread only needs to process one element in each iteration, and the overall

time complexity can be reduced to O(n). In the next chapter, the target many-core platform, which

is used to reach the high parallelism, is introduced.

2.3 Fixed Point

The fixed point data type is essentially an integer scaled by an implicit specific factor

determined by the type. For example, an unsigned binary number 1100 can represent 12 in decimal

if there is no fraction bit. If using 3 bit as fraction part, it can represent 1.5 in decimal. The fixed

point numbers in this thesis are represented as two’s complement, shown in Table 2.1. A fixed point

number with N-bit width is represented as m.n, where m is the number of bits used to indicates the

integer part and n is the number of bits for the fraction part.

m (integer width) n (fraction width)

Table 2.1: Notation of an N-bit two’s complement fixed point with m.n format, where N = m+ n,
m bits are used to represent the integer part, and n bits are used to represent the fraction part.

An N-bit two’s complement fixed-point in m.n format is shown in Eq. 2.1. The implicit

fraction point is between an and an−1.

an+m−1an+m−2.......an . an−1.....a1a0 (2.1)

Eq. 2.2 is used to convert a fixed point two’s complement shown in Eq. 2.1 to a decimal number.

−an+m−1 × 2m−1 + an+m−2 × 2m−2 + .....+ a1 × 2m−(N−1) + a0 × 2m−N (2.2)

16-bit and 32-bit are two common data length used in computer architecture. The Table 2.2

shows the range and precision of 16-bit fixed point with different fraction width. To balance the
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Table 2.2: Range and precision for 16-bit fixed point.

Format Precision Range

16.0 1 (-32768,32767)

15.1 0.5 (-16384,16383.5)

14.2 0.25 (-8192,8191.75)

13.3 0.125 (-4096,4095.875)

12.4 0.0625 (-2048,2047.9375)

11.5 0.03125 (-1024,1023.96875)

10.6 0.015625 (-512,511.984375)

9.7 0.007813 (-256,255.9921875)

8.8 0.003906 (-128,127.9960938)

7.9 0.001953125 (-64,63.99804688)

6.10 0.0009765625 (-32,31.99902344)

5.11 0.00048828125 (-16,15.99951172)

4.12 0.00024414062 (-8,7.999755859)

3.13 0.00012207031 (-4,3.99987793)

2.14 0.00006103515 (-2,1.999938965)

1.15 0.00003051757 (-1,0.999969482)

input range and precision, the proposed implementations use 8.8 for 16-bit fixed point and use 16.16

for 32-bit fixed point.
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Chapter 3

AsAP Platform

This thesis proposes an implementation of matrix inversion based on Gauss Jordan

Elimination with partial pivoting on AsAP3 platform. AsAP3 is the third generation of Asynchronous

Array of Simple Processors [7], which is a fine-grained many-core platform that includes 1000

independent, in order, single-issue processors and 12 independent 64KB memory modules. Therefore,

it is also called KiloCore.

3.1 Processors

There are a 128×40-bit instruction memory, a 256×16-bit data memory, three pro-

grammable address generators, two 32×16-bit input FIFO buffers and a 16×16 fixed point multiplier

with the 40-bit accumulator (MAC) in each processor [7]. Each processor also supports 72 instruction

types includes both singed and unsigned operations, which are not algorithm specific. Moreover,

the two conditional execution masks, static branch prediction and hardware automated looping for

accelerating inner loops, are supported by every processors. Though the natural word width of the

data path and memory are 16-bit, other data types such as 32-bit fixed point and floating point are

supported easily through software.

In every clock cycle, each processor issues a single 40-bit instruction into its seven stage

pipeline from either its local instruction memory or from on-chip independent memory module if

programs are large. The input operands of instructions are normally from the two input FIFO

buffer and from the local data memory. The output results goes to the local data memory, one or

multiple of circuit-switched network ports, the packet router ports, a neighboring on-chip memory
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Figure 3.1: Major components and connections of the seven-stage processor pipeline [1].

module, a pipeline forwarding path and special registers which used for dereferenceable pointers,

address generator, oscillator frequency selection and other software-accessible core configuration

fields. The pipeline structure is shown in Figure 3.1.

3.2 Inter-Processor Communication

The processors and independent memory modules on AsAP platform are connected through

2-D mesh, a topology which maps well to planar integrated circuits and scales simply as the number

of processors per die increases [8]. Communication on-chip is accomplished by two complementary

means: a very high throughput and low-latency circuit-switched network [9] and a very-small-area

packet router [10]. Details are provided in Figure 3.2. The network supports communication

between adjacent and distant Processors, as resources permit, with each link supporting a maximum

28.5Gb/s transimision rate with optionally inserted registers to maintain data integrity over long

distances. The circuit-switched links are source-synchronous, so the source clock travels with the

data to the destination, where it is translated to the destination of processsor’s clock domain. The

packet router inside each processor occupies only 9% of each processor’s area and is especially

effective for high fan-in and high fan-out communication, as well as for administrative messaging.

Each router supports 45.5 Gb/s of throughput with a maximum of 9.1 Gb/s per port. Routers

operate autonomously from their host processors and contain their own clock oscillators, so they can

power down to zero active power when there are no packets to process. Each circuit or packet link

terminates in a dual-clock FIFO memory, which reliably transfers data between clock domains [11].
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Figure 3.2: Overview of inter core communication using circuit and packet networks. Writes are
source-synchronous; responses include asynchronous wake-up signals for sleeping processors. Circuit
links include configurable registers and an eastwest connection for one layer is expanded on the
right [1].

Moreover, links contain the necessary asynchronous wake-up signals, which inform idle modules

when they need to activate their local clock to process new work or to verify when FIFOs are full or

empty.

3.3 Independent Memory Modules

Besides the data memory in each processors, another on-chip storage is independent memory

module. There are 12 independent memory modules on the many-core platform, named as BigMem.

Each independent memory module contains a 64 KB SRAM and is shared between two neighboring

processors. Modules support random and a variety of programmable burst access patterns for data

reading and writing, and are also capable of streaming instructions for large-program execution to

an adjoining processor using an internal control module. When executing an instruction stream from

an independent memory, a processor transfers program control and branch prediction control to

dedicated circuits inside the memory block to more efficiently execute across branches. Each memory

module contains two 32×18-bit input buffers, two 32×16-bit output buffers, and one 16×2-bit

processor response buffer, and supports 28.4 Gbit/s of I/O bandwidth. The details of the module’s

internal blocks are shown in Figure 3.3.
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Figure 3.3: Components used in streaming instructions from a shared memory to a neighboring
processor. Streaming logic is shared between two processors, with only the port 0 connection shown
here [1].

3.4 Fine-Grain Clocking

Many-core applications often require processors to remain idle or operate at low activity

for substantial periods of time. In KiloCore, each core, each packet router inside each core and each

independent memory module contains its own local programmable clock oscillator in an independent

fully synchronous clock domain [12]. Each oscillator is allowed to change its frequency, halt or

restart arbitrarily including with respect to other clock domains. Halting is very helpful in saving

energy when there is no work to do.

3.5 KiloCore (AsAP3)

The KiloCore chip [13] is a processor array that containing 1,000 independent processors

and 12 memory modules, which was fabricated in 32-nm partially depleted silicon on insulator

CMOS. Processors are arrayed in 32 columns and 31 rows with eight processors and 12 independent

memories in a 32nd row as shown in Figure 3.4. Processors and independent memory modules with

no work to do dissipate exactly zero active power (leakage only)–this is an important capability in

the 1000-processor era due to the difficulty in implementing complex software workloads that spread
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Figure 3.4: Top-level processor array of KiloCore (AsAP3) [1].

evenly over thousands of processors, which leads to the increasing prevalence of processors with

widely varying activity levels [14]. Under most conditions, the processors array has a near-optimal

proportional scaling of power dissipation over a wide range of activity levels. The Kilocore has a

total of 2012 globally asynchronous locally synchronous (GALS) [15] clock domains.
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Chapter 4

Implementations of Matrix Inversion

on a Many-Core Platform

4.1 Matrix Inversion Kernels

The matrix inversion implementations, described in this chapter, utilize basic kernels

in each processor of the array. Each kernel is designed for generalization, which can be easily

mapped to any processor in any part of the array. The overall implementations are designed as a

parameterized type, taking any dimension of the matrix without recompiling. This chapter will

discuss two architectures: InversionBigMem and InversionExternalMem. InversionBigMem uses

eight 64 KB on-chip memories, which can take an input matrix as large as 320×320 with the 16-bit

fixed point. InversionExternalMem uses eight 8 GB off-chip memories with 100 ns access latency to

store data and eight on-chip memories as buffers, taking an input matrix as large as 1024×1024,

which is bounded by the AsAP processor’s DataMem. The proposed design spreads a row of data

to 64 cores evenly. So each processor’s DataMem needs to hold both data and variables used in

the kernel. 1024 is the tested largest number that makes the kernel can be compiled. There are

two versions for the external memory architecture: the 32-bit fixed point version and the 32-bit

single float point version. The kernels for different versions can be reused, and only the arithmetic

operators are different for the different data types. Since two different memory architectures are

proposed in this thesis, the data distribution and memory interface kernels are different. This

chapter will discuss the block diagram of two architectures and the programs that make up these
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blocks as the list below:

• Block diagram

– InversionBigMem

– InversionExternalMem

• Input Distribution

• Memory Architecture

• Sort

• Logic Control

• Matrix Operation

– Normalization Chain

– Elimination Array

4.2 Block Diagram

4.2.1 InversionBigMem

InversionBigMem is an architecture that uses only on-chip BigMem to store data and

the block diagram is shown in Figure 4.1 The Input distribution kernel distributes input data

evenly to different on-chip memories. The logic control sends the command to each memory to ask

them to push data into computation blocks: Normalization kernel and Elimination kernel. The

Normalization kernel and Elimination kernel do some matrix operations and send processed data

back to update memory. The sort kernel finds the next pivot row and sends the flag to logic control.

After an n times iteration where n is the rank of the input matrix, the results are sent out by

each BigMem in sequence. Division only needs to be calculated once during the beginning of each

iteration. Therefore, the latency of division will not limit the overall performance. A detailed

version of the block diagram is shown in Figure 4.2. Div is the core that uses the built-in divider

(division operator in C++, the compiler can compile it) to calculate the division only. Since each

processor can only have two circuit link input ports, Buffer is the simple kernel loaded to the
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Figure 4.1: Block diagram of InversionBigMem architecture. Input data is loaded evenly to different
BigMems through InputDistribution block. All data is processed through Normalization and
Elimination blocks. The LogicControl sends commands to different Memory modules about which
part of data is going to be processed. Memory modules push data to Normalization and Elimination
blocks and update memory with processed data. Div block is the core uses built-in divider (”/”,
division operator in c++) to calculate the division only. In each loop, Sort block finds the max
pivot and sync with the LogicControl to start next iteration. After all the computations are done,
each memory module output the results in sequence. The details of each block are shown in later
sections.
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AsAP processors to merge two inputs into one. PacketBuffer is the AsAP processor that reads

from the router and output data through the circuit link. Trash is used to only read input but not

output anything. The Trash kernel is designed to be used at the end of a chain to receive some

trash data. For example, if all cores in a chain spread data or flags to the right, the last core of the

chain will spread to the right as well but there is no cores on the right. By using the Trash core at

the end of chain, all cores in the chain can use the same kernel, which simplifies the design process.

Spread reads destination address first and transfer data from input to the destination core through

the packet link. Besides these simple cores, the kernel for each processor shown in Figure 4.2 is

explained in later sections.

Figure 4.2: Detailed version of Figure 4.1 that shows everything inside of each block. Blue circles
are AsAP processors and yellow circles are memory modules. Red lines are packet links, black lines
are circuit links, and green lines are memory links. There are eight BigMems (BigMem0-7) in this
architecture. For simplicity, two of them are shown in the figure. There are 603 processors used in
this architecture.
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4.2.2 InversionExternalMem

Figure 4.3: Block diagram of InversionExternalMem. The overall data flow of InversionExternalMem
is similar to the InversionBigMem. The difference is that all data is stored in the external memories.
The external memory has a 100 ns access latency. During the calculation, the BigMem works as
buffer to store part of data and write back to the external memories after the data is processed. Div
block is the core uses built-in divider (”/”, division operator in c++) to calculate the division only.

InversionExternalMem is an architecture that uses external memories to store data and

uses on-chip BigMem as buffers to compute the inverse. The block diagram is shown in Figure 4.3.

Since all the program is designed for modularity, most of the kernels are similar to InversionBigMem

architecture. The only difference is the memory hierarchy. Eight huge external memory modules

are placed on the edge of the chip. Each external memory module has a single 16-bit I/O port. The

data is sorted in the external memory first. During the computation, a block of data will be moved

from the external memory to the on-chip BigMem, and the block size equals the size of BigMem,

which is 64 KB. A detailed version of the block diagram is shown in Figure 4.4. Div is the core

that uses the built-in divider (”/”, division operator in c++) to calculate the division only. Since

each processor can only have two circuit link input ports, Buffer is the simple kernel loaded to the

AsAP processors to merge two inputs into one. PacketBuffer is the AsAP processor that reads

from the router and output data through the circuit link. Trash is used to only read input but
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Kernel Name Number of code Number of cores loaded

Input Distribution 86 1

Sub Distribution 32 1

Sort 22 2

Logic Control 189 1

Div 5 1

Buffer 13 15

Packet Buffer 6 2

Spread 14 1

Trash 3 2

Elimination First 25 16

Elimination Mid 49 465

Elimination Mid (last row) 38 31

Elimination End 50 16

Normalization First 30 1

Normalization Mid 31 31

Normalization End 22 1

Mem Controller 94 8

Sub Mem Controller 34 8

Total — 603

Table 4.1: The number of code for each unique kernel and the number of cores that are loaded with
different kernels for the implementation with only on-chip memory. Number of code is measured as
the number of lines of code in C++ after removing all the comments and blank lines.
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not output anything. Spread reads destination address first and transfer data from input to the

destination core through the packet link. Besides these simple cores, the kernel for each processor

shown in Figure 4.4 is explained in later sections.

Figure 4.4: Detailed version of Figure 4.3 that shows everything inside of each block. Blue circles
are AsAP processors and yellow circles are memory modules. There are eight external memories
(ExternalMem0-7) and eight BigMem (BigMem0-7) in this architecture. Red lines are packet links,
black lines are circuit links, and green lines are memory links. For simplicity, three of them are
shown in the figure. There are 635 processors in this architecture.

4.3 Input Data Distribution

As shown in chapter 2, the Gaussian Jordan Elimination takes an augmented matrix as

input. For a n× n matrix A, the augmented matrix M is n× 2n. Here A is the matrix that needs

to be inverted, and I is the identity matrix with n× n dimension.

M = [A|I]

20



Kernel Name Number of code Number of cores loaded

Input Distribution 86 1

Sub Distribution 32 1

Sort 28 2

Logic Control 143 1

Div 6 1

Buffer 14 15

Packet Buffer 6 2

Spread 22 1

Trash 3 2

Elimination First 25 8

Elimination Mid 40 441

Elimination Mid (last row) 38 63

Elimination End 50 8

Normalization First 36 1

Normalization Mid 32 63

Normalization End 21 1

Mem Controller A 47 8

Mem Controller B 51 8

External Mem Controller 182 8

Total — 635

Table 4.2: The number of codes for each unique kernel and the number of cores that are loaded
with different kernels for the implementation with off-chip memory. Number of code is measured as
the number of lines of code in C++ after removing all the comments and blank lines.
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The input file contains N × (2N + 1) + 1 elements. The first element is the rank of matrix, and

the next is the row index and followed by a row of data. The detailed format is shown in the table

below.

rank Index(0) a row of data Index(1) a row of data ... Index(n) a row of data

The proposed implementations read augmented matrix M as input and distribute the

input row-wise to eight different memory ports. The implementation consists of two processors that

use two individual kernels. The block diagram is shown in Figure 4.5.

Figure 4.5: Block diagram of Input Distribution.

InputDistribution reads data from the input file and output data to 4 memory controllers, a
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sort core, and SubDistribution. SubDistribution reads data from InputDistribution and output data

to another four memory controllers. As shown in Algorithm 3 and Algorithm 4, InputDistribution

calculates how many rows are stored in each memory and sends data row-wise to different memory

controllers. It also sends the first two elements, which are RowIndex and the element in the first

column, to the sorting core. This information is used to find the max value in column 0 and

swapping the corresponding row with the pivot row. After that, InputDistribution will send the

remaining data to SubDistribution, and SubDistribution will distribute this data to another four

memory controllers.

Algorithm 3 pseudo code for Input Distribution

1: function InputDistribution(input, output[5])

2: rank ← input

3: RowLength← 2× rank + 1

4: NumOfRow ← rank ÷ 8

5: remainder ← rank mod 8

6: for i = 0→ 8 do

7: NumOfRowInMem i← (remainder > i)?NumOfRow + 1 : NumOfRow

8: end for

9: for i = 0→ NumOfRowInMem 0 do

10: RowIndex, P ivotV alue← input

11: output[5]← RowIndex, P ivotV alue

12: output[0]← RowIndex, P ivotV alue

13: for j = 0→ RowLength− 1 do

14: output[0]← input

15: end for

16: end for

17: for i = 0→ NumOfRowInMem 1 do

18: RowIndex, P ivotV alue← input

19: output[5]← RowIndex, P ivotV alue

20: output[1]← RowIndex, P ivotV alue

21: for j = 0→ RowLength− 1 do

22: output[1]← input
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23: end for

24: end for

25: for i = 0→ NumOfRowInMem 2 do

26: RowIndex, P ivotV alue← input

27: output[5]← RowIndex, P ivotV alue

28: output[2]← RowIndex, P ivotV alue

29: for j = 0→ RowLength− 1 do

30: output[2]← input

31: end for

32: end for

33: for i = 0→ NumOfRowInMem 3 do

34: RowIndex, P ivotV alue← input

35: output[5]← RowIndex, P ivotV alue

36: output[3]← RowIndex, P ivotV alue

37: for j = 0→ RowLength− 1 do

38: output[3]← input

39: end for

40: end for

41: output[4]← NumOfRowInMem 4, 5, 6, 7

42: for i = 0→
∑
NumOfRowInMem4, 5, 6, 7 do

43: RowIndex, P ivotV alue← input

44: output[5]← RowIndex, P ivotV alue

45: output[4]← RowIndex, P ivotV alue

46: for j = 0→ RowLength− 1 do

47: output[4]← input

48: end for

49: end for

50: end function

Algorithm 4 pseudo code for sub Input Distribution

1: function SubDistribution(input, output[3])

2: RowLength← input
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3: NumOfRowInMem4, 5, 6, 7← input

4: for i = 0→ NumOfRowInMem 4 do

5: RowIndex, P ivotV alue← input

6: output[0]← RowIndex, P ivotV alue

7: for j = 0→ RowLength− 1 do

8: output[0]← input

9: end for

10: end for

11: for i = 0→ NumOfRowInMem 5 do

12: RowIndex, P ivotV alue← input

13: output[1]← RowIndex, P ivotV alue

14: for j = 0→ RowLength− 1 do

15: output[1]← input

16: end for

17: end for

18: for i = 0→ NumOfRowInMem 6 do

19: RowIndex, P ivotV alue← input

20: output[2]← RowIndex, P ivotV alue

21: for j = 0→ RowLength− 1 do

22: output[2]← input

23: end for

24: end for

25: for i = 0→ NumOfRowInMem 7 do

26: RowIndex, P ivotV alue← input

27: output[3]← RowIndex, P ivotV alue

28: for j = 0→ RowLength− 1 do

29: output[3]← input

30: end for

31: end for

32: end function
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4.4 Memory Architecture

4.4.1 InversionBigMem

As discussed in Chapter 3, there are 12 BigMems on KiloCore, and each of them has two

independent I/O ports. Figure 4.6 shows a memory interface that is used in InversionBigMem

architecture. Since each core only has two circuit-switched input ports, the buffer is a processor

used to collect data from two different sources and send it to the destination core through a single

port. In this architecture, all input data is stored in on-chip memory through MemControllers as

shown in Algorithm 5 and Algorithm 6. MemControllers store input data to the BigMem first

and then receive commands such as which row will be processed from logic control through packet

link. To reach a higher parallel ability, the MemController communicates with SubMemController

through packet link, and these two MemControllers can process two rows of data at the same time.

For example, if four rows are needed to be processed, the MemController will send the first two

rows of data to the computation block, and the SubMemController will send the last two rows to

computation blocks. Since the two controllers are working on different parts of memory, there is no

memory conflict during reading and writing. By instantiating more structures shown in Figure 4.6,

the program can invert a larger matrix and reach a higher parallel ability.

Algorithm 5 Pseudo code for MemController.

1: rank,NumOfRows← input

2: for i = 0→ NumOfRows do

3: inputs→Memory

4: end for

5: while 1 do

6: mode← PacketIn

7: if mode == Normalization then

8: RowIndex← LogicControl

9: Memory[RowIndex]→ Normalizationkernel . push a row of data from memory to

Normalization kernel

10: Memory[RowIndex]← NormalizationKernel . receive the processed data and write

back to memory

11: end if
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12: if mode == Elimination then

13: NumOfRow0 = NumOfRows÷ 2 . split data into half.

14: NumOfRow1 = NumOfRows−NumOfRow0

15: NumOfRow0, NumOfRow1→ SubMemController . ask the other port to process the

other half of data

16: for i = 0→ NumOfRow0 do

17: Memory[i]→ EliminationKernel

18: Memory[i]← EliminationKernel

19: end for

20: sync← SubMemController

21: end if

22: if mode == Check then

23: for i = 0→ NumOfRows do

24: Memory[i]→ Output

25: end for

26: end if

27: end while

Algorithm 6 Pseudo code for SubMemController.

1: NumOfRow0, NumOfRow1←MemController

2: for i = NumOfRow0→ NumOfRow1 do

3: Memory[i]→ EliminationKernel

4: Memory[i]← EliminationKernel

5: end for

6: sync→MemController

4.4.2 InversionExternalMem

The InversionExternalMem architecture has a two-level memory hierarchy shown in Fig-

ure 4.7. Data is loaded to the external memory first. The external memory has a 100 ns access

latency. During the computation phase, the External Memory Controller transfers a block of data to

the BigMem through the BigMemControllerA. After the transferring is done, BigMemControllerB

grabs data from BigMem to computation Blocks and updates BigMem with processed data. When
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Figure 4.6: The memory interface of InversionBigMem architecture for one BigMem. MemController,
SubMemController and Buffer are regular AsAP processors. Each AsAP processor can have two
input ports (memory link and circuit link) and one packet link. Buffer core is used to merge two
input ports into one. Instantiate more of this architecture can store a larger input matrix and
improve parallelism
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Figure 4.7: The memory interface of InversionExternalMem architecture. The figure shows the data
transfer between one BigMem and one External Memory port. The external memory has a 16-bit
I/O port with 100 ns access latency. To increase the bandwidth, instantiate more blocks like this.
ExternalMemController, BigMemControllerA and BigMemControllerB are regular AsAP processors.
Each AsAP processor can have two input ports (memory link and circuit link) and one packet link.
Packet link is only used to transfer some low throughput information.

all data in BigMem has been processed, BigMemControllerA sends data back to External Memory.

The Algorithm 7 shows the mechanism of how to access the external memory. The external memory

has a 64 KB max burst size, which equals the size of a BigMem. Since the data is stored and

processed in row-major, the memory is split into different blocks. Each block contains as many

rows as possible. During the Normalization phase, the external memory controller receives the pivot

row address, grab data from external memory, sends that row to the Normalization blocks and

receives the processed row from the Normalization block to update memory. During the Elimination

phase, the external memory controller transfers a block of data to Bigmem for computing. After

the computation is done, the external memory controller will transfer the processed data back and

transfer the next data block until all data has been processed.

The overall process of using on-chip BigMem as buffers to process the data can be split

into three steps. First, BigMemControllerA receives data from external memory, writes data
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to BigMem, and sends some flags to BigMemControllerB when the transfer is done. Secondly,

BigMemControllerB push data from BigMem to computation Kernel and update BigMem with

computed data. After updating all the data, send a ready flag back to BigMemControllerA. Lastly,

when controller A receives the flag, it sends all the data back to external memory. To reduce

the latency, instead of sending the start flag to BigMemControllerB after writing all the data to

BigMem, the BigMemControllerA sends the start flag after the first row has finished written to

the BigMem because writing to BigMem is faster than processing and updating the memory. The

detailed process is shown in Algorithm 8 and Algorithm 9.

Algorithm 7 Pseudo code for ExternalMemController.

1: TotalRows← input

2: BlockRows←MaxBurstSize÷RowLength

3: NumOfBlock ← TotalRows÷BlockRows

4: RemainingRows← TotalRows mod BlockRows

5: BurstSize← BlockRows×RowLength

6: for i = 0→ NumOfBlock do

7: StartAddress← i×BlockRows×RowLength

8: Memory ← write, StartAddress,BurstSize

9: for j = 0→ BurstSize do

10: Memory ← input

11: end for

12: end for

13: while 1 do

14: mode← LogicControl

15: if mode == Normalization then

16: RowIndex← LogicControl

17: Memory[RowIndex]→ Normalizationkernel

18: Memory[RowIndex]← NormalizationKernel

19: end if

20: if mode == Elimination then

21: for i = 0→ NumOfBlock do

22: StartAddress← i×BlockRows×RowLength
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23: Memory ← read, StartAddress,BurstSize

24: for j = 0→ BurstSize do

25: Memory → BigMemControllerA

26: end for

27: Memory ← write, StartAddress,BurstSize

28: for j = 0→ BurstSize do

29: Memory ← BigMemControllerA

30: end for

31: end for

32: end if

33: if mode == Check then

34: for i = 0→ NumOfBlock do

35: StartAddress← i×BlockRows×RowLength

36: Memory ← read, StartAddress,BurstSize

37: for j = 0→ BurstSize do

38: Memory ← output

39: end for

40: end for

41: break while loop

42: end if

43: end while

Algorithm 8 Pseudo code for BigMemControllerA.

1: NumOfRows,RowLength,BurstSize← ExternalMemController

2: write, StartAddress(0), BurstSize→ BigMem

3: for i = 0→ RowLength do

4: BigMem← ExternalMemController

5: end for

6: NumOfRows,RowLength→ BigMemControllerB

7: for i = 0→ BurstSize−RowLength do

8: BigMem← ExternalMemController

9: end for
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10: sync← BigMemControllerB

11: read, StartAddress(0), BurstSize→ BigMem

12: for i = 0→ BurstSize do

13: BigMem→ ExternalMemController

14: end for

Algorithm 9 Pseudo code for BigMemControllerB.

1: NumOfRows,RowLength← BigMemControllerA

2: for i = 0→ NumOfRows do

3: StartAdders← i×RowLength

4: BurstSize← RowLength

5: read, StartAddress,BurstSize→ BigMem

6: for j = 0→ BurstSize do

7: BigMem→ EliminationKernel

8: end for

9: write, StartAddress,BurstSize→ BigMem

10: for j = 0→ BurstSize do

11: BigMem← EliminationKernel

12: end for

13: end for

14: flag ready → BigMemControllerA

4.5 Sort

The Sort kernel obtains multiples data column-wise and returns the max absolute value

and its row index. In order to reduce the error, the row with the largest leading element needs to

be swapped to the next pivot location before starting the next iteration. As shown in Figure 4.8,

SortRange are the rows below the current pivot rows.

The Sort Kernel is shown in Algorithm 10. It gets rank and PivotIndex as configuration.

Based on these two variables, the SortRange can be calculated.

SortRange = Rank − PivotIndex (4.1)

Then, it runs a for loop with iteration equals SortRange. Each iteration reads in two values: the
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Figure 4.8: An example that shows the sort range for each iteration. The rank of the example
matrix is eight, and the current pivot index is 3. Before starting the next iteration, the Sort kernel
needs to find the element with the max absolute value in the red circle. That element with its
corresponding row will be the new pivot row in the next iteration.
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matrix element and its rowIndex and returns the max element and its corresponding index when

the iteration is done.

Algorithm 10 Pseudo code for sort kernel.

1: function sort(input,output)

2: Rank, pivotRow ← input

3: SortRange← Rank − PivotIndex

4: Max← 0

5: newPivotIndex← PivotIndex

6: for i = 0→ SortRange do

7: RowIndex, value← input

8: if abs(value) >= abs(max) then

9: max← value

10: newPivotIndex← RowIndex

11: end if

12: end for

13: Return max, newPivotIndex

14: end function

4.6 Logic Control

As discussed in Chapter 2, there are 4 phases in each iteration: finding pivot, row swap,

normalization, and elimination. Since there is a data dependency between each phase, these 4 phases

are done in sequence. The purpose of the logic control kernel is to maintain this sequence, send

commands to different processors, and sync with them. According to the Algorithm 11, the logic

control kernel first reads some information from the input, including the input matrix dimension and

the number of rows of data stored in each memory. Then, it starts an iteration with the size equals

the rank of the input matrix. In each iteration, the kernel will receive the new pivot value and

its row index, send a command to memory controllers to swap this row with pivot row, normalize

the pivot and do a row elimination. After the iteration is done, the kernel will send the command

to all the memory controllers to output the results from memories. Swapping the row in memory

requires a lot of time and energy. Instead of physically switching them in memory, the proposed
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implementation tracks each row’s address and only changes the RowIndex.

Algorithm 11 Pseudo code for logic control.

1: rank,RowsInEachMem← input

2: for i = 0→ rank do

3: newPivotRow, newPivot← input

4: memI ← findlocation(newPivotRow) . calculate which memory contains the data of new

pivot row

5: newPivot→ Div core

6: swap newPivotRow with row i→ memI . ask memI only swap the index of two rows

7: normalization→ memI . send command to memI to push the pivot row to normalization

chain

8: elimination→ mem 0, 1, 2, 3, 4, 5, 6, 7 . send command to all the memories to push data into

the elimination blocks in parallel

9: end for

10: output results→ mem 0, 1, 2, 3, 4, 5, 6, 7 . ask all memories to output the results

4.7 Computational Array

As discussed in Chapter 2, much computation is spent on updating all the elements

in an augmented matrix in each iteration. The calculation in each iteration can be split into

two-phase such as the Normalization phase and Elimination phase. The Algorithm 12 shows the

behaviour of the computation of a single iteration in a sequential version, and Figure 4.9 helps

to visualize the computation process. The proposed computational array is explicitly designed to

accelerate the computation process by distributing the work and computing in parallel. There is

no data dependency in each iteration while doing normalization and elimination. The proposed

implementation allocates the pivot row column-wise and distributes the workload both column-wise

and row-wise during the elimination phase. The computational array consists of a Normalization

chain and an Elimination array. The kernels used in the computational array are designed for

modularity. So, the array can be scaled to any dimension as long as the normalization chain’s length

equals the array’s length.

Algorithm 12 Pseudo code for computational array.

for j = pivot→ 2× rank do
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M [pivot][j] = M [pivot][j]/M [pivot][pivot]

end for

for i = 0→ rank do

if i ! = pivot then

for j = pivot→ 2× rank do

M [i][j] = M [i][j]−M [i][pivot]×M [pivot][j]

end for

end if

end for

Figure 4.9: The figure shows the computation process in the third iteration. a22 is the pivot element,
row 2 is called pivot row, and column 2 is called pivot column. The normalization phase is to
normalize the pivot row by scaling the pivot element to 1. The Elimination phase uses all other
rows to subtract the pivot row to eliminate the pivot column to 0.
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Figure 4.10: Block diagram of Normalization Chain.

4.7.1 Normalization Chain

There are three different kernels used in the Normalization chain, which are Normaliza-

tion First, Normalization Mid and Normalization End. All Kernels are designed for modularity. So,

the length of the chain can be scaled to any dimension depending on the data size. Since the data

is distributed to all the cores in the chain evenly, the chain’s length should not be greater than the

rank of the input matrix to avoid waste. The Figure 4.10 shows a sample implementation of the

chain with size 1×5.

The first core of the chain uses the kernel Normalization First which is shown in Algo-

rithm 13. It gets some configuration includes the length of pivot row saved as RowLength and the

reciprocal of pivot element saved as Factor. During the Normalization phase, instead of dividing

each element in the pivot row by the pivot value, multiplying each element with the pivot element’s

reciprocal can increase the computation efficiency because multiplication takes fewer cycles than

division. The user predefines the number of cores in the chain as NumOfCore. To distribute the

data, ProcessLength is sent to the right core in the chain. The first core in the chain calculates

some configuration flags and spread them to the other cores. Therefore the CoresLeft equals

the NumOfCores. After that, it will pass the pivot row from memory to the right cores, collect

processed data from the right, and write back to the memory.

CoreLeft = NumOfCores (4.2)

ProcessLength = Cell(
RowLength

NumOfCores
) (4.3)

Algorithm 13 Pseudo code for Normalization First.

RowLength, Factor ← input

CoresLeft← NumOfCores

ProcessLength← cell(RowLength÷NumOfCores)
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TrashCount← ProcessLength×NumOfCores − RowLength

ProcessLength,CoresLeft, Factor → OutputRight

for j = 0→ RowLength do

Memory → OutputRight

end for

for j = 0→ TrashCount do

0→ OutputRight

end for

RowLength, TrashCount→ OutputBottom

for j = 0→ RowLength do

InputRight→Memory

end for

for j = 0→ TrashCount do

InputRight→ Trash

end for

The Normalization Mid kernel, shown in Algorithm 14, reads in ProcessLength and

CoresLeft from left and calculate PassingLength, which indicates the number of data that needs

to be passed to the right. Each core gives the data and the configuration flags to the right cores

based on the calculated PassingLength and saves the rest of the data based on the Passinglength

to the processor’s data memory.

PassingLength = ProcessLength× CoresLeft (4.4)

When Data distribution is finished, each processor starts to process the data at the same

time. Then, collect the data from right to left. In the end, the calculated data will be sent to

Output Bottom to be used in the Elimination phase.

Algorithm 14 Pseudo code for Normalization Mid.

ProcessLength,CoresLeft, Factor ← InputLeft

CoresLeft = CoresLeft − 1

PassingLength = CoresLeft× ProcessLength

ProcLength, CoresLeft, Factor → outputRight

for j = 0→ PassingLength do
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InputLeft→ OutputRight

end for

for j = 0→ ProcessLength do

buffer[j]← InputLeft

end for

for j = 0→ ProcessLength do

buffer[j]← buffer[j]× factor

end for

for j = 0→ PassLength do

InputRight→ OutputLeft

end for

ProcLength, PassingLength→ OutputBottom

for j = 0→ ProcessLength do

buffer[j]→ OutputLeft

buffer[j]→ OutputBottom

end for

The Normalization End kernel, shown in Algorithm 15, is very similar to the Normaliza-

tion Mid kernel. The only difference is that it only receives data based on ProcessLength from the

left core and send this amount of data back to the left after processing them. Since the core is at

the end of the chain, and there is no core on the right, it only needs to send the computed data

back to the left and downward to the Elimination array.

Algorithm 15 Pseudo code for Normalization End.

ProcessLength,CoresLeft, Factor ← InputLeft

for j = 0→ ProcessLength do

buffer[j]← InputLeft

end for

for j = 0→ ProcessLength do

buffer[j]← buffer[j]× factor

end for

ProcLength, PassingLength→ OutputBottom

for j = 0→ ProcessLength do
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buffer[j]→ OutputLeft

buffer[j]→ OutputBottom

end for

4.7.2 Elimination Array

The elimination phase is the most time consuming and computation consuming part of the

overall inversion algorithm. The Algorithm 16 shows the purpose of the elimination phase, which is

a part of the code in Algorithm 1 elimination array is used to accelerate the computation in row

elimination. Since there is no data dependency, neither row-wise nor column-wise, unrolling the

loop and distributing the work to different cores is the best way to increase throughput. Elimination

array consists of an array of processors with dimension m× n. Since the implementation is designed

for modularity, the array can be scaled to any dimension easily. The parameter m is used to unroll

the loop i, which means m rows can be computed simultaneously. The parameter n is used to unroll

the loop j, which indicates that a row of data is distributed to j cores and computed simultaneously.

Ideally, if there is no communication delay between each core, the overall accelerate ratio is m× n.

The Figure 4.11 shows a simplified elimination array which dimension is 4× 5.

Algorithm 16 Row Elimination sequential version.

1: for i = 0→ rank do

2: for j = pivot→ 2 ∗ rank do

3: if i! = pivot then

4: M [i][j]←M [i][j]−M [i][pivot]×M [pivot][j]

5: end if

6: end for

7: end for

The first column of cores shown in Figure 4.11 as blue is used to calculate some configuration

flag and spread to other cores with data. The kernel Elimination First loaded to these cores is

shown in Algorithm 17.

Since the length of the elimination array is the same as the normalization chain’s length,

some configuration flags used in the normalization chain can be reused. The Elimination Mid kernel,

shown in Algorithm 18, reads ProcessLength, PassingLength and normalized pivot row data from

Input Top first and spreads downward. When a row of data comes in, the processors spread data to
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Figure 4.11: Example of a simplified elimination array with size 4× 5. The blue processors only
spread some configuration flags. The green and yellow cores process data simultaneously. Therefore,
ideally, the accelerate ratio is 16. Blue processors are loaded with Elimination First kernel, processors
in green colour are loaded with Elimination Mid kernel and processors in yellow colour are loaded
with Elimination End kernel.

the right based on PassingLength and store the rest of the data locally for computation. When

all locally stored data has been processed, each processor collects data from the left and sends the

locally processed data to the right. A modified version of the Elimination Mid kernel is loaded to

the last row of the elimination array. The only difference is that the the kernel loaded to the last

row does not spread data downward.

The Elimination End Kernel is loaded in the last column of the elimination array shown

in Algorithm 19. Like the Elimination Mid, it reads the normalized pivot row data from InputTop

and spreads the information downward. Since the kernel is loaded to the last column of the array, it

collects all processed data from the left and writes it back to the memory to update the matrix.

Also, if the current row is below the pivot, it needs to send the element in the next column and

RowIndex to the sort processor to find the next pivot row.
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Algorithm 17 Pseudo code for Elimination First.

1: DataCount, TrashCount← InputTop

2: DataCount, TrashCount→ OutputBottom

3: NumOfRows← InputLeft

4: for i = 0→ NumOfRows do

5: RowIndex, Factor ← InputLeft

6: for j = 0→ DataCount do

7: InputLeft→ OutputRight

8: end for

9: for j = 0→ TrashCount do

10: 0→ OutputRight

11: end for

12: end for
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Algorithm 18 Pseudo code for Elimination Mid.

1: ProcessLength, PassingLength← InputTop

2: ProcessLength, PassingLength→ OutputBottom

3: for i = 0→ ProcessLength do

4: refBuffer[i]← InputTop

5: refBuffer[i]← OutputBottom

6: end for

7: NumOfRows← InputLeft

8: for i = 0→ NumOfRows do

9: RowIndex, Factor,DataCount, TrashCount← InputLeft

10: RowIndex, Factor,DataCount, TrashCount→ OutputRight

11: CollectLength← DataCount+ TrashCount− PassingLength− ProcessLength

12: for j = 0→ PassingLength do

13: InputLeft→ OutputRight

14: end for

15: for j = 0→ ProcessLength do

16: rowBuffer[j]← InputLeft

17: end for

18: for j = 0→ ProcessLength do

19: rowBuffer[j] − factor × refBuffer[j]→ OutputRight

20: end for

21: for j = 0→ CollectLength do

22: InputLeft→ OutputRight

23: end for

24: end for
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Algorithm 19 Pseudo code for Elimination End.

1: ProcessLength← InputTop

2: ProcessLength→ OutputBottom

3: for i = 0→ ProcessLength do

4: refBuffer[i]← InputTop

5: refBuffer[i]← OutputBottom

6: end for

7: NumOfRows, P ivotIndex← InputLeft

8: for i = 0→ NumOfRows do

9: RowIndex, Factor,DataCount, TrashCount← InputLeft

10: CollectLength← DataCount− ProcessLength

11: for j = 0→ ProcessLength do

12: rowBuffer[j]← InputLeft

13: end for

14: for j = 0→ ProcessLength do

15: rowBuffer[j]← rowBuffer[j] − factor × refBuffer[j]→Memory

16: end for

17: for j = 0→ CollectLength do

18: InputLeft→Memory

19: end for

20: for j = 0→ CollectLength do

21: InputLeft→ Trash

22: end for

23: if RowIndex > PivotIndex then

24: RowIndex, rowBuffer[1]→ Sort Processor

25: end if

26: end for
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Chapter 5

Number Scaling in Matrix Inversion

Data scaling is very important for fixed-point processing. This chapter discusses how

numbers are scaled during the input quantization phase and calculation.

5.1 Input Quantization and Scaling

5.1.1 Quantization

Quantization is the process by which a high precision number is converted to a lower-

precision shorter-word number. It is necessary for our application, so data can be efficiently processed

in binary fixed point words that do not waste computational and memory resources. A value of a

fixed point data type is just an integer that is scaled by an implicit factor defined by users. For

example, 3.14 is represented as 3140 in a fixed point data type with a scaling factor of 1/1000 or

represented as 314 with a scaling factor of 1/100. For computational efficiency, the scaling factor in

the computer is set to the power of 2.

Fixed value = round to int(decimal value× 2FWL) (5.1)

decimal value = fixed value× 2−FWL (5.2)

The Eq. 5.1 and Eq. 5.2 shows how to convert a decimal number to a binary fixed number and how

to convert a fixed number back to a decimal number. FWL indicates the fraction word length. This

thesis uses 8.8 for 16-bit fixed point and 16.16 for 32-bit fixed point. As discussed in Chapter 2,

8.8 means for a 16-bit two’s complement, 8 bits represent the fraction parts. Similarly, for a 32-bit
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2’s complement, 16 bits are used to represent fraction parts. Therefore, the fraction word length

(FWL) for 16-bit is eight and for 32-bit is 16.

5.1.2 Input Scaling

The fixed point does not have a large dynamic range as a floating point. Therefore, the

input needs to be scaled before the calculation starts to avoid overflow and increase the accuracy.

For the input matrix A, AA−1 = I. If A is scaled by a factor of K, the inverse A−1 should be scaled

by a factor of 1
K to hold the equality shown in Eq. 5.3. X is the scaled input that will be pushed to

the program, and X−1 is the calculated result. To get the exact result A−1, the calculated results

X−1need to be multiplied by the scaling factor K shown in Eq. 5.6.

KA ∗ 1

K
A−1 = I (5.3)

X = KA (5.4)

X−1 =
1

K
A−1 (5.5)

A−1 = KX−1 (5.6)

5.2 Scaling During Calculation

Fixed point multiplication is the same as 2’s complement integer multiplication but requires

the implicit decimal point’s position to be determined after the multiplication to interpret the

correct result.

Product = (Multiplicand×Multiplier) >> FWL (5.7)

For example, if two 8.8 fixed point numbers multiply together, the whole product is 32-bit, in which

16 bits are integer part, and 16 bits are fraction part. To make the output still in 8.8 format, this

complete product needs to be scaled by rounding the last 8 bits and truncate them. Then, check if

the remaining 24-bit overflow. If not, throw the first 8 bits and save the last 16 bits as output. If it

overflows, the program will raise an exception and print out the error message.

Fixed point division is a bit more complicated than fixed point multiplication and usually

takes much more cycles than performing a multiplication. The method is similar to integer division.

If both dividend and divisor have the same fraction word length (FWL), the dividend needs to be
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shift left by FWL bits to make the result has the same fraction word length. The equation is shown

below.

Quotient = (dividend << FWL)÷ divisor (5.8)

For the division, the overflow exception checking is before the calculation. In the matrix inversion,

the division will only be used to calculate reciprocal, which means the dividend is always one. The

smallest resolution of a 16-bit fixed point with 8.8 format is 1/256, but the largest absolute value of

a 16-bit fixed point is 128. Therefore, if the divisor is 0 or 1/256, the division will raise an exception.

During the calculation, if there is an overflow, the program will raise the exception by

printing out the error message and stop. To deal with the exception, users need to either scale down

the input or change the data type. Here is what I believe should be done if anyone wants to use

the proposed Matrix Inversion code for a real application that needs to do matrix inversion. First,

scale the input to the appropriate range. Users can scale down the input if there is an overflow

exception and if the quantization loss is not too much. If an overflow exception still occurs, users

can try more complex data types. For example, if they currently use a 16-bit fixed point, they can

switch to use 32-bit fixed point. If currently using a 32-bit fixed point, users can switch to use 32-bit

single-precision float point.

5.3 Experiment and Results

5.3.1 16-bit Fixed Point

In this section, five different data sets with single precision will be applied to test the 16-bit

fixed point accuracy. Each data set contains ten randomly generated matrices with the same matrix

size and data range. The condition number of all randomly generated matrices are limited to 100.

Matrices are generated in Matlab, shown below. The input matrix A is generated with size N ×N

and range [−range, range] through Eq.5.9. The condition number is controlled by using Eq.5.10

and Eq.5.11. Apply the SVD decomposition of matrix A, and s is a diagonal matrix vector. Since

condition number is defined by the largest diagonal divide by the smallest diagonal, Eq. 5.11 is used

to linearly stretch the diagonal to ensure the condition number (c). After modifying the diagonal

matrix, multiply the U, s and V together to generate the matrix A using Eq. 5.12. By doing this,
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both the range and condition number of the randomly generated matrices can be controlled.

A = 2× range× rand(N,N)− range (5.9)

[U, s, V ] = svd(A) (5.10)

s = s(1)× (1− c− 1

c
× (s(1)− s)
s(1)− s(end)

) (5.11)

A = U × s× V (5.12)

The matrices used to test the 16-bit fixed point accuracy is shown in Table 5.1. These matrices are

converted to fixed point and scaled to different ranges during the calculation to discover the best

scaling factor for a 16-bit fixed point with 8.8 two’s complement. The accuracy of the calculated

Table 5.1: Data set information for 16-bit fixed point

Data set number Matrix size Data range

0 100x100 [-1,1]

1 100x100 [-2,2]

2 100x100 [-4,4]

3 100x100 [-8,8]

4 100x100 [-16,16]

results is evaluated by using relative error shown in Eq. 5.13. inv(A) is the inversed matrix calculated

by using Matlab’s built-in function inv(). This thesis measures every matrix’s relative error and

calculates the average of the relative errors for each data set. The results are shown in Figure 5.1.

According to the figure, use the blue line as an example. The original input range is [-16,16] and

the lowest relative error occurs when the scaling factor is 1/8, which means the input is scaled to

[-2,2] (16×1/8 = 2) before the calculation. As shown in Figure 5.1, the calculated results have the

best accuracy when input is scaled to [-2,2], and there is no overflow when the input is scaled to

this range.

relative error =
||A−1 − inv(A)||
||inv(A)||

× 100% (5.13)
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Figure 5.1: Matrices with different data ranges for 16-bit fixed version. Before the calculation, the
input is scaled to different ranges. If the scaling factor equals one, the data is not scaled. If the
scaling factor equals 1/2, the data is scaled to half of its original value before the calculation starts.
The figure shows the relative error with the different scaling factors being used. Lower is better.
The legend shows the original data range of each data set. The x-axis shows the scaling factor. The
product of these two numbers is the scaled data range before the calculation.

5.3.2 32-bit Fixed Point

This thesis uses 16.16 two’s complement for the 32-bit fixed point, which has a larger input

range and has a smaller resolution than the 16-bit fixed point. Therefore, another 4 data sets shown

in Table 5.2 are used to find the appropriate input scaling.

The results are shown in Figure 5.2. The original data range is shown in the legend. For

example, the blue line in the figure indicates the original data range is from [-2048,2048] and when

the scaling factor is 1/1024 the relative error reachs its minimum, which means the data is scaled to

[-2,2] (1/1024 × 2048 =2). According to the Figure 5.2, for most of cases, input should be scaled to

[-2,2] to reach the best accuracy. Similar to the reciprocal calculation, if the input matrix is ten
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Data set number Matrix size Data range

0 100x100 [-2048,2048]

1 100x100 [-4096,4096]

2 100x100 [-8192,8192]

3 100x100 [-16384,16384]

Table 5.2: Data set information for 32-bit fixed point

times larger, the inverse is ten times smaller. The calculated output is too small for some large

input to be represented by 16-bit fraction word length without scaling. So by scaling the input to a

small range, the relative error is decreased. However, if the input is scaled too small, the input loss

will be dominant. Therefore, based on the experiment, the data should be scaled to [-2,2] to reach

the best accuracy for most of the cases.
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Figure 5.2: Matrices with different data ranges for 32-bit fixed version. Before the calculation, the
input is scaled to different ranges. If the scaling factor equals one, the data is not scaled. If the
scaling factor equals 1/2, the data is scaled to half of its original value. The figure shows the relative
error with the different scaling factors being used. Lower is better. The legend shows the original
data range of each data set. The x-axis shows the scaling factor. The product of these two numbers
is the scaled data range before the calculation.
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Chapter 6

Comparison of Matrix Inversion

Methods on AsAP3

As mentioned in Chapter 1, the energy-efficient matrix inversion on multi- and many-core

platforms have been a keen research interest. This interest, coupled with the ever-increasing number

of processor cores per general processing chip, has led me to focus on using many-core processor

arrays for matrix inversion.

Throughput data for the implementations on the many-core platform (AsAP3) are obtained

with a cycle-accurate C++ simulator. Power measurements from the 32 nm PD-SOI CMOS fabricated

chip are input to the simulator to obtain power data. The precision results are obtained by converting

the simulator’s output from 16-bit and 32-bit fixed point back to the floating point and compared

with the golden reference. The reference is generated using the Matlab built-in inv() function. Two

important features are tested and calculated for all matrix inversion implementations: throughput

per watt and output accuracy;

Throughput per watt is useful for selecting the most energy-efficient matrix inversion

option, which is the bottleneck for implementing scientific applications on many-core or multi-core

platforms. Since the area is the same for all the implementations on the many-core platform

(AsAP3), throughput per area is not included in this comparison. Throughput per area is presented

in the next chapter to compare against the designs on other platforms.

Throughput =
Number Of Inverted matrices

Execution T ime
(6.1)

For each implementation, the throughput is calculated by dividing the total number of inverted
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matrices by the execution time. Therefore the unit is matrix inversion per second (MatInv/sec).

The accuracy is useful for selecting the appropriate data type used in different scenarios in

real-life problems. The long data type, such as double or single float points, has a higher accuracy but

slow computation. The evaluation of accuracy helps find a balance point between the performance

and the accuracy, shown in section 6.3.

6.1 Performance Comparison between Implementations on

AsAP3

For Power efficient comparison between different implementations on AsAP3, five metrics

with different dimensions are used, and the results are shown in Table 6.1. The proposed 16-bit fixed

point uses only on-chip memory, which has the best throughput per energy performance. However,

due to the limitation of on-chip memory size, it only supports matrices smaller than 320×320. The

32-bit fixed point version and 32-bit float version use external memory. They can invert much larger

matrices compare to the 16-bit version but slower in computation. As the matrix size increases, the

external memory I/O becomes the bottleneck of the overall program. Therefore, the throughput per

energy between the 32-bit fixed point and 32-bit float point versions does not have big differences.

Table 6.1: Throughput per watt for different many-core implementations with various input matrices.
The unit is MatInv/sec/W, which is matrix inversion per second per W.

matrix size InversionBigMem InversionExternalMem InversionExternalMem

16-bit fixed point 32-bit fixed point 32-bit float point

100×100 263.16 73.86 65.19

200×200 32.11 10.50 9.41

300×300 9.93 3.25 2.99

400×400 — 1.40 1.28

500×500 — 0.71 0.65
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6.2 Error Analysis and Precision

There are two types of error introduced in matrix inversion: quantization error and round

off error. Quantization error is introduced when a decimal float number is converted to a binary

fixed number. Round off error is introduced when computer rounds off in each step during the

calculation of inverse. This section discusses how far the computer answer is from the real answer.

6.2.1 Condition Number

A condition number of a problem measures the solution’s sensitivity to small perturbations

in the input data [16]. In the matrix inversion problem, the condition number indicates how accurate

the computed result is. A matrix A is ill-conditioned if relatively small changes in the input (matrix

A) can cause a large change in the output (A−1), which means a small roundoff error can have a

drastic effect on the result. However, if the matrix is well-conditioned, then the computed solution

is quite accurate. Thus, the accuracy of the solution depends on the condition number of the matrix.

An example shown in (6.2) and (6.3) indicates the accuracy is affected by a large condition number.

The condition number of matrix A equals 1,623 which is calculated by using built-in function cond()

in Matlab. Matrix B is modeled as Matrix A plus a little error. The error can be introduced during

the quantization stage when the input data is represented by a fixed-point. As shown in (6.3), invA

is the exact value for A−1 calculated by using inv() in Matlab and invB is also calculated in Matlab.

Since the condition number of A is large, the output changed dramatically (the difference between

invA and invB) even if a small roundoff error is introduced in the input (the difference between A

and B).

A =

 4.1 2.8

9.7 6.6

, B =

 4.1 2.8

9.671 6.608

 (6.2)

invA =

 −66 28

97 41

, invB =

 472 −200

−690.7857 292.8571

 (6.3)

The condition number of a matrix is calculated by using Eq. 6.4 where || || is the norm of

matrix.

cond(A) = ||A|| × ||A−1|| (6.4)
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If matrix A is nonsingular, SVD decomposition can be used to calculate condition number as shown

below where σmax is the largest value in the diagonal matrix and σmin is the minimum value in the

diagonal matrix.

cond(A) =
σmax

σmin
(6.5)

6.2.2 Residual and Accuracy

Let x be the solution of AX = I, where A is the input matrix, I is the identity matrix, and

X is the calculated version of A−1. Generally, it is hard to verify the error because we cannot get

exact result of A−1. So, this thesis uses a complete method which includes left residual (6.6), right

residual (6.7) and direct error (6.8) to evaluate the accuracy which is suggested by [17] and [18].

inv(A) is calculated by using Matlab’s built-in function inv().

left residual = AX − I (6.6)

right residual = XA− I (6.7)

direct error = X − inv(A) (6.8)

To evaluate the precision, all three methods are used to compared with tolerance for every

element in a matrix. If both left and right residual and direct errors are smaller than a tolerance, I

will reduce the tolerance until the smallest tolerance.

6.3 Accuracy Comparison between Different Data Types

For Accuracy comparison between different data types, a total of 16 different data sets,

whose condition numbers are from 50 to 300 and matrix size are from 50 to 300, is used to evaluate

the accuracy. Each data set contains ten different test cases, which are generated randomly by using

the equations from Eq. 5.9 to Eq. 5.12. Therefore, 160 matrices in total are used. All test cases

are scaled properly for different data types to ensure there is no overflow during the calculation.

Left residual (6.6), right residual (6.7)and direct error (6.8) are measured for each test case and

compared with tolerance. Tolerance is denoted as ek = 2−k, where k = 1, 2, ..., 8, 9. If all of the left

residual, right residual, and absolute error for every element in the matrix are below the tolerance,

this test case is considered successful. The results are shown in Table 6.2, Table 6.3 and Table 6.4.

As the size and condition number increasing, the error also increases. 16-bit fixed point has an
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acceptable error only when the matrix size and condition number are small. The 32-bit fixed point

can maintain a low error, less than 2−7, for all test cases. The single-precision 32-bit floating point

has the best accuracy, which is lower than 2−9 for all test cases.

Matrix Size 50×50 100×100 200×200

Condition # 50 100 200 300 50 100 200 300 50 100 200 300

e1 10 10 5 2 10 10 1 0 0 0 0 0

e2 10 4 0 0 0 0 0 0 0 0 0 0

e3 0 0 0 0 0 0 0 0 0 0 0 0

Table 6.2: The accuracy of using the 16-bit fixed point implementation. Each unique matrix size
and condition number contains ten different randomly generated matrices. Ten means all test cases
are passed. A test case is considered as passed when both direct error and residual are smaller than
the tolerance. Tolerance is denoted as ek = 2−k, where k = 1, 2, ..., 8, 9. For example, e1 means
the largest error is not above 2−1 and e3 means the largest error is not above 2−3. 0.5 is a large
tolerance but most test cases are failed especially when the condition number and matrix sizes
increase. Therefore, it is not usable practically.

The Figure 6.1, Figure 6.2 and Figure 6.3 show the detailed right residual error information

based on a worst-case which is a 300×300 matrix with 300 condition number for 16-bit fixed point

(i16), 32-bit fixed point (i32), and 32-bit float point (f32). The method use 32-bit float point has

perfect accuracy. For the 32-bit fixed point, the residual is still very low. However, due to data

size limitation, the 16-bit fixed point cannot keep a good accuracy because the roundoff error and

quantization error have a big effect on the calculated results when matrix size and condition number

increase.

6.4 Summary

InversionBigMem i16 uses the 16-bit fixed point has the highest throughput per energy.

However, it cannot keep a good accuracy due to the data size limitations. So, the 16-bit fixed point

with 8.8 format is not usable practically without some additional hardware.

InversionExternalMem f32 uses the 32-bit float point that has the best accuracy among

three data types. Also, with the usage of external memory, the implementation can take a much

larger sized matrix. This implementation is used in the next chapter to be compared with the

implementations on other platforms.
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Matrix Size 100×100 200×200 300×300

Condition # 50 100 200 300 50 100 200 300 50 100 200 300

e1 10 10 10 10 10 10 10 10 10 10 10 10

e2 10 10 10 10 10 10 10 10 10 10 10 10

e3 10 10 10 10 10 10 10 10 10 10 10 10

e4 10 10 10 10 10 10 10 10 10 10 10 10

e5 10 10 10 10 10 10 10 10 10 10 10 10

e6 10 10 10 10 10 10 10 10 10 10 10 10

e7 10 10 10 9 10 10 10 8 9 10 5 1

e8 10 9 2 1 0 0 0 0 0 0 0 0

e9 1 0 0 0 0 0 0 0 0 0 0 0

Table 6.3: The accuracy of using the 32-bit fixed point implementation. Each unique matrix size
and condition number contains ten different randomly generated matrices. Ten means all test cases
are passed. A test case is considered as passed when both direct error and residual are smaller than
the tolerance. Tolerance is denoted as ek = 2−k, where k = 1, 2, ..., 8, 9. For example, e1 means the
largest error is not above 2−1 and e9 means the largest error is not above 2−9. For all test cases
the max error is not greater than 2−6. It can be used if a real application does not need very high
precision.
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Matrix Size 100×100 200×200 300×300

Condition # 50 100 200 300 50 100 200 300 50 100 200 300

e1 10 10 10 10 10 10 10 10 10 10 10 10

e2 10 10 10 10 10 10 10 10 10 10 10 10

e3 10 10 10 10 10 10 10 10 10 10 10 10

e4 10 10 10 10 10 10 10 10 10 10 10 10

e5 10 10 10 10 10 10 10 10 10 10 10 10

e6 10 10 10 10 10 10 10 10 10 10 10 10

e7 10 10 10 10 10 10 10 10 10 10 10 10

e8 10 10 10 10 10 10 10 10 10 10 10 10

e9 10 10 10 10 10 10 10 10 10 10 10 10

Table 6.4: The accuracy of using the 32-bit float point implementation. Each unique matrix size
and condition number contains ten different randomly generated matrices. Ten means all test cases
are passed. A test case is considered as passed when both dierect error and residual are smaller
than the tolerance. Tolerance is denoted as ek = 2−k, where k = 1, 2, ..., 8, 9. For example, e1 means
the largest error is not above 2−1 and e9 means the largest error is not above 2−9. For all test cases
the max error is not greater than 2−9, which is the most accurate one among all three data types.
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Figure 6.1: The residual of a 300×300 matrix with 300 condition number by using 16-bit fixed point
with 8.8 format. It has the largest condition number and matrix size, which is considered as the
worst-case of all data sets. The first plot does not show any similar pattern to the identity matrix
and both difference (the third plot) and ratio (the fourth plot) is very large. Therefore, the 16-bit
fixed point is not usage practically for now.

InversionExternalMem i32 uses the 32-bit fixed point that combines the advantage of

float version and 16-bit version. It has acceptable accuracy for the condition number below 300 and

has a better throughput per watt than the floating point.
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Figure 6.2: The residual of a 300×300 matrix with 300 condition number by using 32-bit fixed point
with 16.16 format. It has the largest condition number and matrix size, which is considered as the
worst-case of all data sets. The first plot shows the result is very close to the identity matrix and
both difference (the third plot) and ratio (the fourth plot) is very small. Therefore, the 32-bit fixed
point can keep a good accuracy.
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Figure 6.3: The residual of a 300×300 matrix with 300 condition number by using 32-bit float point.
It has the largest condition number and matrix size, which is considered as the worst-case of all
data sets. The first plot shows the result is very close to the identity matrix and both difference
(the third plot) and ratio (the fourth plot) are smaller than 32-bit fixed point. Therefore, the 32-bit
float point has a higher accuracy than the 32-bit fixed point.
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Chapter 7

Comparison of Matrix Inversion

Methods on AsAP3 with

General-Purpose Processor and GPU

7.1 Matrix Inversion Data Set

For performance comparison between the implementation on the many-core platform

(implementation uses off-chip memory with 32-bit float point data type) and others (general-purpose

processor and GPU), five matrices with different dimensions are used (from 100× 100 to 500× 500).

All matrices are generated randomly in single-precision 32-bit IEEE-754 format by using Eq. 7.1 in

Matlab. N is the matrix size and each element in the matrix is bounded by [−range, range]. Since

the accuracy is analyzed in the previous section, the data range in this section is just set to [-1,1] to

evaluate the performance.

A = 2× range× rand(N,N)− range (7.1)

7.2 Matrix Library

To ensure a fair comparison of performance between the method on AsAP3 and other

platforms, LAPACK [19] for Windows in C on the general-purpose processor and CUDA cuBLAS [20]

on the GPU are used in this thesis. The evaluation precision of all benchmarks is the single-precision
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floating-point (32-bit). This thesis compares against the matrix inversion implementations provided

by LAPACK open-source library in C and NVIDIA’s cuBLAS.

7.3 Measurement and Simulation Methodology

The general-purpose processor used for comparison is the Intel Core i7-9700k, and its

specifications are shown in Table 7.1. The GPU used for matrix inversion is the Nvidia GTX 1070,

and its specifications are shown in Table 7.1.

Chip Technology(nm) TDP(W) Die Area(mm2) Clock Rate(GHz)

Intel Core-i7 9700k 14 95 149 4.7

NVIDIA GTX1070-8G 16 150 314 1.5

Table 7.1: Details of general-purpose processor and GPU utilized for matrix inversion comparison.

Throughput data for implementations on the many-core platform is obtained from a

cycle-accurate simulator, customized for AsAP3 (KiloCore) [1]. The chip is fabricated by a 32 nm

CMOS PD-SOI technology, and this model is the input for the simulator to obtain power data. The

chip power measurement is under the working condition at 0.9V and 1.8 GHz.

Throughput is calculated as the reciprocal of the difference of the last output times between

two consecutive matrices as shown in Eq. 7.2, where LastOutputT imei is the last output time of

the ith matrix.

Throughput =
1

LastOutputT imei+1 − LastOutputT imei
(7.2)

The area is calculated as the sum of the areas of all the processors and on-chip memory modules as

in Eq. 7.3, where nProcs and nMems are the number of processors and memory modules in the

many-core implementation.

Area = nProc× 0.055 + nMem× 0.164 (7.3)

Throughput per area is calculated as the throughput divided by area and is given by Eq. 7.4

ThroughputPerArea =
Throughput

Area
(7.4)

Table 7.2 shows the raw simulation results of matrices with different sizes on the proposed

many-core implementation. The many-core implementation has 635 processors and eight on-chip
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Matrix Size
Throughput

(MatInv/sec)

Energy per Matrix Inversion

(mJ/Matrix)

Area

(mm2)

100×100 189.04 15.34 36.24

200×200 27.07 106.25 36.24

300×300 8.20 334.01 36.24

400×400 3.50 779.9 36.24

500×500 1.78 1543.57 36.24

Table 7.2: Multiple matrices simulation results for the many-core implementation. All results are
unscaled raw data in 32 nm CMOS.

memory modules. The total area calculated using Eq. 7.3 is 36.24 mm2. Also, this implementation

uses eight off-chip memory modules which have 100 ns latency. When the input sizes increase, the

off-chip memory access frequency also increases which lowers the throughput.

The throughput per area (MatInv/sec/mm2) and matrix inversions per energy (MatInv/J)

will be measured and calculated for all matrix inversion implementations on various platforms

under different matrix sizes. The general-purpose throughput data is gathered from a built-in

implementation in LAPACK, an open-source library for linear algebra. The power consumption

is estimated using half of the thermal design power (TDP/2) [21]. The GPU throughput data is

collected from the CUDA using the implementation in the cuBlas library, and power consumption is

estimated using half of the thermal design power (TDP/2). The energy dissipation on general-purpose

and GPU is estimated and calculated by using Eq. 7.5

EnergyDissipation = Power × Execution time (7.5)

For all implementations, the execution time is measured from the start of reading the

input to completing all the calculations. For general-purpose processor-based implementation, this

includes the time to read the input matrix but excludes the time to save the output into a file.

GPU-based implementations consist of the time to load data from host memory to device memory

but do not include the time to write back. For many-core implementations, this includes reading

time and the time to output the results to a file.

Due to the different fabrication technologies used, throughput, die area, and energy are

scaled to 14 nm values for AsAP3 and GPU implementations. The scaling factors are chosen by
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using the characteristics of different technology nodes which are suggested by [22] and [23]. The

scaled data is calculated by using the Eq. 7.6. The estimated scaling factor used in this thesis is

shown in Table 7.3.

ScaledData(14nm) = RawData× ScalingFactor (7.6)

Technology of Raw Data

(nm)
Delay Energy Area

32 0.410 0.282 0.38

16 0.657 0.805 0.91

Table 7.3: The scaling factor used to convert original raw data to 14nm numbers. For example, the
second row indicates the scaling factors used to scale the data from 32 nm to 14 nm.

7.4 Comparison with Other Work

Figure 7.1: Scaled Throughput per Area for different sized matrices on different platforms. Higher
is better. Source data is given in Table 7.4.

The proposed many-core matrix inversion implementation is simulated by using different

sizes of input matrices. As shown in Table 7.4, the proposed implementation has the highest
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Figure 7.2: Scaled relative Throughput per Area of the implementation on AsAP3 vs the implemen-
tations on GPU and general-purpose processor. Source data is given in Table 7.4

throughput per area on all tested matrix sizes. The many-core platform implementation increases

throughput per area by a 3.7–19× versus GPU and a 20–60× versus general-purpose processor. The

matrix inversions per energy on the proposed implementation is improved by 8.5–41× versus the

GPU and 45–131× versus the general-purpose processor, which is shown in Table 7.5.

Since the complexity of inverting a matrix is O(N3), the throughput decreases dramatically

when the input matrix size increases. The many-core implementation uses external off-chip memories

whihc has 100 ns latency. When the matrix sizes increase, off-chip memory access frequency also

increases in each iteration during the calculation, which is another reason that leads to lower

throughput. The Figure 7.1 indicates the throughput per area on different platforms, and the

implementation on AsAP3 has a better performance on all input matrix sizes. The throughput per

area speed up ratio is shown in Figure 7.2. When the input matrix size becomes larger, the speedup

ratio decreases because the on-chip memory is very limited compared to the GPU and general-

purpose processors. The frequent data transfer between on-chip memory and external off-chip

memory lowers the performance on very large-sized input matrices. However, as the input matrix

keeps increasing, GPU and general-purpose processors ran out of the first-level cache. Therefore the

speedup ratio remains stable when the input matrix size greater than 300, as shown in Figure 7.2.
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The implementation on AsAP3 also offers the highest matrix inversions per energy for all matrix

sizes compares to the implementation on the GPU and the general-purpose processor, which is

shown in Figure 7.3.

Figure 7.3: Matrix inversions per energy for different sized matrices on different platforms. Higher
is better. Source data is given in Table 7.5.
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Matrix Size Platform
Technology

(nm)

Scaled

Throughput

(MatInv/sec)

Area

Scaled to 14nm

(mm2)

Scaled

Throughput per Area

(MatInv/sec/mm2)

Scaled

Relative Throughput

per Area

AsAP3 32 461.06 13.77 33.48 59.86

GTX1070

CUDA cuBlas
16 507.36 285.74 1.78 3.17

100×100
i7-9700k

LAPACK
14 83.33 149 0.56 1

AsAP3 32 66.03 13.77 4.79 30.00

GTX1070

CUDA cuBlas
16 217.44 285.74 0.76 4.76

200×200
i7-9700k

LAPACK
14 23.81 149 0.16 1

AsAP3 32 20.01 13.77 1.45 21.87

GTX1070

CUDA cuBlas
16 95.13 285.74 0.33 5.01

300×300
i7-9700k

LAPACK
14 9.90 149 0.07 1

AsAP3 32 8.55 13.77 0.62 19.99

GTX1070

CUDA cuBlas
16 47.56 285.74 0.17 5.36

400×400
i7-9700k

LAPACK
14 4.63 149 0.03 1

AsAP3 32 4.35 13.77 0.31 19.45

GTX1070

CUDA cuBlas
16 24.55 285.74 0.09 5.29

500×500
i7-9700k

LAPACK
14 2.42 149 0.02 1

Table 7.4: Comparison of fabrication technology, key throughput and area across 5 matrix sizes for
three hardware platforms. Throughput and area data are scaled to 14 nm CMOS. Throughput is
measured as matrix inversions per second (MatInv/sec). Raw data is given in Table 7.2.
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Matrix Size Platform
Technology

(nm)

Scaled

Matrix Inversions per Energy

(MatInv/J)

Scaled Relative

Matrix Inversions per Energy

AsAP3 32 231.17 131.77

GTX1070

CUDA cuBlas
16 5.52 3.15

100×100
i7-9700k

LAPACK
14 1.75 1

AsAP3 32 33.38 66.58

GTX1070

CUDA cuBlas
16 2.37 4.72

200×200
i7-9700k

LAPACK
14 0.50 1

AsAP3 32 10.62 50.93

GTX1070

CUDA cuBlas
16 1.04 4.97

300×300
i7-9700k

LAPACK
14 0.21 1

AsAP3 32 4.55 46.65

GTX1070

CUDA cuBlas
16 0.52 5.31

400×400
i7-9700k

LAPACK
14 0.10 1

AsAP3 32 2.30 45.07

GTX1070

CUDA cuBlas
16 0.27 5.24

500×500
i7-9700k

LAPACK
14 0.05 1

Table 7.5: Matrix inversions per energy for various platforms. To ensure a fair comparison, numbers
in column 4 and column 5 are scaled to 14 nm CMOS. The many-core implementation offers the
highest matrix inversions per energy on all different matrix sizes. Raw data is given in Table 7.2.
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Chapter 8

Thesis Summary and Future Work

8.1 Thesis Summary

This thesis summarizes the current research and challenges in computing the inversion

of large matrices. The algorithm’s background to invert a matrix and the data type used in the

proposed implementations are reviewed. The target platform, a large 2D mesh architecture indicated

as AsAP3 (KiloCore), is given.

It continues to demonstrate and explore the matrix implementations on a many-core

platform (AsAP3). Two architectures, InversionBigMem and InversionExternalMem, and three

different data types are introduced. Also, all unique programs that are loaded to the cores

are explained. Accuracy between different data types is evaluated to find the trade-off between

performance and accuracy.

To measure against matrix inversion implementations on general-purpose processors and

GPU, LAPACK and CUDA are used for the benchmark. The evaluation precision of all benchmarks

is single-precision 32-bit IEEE-754 format. Throughput per Area and Matrix Inversions per Energy

of all implementations are measured for inverting any random dense matrices with varying sizes.

The many-core implementation offers an improvement in Throughput per Area by 3.7–19× versus

GPU based design and 20–60× versus the general-purpose processor based design. The many-core

implementation also offers the Matrix Inversions per Energy with an improvement of 8.5–41× versus

GPU and 45–131× versus general-purpose processor.
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8.2 Future Work

The proposed implementation based on a 16-bit version can offer a very high throughput

per watt performance compare to the 32-bit version. However, the accuracy of a large matrix is

poor by using the 16-bit fixed point. Therefore, a half-precision float point is a good alternative

data type used in matrix inversion.

Half-precision or float16 is a relatively new floating-point data type that uses 16-bit, unlike

traditional 32-bit single-precision or 64-bit double-precision data types. According to IEEE 754

standard [24], there are 10-bit for the mantissa, 5-bit for the exponent and 1 bit for the sign, which

shows in the Figure 8.1.

Figure 8.1: IEEE 754 half-precision format

The proposed algorithm has been implemented on Matlab to discover the potential of the

16-bit half-precision float point. The same data sets as mentioned in chapter 6 are used to test how

accurate it is. The results are shown in Table 8.1.

Based on the simulation results, the half-precision floating point can keep a relatively high

accuracy (less than 2−3) even if the matrix size and condition number are large. Therefore, the next

step will be implementing the matrix inversion by using 16-bit half-precision floating point.

Matrix inversion is widely used as an intermediate step of many applications. This thesis

analyzes the accuracy of different data types such as 16-bit fixed point, 32-bit fixed-point, 16-bit

float point (not implemented) and 32-bit float point. To use this matrix inversion calculator, users

need to choose the appropriate data type based on the real applications’ accuracy requirement. If

there is an overflow during the calculation, the program will print out the error message and stop.

Users need to scaled-down the input or change to use other data types manually. For example,

switch from 16-bit to 32-bit. Therefore, the next step is to integrate all these data types together

and deal with the overflow exception automatically. For example, if the 16-bit fixed point is used

and overflow occurs, only use 32-bit for this overflowed element and continue. By doing this, most

of the elements are still 16-bit, and only a few elements in the matrix are 32-bit, which can keep
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Matrix Size 100×100 200×200 300×300

Condition # 50 100 200 300 50 100 200 300 50 100 200 300

e1 10 10 10 10 10 10 10 10 10 10 10 10

e2 10 10 10 10 10 10 10 10 10 10 10 10

e3 10 10 10 10 10 10 10 10 10 10 10 10

e4 10 10 7 2 10 10 7 4 10 10 7 0

e5 10 10 0 0 10 8 0 0 10 2 0 0

e6 6 0 0 0 0 0 0 0 0 0 0 0

e7 0 0 0 0 0 0 0 0 0 0 0 0

Table 8.1: The accuracy of using 16-bit half-precision floating point. Each unique matrix size and
condition number contains ten different randomly generated matrices. Ten means all test cases are
passed. A test case is considered as passed when both direct error and residual are smaller than
the tolerance. Tolerance is denoted as ek = 2−k, where k = 1, 2, ..., 8, 9. For example, e1 means the
largest error is not above 2−1 and e7 means the largest error is not above 2−7. For all test cases
the max error is not greater than 2−3. It can be used if a real application does not need very high
precision.

both high throughput and accuracy.
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Glossary

AsAP3 The third generation Asyncronous Array of simple Processors (AsAP) chip. AsAP3 is a

fine-grained many-core system with 1000 independently clocked homogeneous programmable

processors, also named as Kilocore

BigMem An independent on-chip memory module used on KiloCore contains a 64 kB SRAM and

is shared between two neighboring processors

FWL Fraction word length. It is used to show how many bits are used to represented fraction part

in fixed point

GALS Globally asynchronous locally synchronous (GALS) is an architecture for designing electronic

circuits which addresses the problem of safe and reliable data transfer between independent

clock domains.

GJE Gaussian Jordan Elimination, an algorithem that used to invert the matrix.

IEEE-754 A techincal standard for floating point arithmetic and data representation. The standard

species a set of formats, operations, rounding rules, flags, and the handling of exceptions.

MIMD In computing, MIMD (multiple instruction, multiple data) is a technique employed to

achieve parallelism. Machines using MIMD have a number of processors that function

asynchronously and independently. At any time, different processors may be executing

different instructions on different pieces of data.

MIMO multiple-input and multiple-output is a method for multiplying the capacity of a radio link

using multiple transmission and receiving antennas to exploit multipath propagation
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TDP the thermal design power (TDP) is the maximum amount of heat generated by a computer

chip or component (often a CPU, GPU or system on a chip) that the cooling system in a

computer is designed to dissipate under any workload.

VLSI Very-large-scale integration (VLSI) is the process of creating an integrated circuit (IC) by

combining millions of transistors or devices into a single chip.
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